实验六_植物原生质体分离及融合综述
- 格式:ppt
- 大小:461.50 KB
- 文档页数:16
植物原生质体的分离及融合生93沈睿2009012372同组:古梦婷实验日期:2011年11月2日一.实验原理1.原生质体分离原生质体指包被在植物细胞壁内的生活物质。
细胞壁的主要成分是纤维素和果胶质,它们分别经纤维素酶和果胶酶处理即可分解,从而脱去细胞壁,得到原生质体。
2.原生质体融和诱导原生质体融合的方法有多种,譬如物理法(电场刺激,激光,显微操作等)、化学法(聚乙二醇结合高钙高pH法)和生物法(仙台病毒法等)。
本实验用PEG诱导原生质体融和。
PEG是聚乙二醇的英文缩写,相对分子质量在200-6000之间的均可用作细胞融合剂,20-50%的浓度能对原生质体产生瞬间冲击效应,原生质体很快发生收缩与粘连。
PEG诱导融合的机理可能是由于其含有醚键而具负极性,与水、蛋白质、碳水化合物等一些正极化基团能形成氢键。
当PEG分子足够长时,可作为相邻原生质体表面之间的分子桥而使之粘连。
PEG也能连接Ca2+等阳离子。
Ca2+可在一些负极化基团和PEG之间形成桥,因而促进粘连。
在洗涤过程中,连接在原生质体膜上的PEG分子可被洗脱,这将引起电荷的紊乱和再分布,从而引起原生质体融合。
高钙、高pH洗液清洗则增加了质膜的流动性,因而大大提高了融合频率,洗涤时的渗透冲击对融合也可能起作用。
普遍认为PEG分子能改变各类细胞细胞膜的结构,由于两细胞相接处质膜的相互亲和以及彼此的表面张力作用,两细胞接触点处细胞膜的脂类分子发生疏散和重组。
PEG法诱导的优点是取材方便、操作简易、效率高且效果稳定,缺点是对细胞有毒性。
二.实验步骤1.原生质体的制备(1)将新鲜的剑兰(唐菖蒲)花瓣洗干净,用吸水纸吸干表面水分;将小平皿洗净,用蒸馏水冲洗后晾干或擦干。
(2)向小平皿中加入适量酶液,用尖头镊剥取剑兰花瓣的上、下表皮,27o C恒温振荡1h 左右。
(3)镜检细胞的酶解情况,若酶解效果不佳,可延长酶解时间,并用吸管吹吸。
(4)将酶解好的原生质体混合液经300目尼龙网过滤到10ml离心管,去除未被酶解的大块组织,用洗涤液冲洗平皿若干次,收集冲洗的液体。
实验六植物原生质体的分离与融合一、实验目的:1、掌握原生质体分离的方法;2、了解并掌握利用PEG原生质体融合的原理和方法。
二、实验原理:PEG为一种高分子化合物,能与水、蛋白质、和碳水化合物等一些基团能形成氢键。
普遍认为聚乙二醇分子能改变各类细胞的膜结构,使两细胞接触点处质膜的脂类分子发生疏散和重组,由于两细胞接口处双分子层质膜的相互亲和以及彼此的表面张力作用,从而使细胞发生融合。
该方法的优点是:用法简单,容易获得融合体,融合效果好。
三、实验材料:(1)韭菜或大蒜叶;(2)红辣椒四、实验步骤:Ι 植物原生质体的分离与纯化1、酶解:将撕去表皮的植物叶片和果肉置于酶液(PH 5.4_5.8,去表皮面接触酶液),在适宜温度条件下,避光酶解数小时。
2、过滤:用350目网过滤除去未完全消化的叶片等残渣。
3、原生质体收集:在1000rpm条件下离心5分钟,弃上清液。
红辣椒800转/分离心5分钟。
4、洗涤:弃上清液,留沉淀约1ml,加入4ml13%CPW洗液,相同条件下再离心,弃上清液。
弃上清液,留沉淀约1ml,混匀呈悬浮备用。
5、纯化:**蔗糖漂浮法去除碎片法:(1)用细口吸管吸20%蔗糖溶液约3ml,小心插入盛有原生质体悬液的离心管底部,缓缓将蔗糖溶液挤出,由于比重不同,蔗糖溶液与原生质体悬液中间有一明显界面。
或者(1*)换一洁净离心管加入20%蔗糖溶液约3ml,然后小心将原生质体悬液平铺于离心管表面。
(以上任一方法皆能看到明显界面)(2)离心5分钟(1000转/分,辣椒800转/分),此时死细胞及碎片降至蔗糖溶液内,聚集在离心管底部,而活细胞由于有大量泡沫,故漂浮在上下界面处(3)用细管吸取漂浮在上下界面处的健康原生质体,转入干净的离心管中。
注意下步镜检决定是否需要:加入3~4ml13%CPW洗液离心,离心5分钟(1000转/分,辣椒800转/分),收集沉淀,最终原生质体体积控制在0.5ML左右。
Ⅱ细胞融合1.不同的原生质体各300μl与带盖离心管中,另加入300μl 40% PEG液,30℃水浴中温浴15min;2.融合液一滴于载玻片上(注意保持一定湿度,不能太干),轻轻盖上盖玻片,显微镜观察。
植物原生质体融合和培养在理论和实践上都有很大的意义,在植物遗传工程和育种研究上具有广阔的应用前景。
它是植物同源、异源多倍体获得的途径之一,它不仅能克服远缘杂交有性不亲和障碍,也可克服传统的通过有性杂交诱导多倍体植株的麻烦,最终将野生种的远缘基因导入栽培种中,原生质体融合技术可望成为作物改良的有力工具之一。
原生质体的分离分离原生质体时,首先要让酶制剂大量地吸附到细胞壁的纤维素上去,因此,一般先将材料分离成单细胞,然后分解细胞壁。
采用将酶液减压渗入组织,或将组织切成薄片等方法,都可增加酶液与纤维素分子接触的机会。
酶处理目前常用的多是“一步法”,即把一定量的纤维素酶,果胶酶和半纤维素酶组成混合酶溶液,材料在其中处理一次即可得到分离的原生质体。
植物材料须按比例和酶液混合才能有效地游离原生质体,一般去表皮的叶片需酶量较少,而悬浮细胞则用酶量较大。
每克材料用酶液10~30ml不等。
由于不同材料的生理特点不同,在研究游离条件时,必须试验不同渗透压浓度的细胞,找出适宜的渗透浓度。
例如,游离小麦是浮细胞的原生质体的酶液中须加入0.55mol/L甘露醇,游离水稻悬浮细胞的原生质体的酶液中只加0.4~0.45mol/L的甘露醇,两者差别较大。
酶解处理时把灭菌的叶片或子叶等材料下表皮撕掉,将去表皮的一面朝下放入酶液中。
去表皮的方法是:在无菌条件下将叶面晾干、顺叶脉轻轻撕下表皮。
如果去表皮很困难,也可直接将材料切成小细条,放入酶液中。
对于悬浮细胞等材料,如果细胞团的大小很不均一,在酶解前最好先用尼龙网筛过滤一次,将原细胞团去掉,留下较均匀的小细胞团时再进行酶解。
酶解处理一般地在黑暗中静止进行,在处理过程中偶尔轻轻摇晃几下。
对于悬浮细胞,愈伤组织等难游离原生质体的材料,可置于摇床上,低速振荡以促进酶解。
酶解时间几小时至几十小时不等、以原生质体游离下来为准。
但是,时间过长对原生质体有害,所以一般不应超过24h。
酶解温度要从原生质体和酶的活性两方面考虑。
综合实验一:植物原生质体的分离、融合与培养植物原生质体融合和培养在理论和实践上都有很大的意义,在植物遗传工程和育种研究上具有广阔的应用前景。
它是植物同源、异源多倍体获得的途径之一,它不仅能克服远缘杂交有性不亲和障碍,也可克眼传统的通过有性杂交诱导多倍体植株的麻烦,最终将野生种的远缘基因导入栽培种中,原生质体融合技术可望成为作物改良的有力工具之一。
植物原生质体培养方法起源于植物单细胞的培养方法。
1954年,植物单细胞培养才获得成功。
Mllir培养的万寿菊及烟草悬浮细胞植入到长有愈伤组织的培养基上得到了它们的单细胞克隆,并建立了看护培养的方法;I960年Jones等建立了微室培养法。
同年,Cocking 应用酶法分离原生质获得成功,从而在实验条件下很容易获得大量的原生质体。
随着多种适用于原生质体分离的商品酶的出现,原生质体的培养方法也得到了不断地改进,现在常用的原生质体培养方法有:液体浅层培养法、双层培养法、琼脂糖包埋法、琼脂岛培养法以及使用条件培养基或饲喂培养等。
实验目的了解植物原生质体分离、融合和培养的基本原理及其过程实验原理植物原生质体是除去细胞壁后为原生质所包围的“裸露细胞。
是开展基础研究的理想材料。
其中酶解法分离原生质体是一个常用的技术,其原理是植物细胞壁主要由纤维素、半纤维素和果胶质组成,因而使用纤维素酶、半纤维素酶和果胶酶能降解细胞壁成分,除去细胞壁。
许多化学、物理学和生物学方法可诱导原主质体融合,现在被广泛采用并证明行之有效的融合方法是聚乙二醇(PEG)法。
高Ca高pH法和电融合法:PEG作为一种高分子化合物,20〜50%的浓度能对原生质体产生瞬间冲击效应,原生质体很快发生收缩与粘连,随后用高Ca高pH法进行清洗.使原生质体融合得以完成。
PEG诱导融合的机理:PEG由于含有醛键而具负极性,与水、蛋白质和碳水化合物等一些正极化基团能形成氢键,当PEG分子足够长时,可昨为邻近原生质表面之间的分子桥而使之粘连。