地下水地源热泵系统应用对地温场的影响
- 格式:pdf
- 大小:981.66 KB
- 文档页数:5
郑州市地下水源热泵应用适宜性与环境影响分析田良河;刘新号;闫震鹏;焦红军;杨坡;谭菊萍【摘要】本文在分析郑州市现有地温空调系统应用的基础上,从水文地质条件、浅层地温场特征、经济效益等方面分析了郑州市地下水源热泵应用的适宜性,研究了热泵运行对地下水环境的影响,认为地下水源热泵应用效果较好,经济社会效益明显,适宜推广应用,为城市地下水源热泵发展应用提供了依据。
%According to analysis of current application of geotherm air-conditioning systems,the application effect of Ground Source Heat Pump System(GSHPS)in Zhengzhou City is analyzed from the aspects of hydrogeological conditions,shallow geotherm characteristics and economybenefit,etc.,additionally,the environmental evaluation of GSHPS is researched.It is considered that the application effect of GSHPS is preferable,and the economy benefit is obvious.It is available to expand the application,which will provide a support for application of urban GSHPS development.【期刊名称】《城市地质》【年(卷),期】2011(006)004【总页数】6页(P51-56)【关键词】郑州市;地下水源热泵;水文地质;影响;适宜性【作者】田良河;刘新号;闫震鹏;焦红军;杨坡;谭菊萍【作者单位】河南省地质调查院,郑州450001;河南省地质调查院,郑州450001;河南省地质调查院,郑州450001;河南省地质调查院,郑州450001;河南省地质调查院,郑州450001;河南省地质调查院,郑州450001【正文语种】中文【中图分类】TK5290 引言上个世纪70年代以来,能源和环境危机日趋严重.人们开始寻求传统能源之外的清洁、可再生的替代能源.正是在这种情况下,以清洁、可再生的浅层地热能为能源的地源热泵引起了人们的关注.地源热泵是一种先进的技术,它高效、节能、环保,有利于可持续发展.正是热泵技术使浅层地热资源得到有效利用.而地源热泵应用也日益广泛,并且受到各级政府的重视.地源热泵系统包括地下水地源热泵系统与地埋管地源热泵系统.郑州市浅层地热能的开发利用多采用地下水源热泵,土壤源热泵利用才刚起步.浅层地热能主要应用于包括宾馆、住宅、商场、写字楼、学校、医院、别墅、厂房等建筑节能方面.近年来,郑州市地下水源热泵应用发展迅速,在开发利用中也存在很多问题.如,不能完全回灌造成水资源浪费,井间距过小或抽回水量过大,造成运行期间地下水水温急剧升高(夏季)或降低(冬季),影响热泵系统运行效果,此外,地温空调运行对环境的影响问题也有待研究.1 地温空调应用现状1.1 地温空调井基本情况近年来,郑州市地下水源热泵技术发展迅速,现有浅层地热能中央空调用户百余家,抽回灌井200余眼,井深一般100~150m左右.个别小于80m或大于150m,市区东部和东北部井深较浅,市区西部和地下水降落漏斗区井深稍深.孔径一般500~600mm,井径一般300mm左右.单井出水量一般20~70m3/h,最大达100m3/h. 郑州市地温空调井因所处地貌位置不同,井深和开采层位有所不同.京广线以东为黄河冲积平原,井深一般较浅,开采层位一般为全新统、上更新统和中更新统砂层,含水层岩性为中细砂、细砂等,厚度20~40m,埋深一般在100m以上,由于这里水位埋藏较浅,故抽水水量较大,而回灌效果不佳.市中心附近,地下水埋藏较深,开采层位可达中更新统和下更新统砂层中.市区西部为塬前冲洪积倾斜平原区,井深一般稍深,开采层位主要为上更新统、中更新统和下更新统砂层,含水层岩性为细砂、中细砂、砂砾石,厚度25~50m,砂及砂砾石层局部钙质胶结成砂岩,影响空调井的出水量和回灌量.一般一组空调井需一眼抽水井和两眼回灌井.抽水井和回灌井间距一般20~30m,部分小于15m或大于30m.1.2 地温空调系统运行效果一般制冷期为5月底至9月底,供暖期为11月上旬至次年3月上旬.供热期间,井水进主机温度一般15~19℃,出主机温度一般45~55℃,回灌水温度8~15℃.室外环境温度-5~0℃时,室内环境温度可达到20℃左右;制冷期间,井水进主机温度一般16~20℃,出主机温度一般8~12℃,回灌水温度19~27℃.室外环境温度33~37℃时,室内环境温度可达到21℃左右.2 水文地质特征2.1 储水介质特征及富水性郑州市200m以浅松散地层岩性主要为第四系全新统、上更新统、中更新统冲积(局部为冲洪积的粉质粘土、粉土夹砂层;京广铁路以西,90~120m以下为下更新统或新近系粘土与砂互层.顶板埋深由西部的20~40m至东部的10m左右;底板埋深:西部以新近系湖冲(洪)积中厚层含砾中、粗砂为底界,埋深120~140m,其中含水层厚度40~60m;东部以中更新世中部黄河冲积厚层中、细砂为界,埋深160m左右,其中含水层厚度50~110m(图1).含水层富水性可划分为三个区:强富水区分布于东北部沿黄一带,含水层以粗砂为主,夹中砂或细砂,顶板埋深4~23m,降深5m单井涌水量3000~5000m3/d,局部大于5000m3/d.水位埋深一般5~10m;富水区分布于整个平原区,含水层岩性由中砂、粗砂、细砂及少量砂砾石组成,单井涌水量1000~3000m3/d,个别大于3000m3/d.水位埋深由东部的小于5m向西部逐渐增加为大于20m;弱富水区分布于袁河、郭小寨、西胡垌一带,含水层岩性为中细砂,局部夹有粉砂,单井出水量19.8m3/h,水位埋深大于50m(图2).2.2 地下水循环特征垂向上接受降水入渗、地表水渗漏补给,通过开采排泄.于开采量大于垂向补给量,在市区范围内形成了水位降落漏斗(最大水位埋深80.4m);水平上主要为来自北部黄河河道带和西部的侧向径流补给.2.3 含水层回灌能力含水层的回灌能力是影响地下水源热泵适宜性的主要条件之一.地下水回灌量的大小受成井结构与质量、水文地质条件等多种因素影响,回灌能力与含水层颗粒大小、富水性、水位埋深等有密切关系.根据已完成的"河南省重点城市浅层地热能评价与开发利用研究"成果,按单井回灌量进行将郑州市200m以浅含水层回灌能力分为4个区(图2).总体来看,回灌能力由沿黄一带冲积平原区的1500~3000m3/h向西南丘陵区逐渐减弱至小于500m3/h.综合含水层富水性与回灌能力,郑州市除西南部丘陵区外,其他地段均适宜或较适宜地下水源热泵应用.2.4 水化学类型与化学组分特征郑州市区地下水水化学类型主要为HCO3型,自西南丘陵区向北、东北、东南方向,大致分为HCO3-Ca、HCO3-Ca.Mg和HCO3-Na.Ca(Mg)型三个区,反映出了水化学类型由丘陵区逐渐向平原区过渡的分布规律.地下水中影响热泵系统运行效果和使用寿命的主要化学组分特征值见表1.表1 郑州市地下水化学组分特征值表按地源热泵水质要求(DZ/T 0225-2009),根据郑州市22个水样分析结果,浅层地下水硬度全部超标,Cl-、SO和游离CO2局部超标.总体来看,地下水除硬度外,基本满足水源热泵水质需要,个别元素局部超标.特征值 pH值总硬度(mg/l)总碱度(mg/l) Cl-(mg/l) CaO (mg/l)(mg/l) 2-SO4矿化度(mg/l)游离CO2 (mg/l)最大值 7.6 612 469 147 262 233 1139 23最小值 7.1 218 208 12 69 17 501 4平均值 7.4 398 319 74 140 86 786 103 浅层地温场特征根据郑州市潜水位以下2m深处水温观测结果,市区一带地下水埋深较大、温度稍高,一般18~20℃,局部大于20℃;向外围逐渐降低至16~18℃.郑州市西郊地下水埋藏较深,含水层颗粒较细,局部呈胶结状,导水性较差,地下水水温较高,200m深水井的地下水温可达20℃左右;郑州市东北郊,浅层含水层为黄河冲积物,埋藏较浅,颗粒较粗且松散,导水性能好,黄河侧渗补给强烈,浅层地温场温度较低,另外,在郑州市地下水降落漏斗区,因地下水位埋深较大,水温略偏高.浅层地温场特征见表2.表2 浅层地温场特征值表区域温度(℃) /水位埋深(m)市中心区温度(℃) /水位埋深(m)近郊区温度(℃) /水位埋深(m)恒温带深度(m)/温度(℃)浅层地温场平均温度(℃) 15.9~17.0/<20 18~20/>40 16~18/10~50 27/15.7 18.4~18.7地温增温率:根据井中垂向测温资料,市区东北一带增温率为2.13℃/100m,小于正常地热增温率,可能与浅层地下水补给速度快有关;市区西南一带增温率为3.53℃/100m.从本区浅层地温场特征来看,地下水温度变化范围在热泵系统要求范围内,可以满足热泵应用要求.4 经济环境效益分析地温空调系统以电能为辅助能源,将地下浅层地温的低位能量转变为可利用的高位能,实现冬季供暖、夏季供冷,又能将部分热量加以利用形成生活热水.通常消耗1kW的电能,地温空调系统可获取4kW的热量或冷量,这要比电锅炉加热节省2/3以上的电能,比燃料锅炉节省1/3以上的能量;水源热泵的热源温度全年较为稳定,其制冷制、热系数可达3.5~4.0,与传统的空气源热泵相比,要高出40%左右,其运行费用为普通中央空调的50%~60%,足见水源热泵的节能性.地温空调系统不仅具有较高的GOP(能效比)值,还在一定程度上解决了洗浴用水的供应问题.以河南省老干部疗养院地下水源热泵空调系统为例:河南省老干部疗养院共施工地温空调井8眼,其中抽水井3眼,回灌井5眼,井间距12~15m,空调应用面积22000m2.冬、夏季均使用120天,夏季室内温度降低12℃,冬季室内温度升高20℃.运行效果较好.其经济效益对比见表3.表3 省老干部疗养院地温空调与其他空调效益对比表目空调类型备注地温空调燃煤空调燃气空调电空调空调面积(m2) 22000 22000 22000 22000基本投资(万元) 330 365 410 340运行费用(元/m2.天)夏季 0.09 0.16 0.20 0.11冬季 0.10 0.20 0.18 0.13从以上各表可看出,利用热泵技术开发利用浅层地热能,能够节约能源,保护环境,投资运行成本低,社会效益及经济效益明显.浅层地热能是一种清洁的,可再生的能源,是国家要求大力探索和发展的新能源.随着我国能源结构政策的调整和地源热泵技术的逐步提高完善,城市对浅层地热能需求不断加大,浅层地热能所占的比重也将愈来愈高.5 热泵系统运行对地下水环境的影响5.1 对地下水温度的影响郑州地区地温空调井抽水井中水温一般约16~20℃,回水管道中水温在供暖期一般在10~15℃,比抽水井中地下水温度低2~7℃;制冷期一般在18~25℃,比抽水井中地下水温度高1~8℃.根据对地温空调井中水温度监测,地温空调运行时对地下水温度阶段性影响较明显:受回灌水温度的影响,制冷期地下水温度略有升高,供暖期略有下降.但在一个完整的制冷与供暖周期内(图3、4),地温空调井回灌对地下水温度持续性影响不明显.5.2 对地下水水质的影响根据儿童医院地温空调井制冷期运行前(5月5日)、运行期间(8月21日)及运行(10月29日)后的水质全分结果,并收集了2003年8月份水质资料进行对比,见表4.表4 儿童医院地温空调井不同时段下水水质对比表分析项目含量(mg/l) 03.08.11 08.05.05 08.08.21 08.10.29 03.08.11 08.05.05 08.08.21 08.10.29含量(mg/l) 分析项目K+ 0.72 1.45 0.80 1.09 Zn / 0.02 0.01 / Na+ 97.61 115.79 55.56 77.60 Cu / 0.01 0.01 / Ca2+ 93.80 159.32 157.11 159.12 Pb / 0.01 0.01 / Mg2+ 18.00 36.21 27.22 37.66 Cd / 0.005 0.005 / Fe3+ 0.23 1.20 0.01 0.05 Se / 0.00 0.0001 / Fe2+ / 0.002 0.002 0.002 Hg / 0.0001 0.0001 / Al3+ / 0.01 0.01 0.05 Mn 0.05 0.02 0.01 / NH4阳离子0.02 0.10 0.02 0.02 As / 0.00 0.00 /合计 314.07 240.69 275.52 Ag / 0.01 0.01 / +Cl- 93.25 130.81 114.15 125.49 Cr6+ / 0.002 0.00 / SO42- 70.64 172.91 107.59 143.13 总硬度 308.30 546.50 504.00 552.20 HCO3-357.60 436.90 369.17 432.02 永久硬度 15.30 188.50 201.50 198.00 CO32- 0.00 0.00 0.00 0.00 暂时硬度 293.00 358.00 302.50 354.00阴离子OH- / 0.00 0.00 0.00 负硬度 0.00 0.00 0.00 0.00 NO3--13.34 72.00 60.00 55.13 总碱度 293.00 358.00 302.50 354.00 NO20.001 0.03 0.01 0.02 总酸度 22.40 7.10 18.80 F- 0.35 0.20 0.36 0.32 H2SiO3 22.00 28.60 29.90 26.00 Br- / / / / 游离CO2 14.08 19.69 6.22 16.58 PO43- / / / / CODMn / 1.03 0.51 0.53合计 / 812.85 651.28 756.13 氰化物 / 0.001 0.001 /色度 / 100 2 5 酚类 / 0.002 0.002 /口味 / 无无无矿化度 600.00 1148.92 914.97 1051.65气味 / 无无无固形物 930.47 730.38 835.65浊度 4.11 49 1 5 pH值 7.65 7.30 7.50 7.40变化较为明显的成分主要有Na+、Mg2+、Cl-、SO、HCO、NO等,与2003年(收集资料)相比,总体以含量升高为主,并引起总硬度、矿化度等指标的升高.变化最大的NO含量升高了4倍以上.但就本次采取的3组水样对比来看,各组分却呈现出运行期含量较低,运行期前后含量较高的现象,且总体上有所降低.其中5月5日水质中同时存在有NH、NO、NO,表明水已受污染一定时间.而后期的水样中这3种离子含量逐渐降低.经调查,该水样采取前(4月底)机组曾进行调试,因此该水样异常应为机组试运行引起的污染所至.因此,在浅层地热能开发利用时应严格控制污染源.6 结论⑴郑州市平原区含水层岩性为中砂、中细砂,富水性好,可满足地下水源热泵供水与回灌需求.⑵郑州市地下水温度一般18~20℃,适宜地下水源热泵运行.地下水中化学组分除硬度外,基本满足水源热泵水质需要,个别元素局部超标.⑶郑州市地下水源热泵应用效果较好,经济社会效益明显,适宜热泵推广应用.⑷地温空调运行时对地下水温度阶段性影响明显,但在一个完整的制冷和供暖周期内,地下水温度没有明显的持续性变化.地温空调运行过程中应注意防护,以减少可能对地下水造成的污染.综上所述,地下水源热泵在郑州市应用较为适宜.但在使用过程中应加强地下水监测管理,以确保地下水完全回灌,同时为研究热泵系统运行对地下水环境的长期影响提供资料,促进地源热泵技术健康发展.参考文献[1] 赵军,戴传山.地源热泵技术与建筑节能应用[M].北京:中国建筑工业出版社,2007.(Zhao Jun, Dai Chuanshan.Geothermal heat pump technique and architecture energy saving application [M].Beijing∶ China achitecture industry press, 2007).[2] 中国资源综合利用协会地温资源综合利用专业委员会.地温资源与地源热泵技术应用论文集.第一集[M].北京:中国大地出版社,2007.( Professional committee of geothermal resource utilization, association of Chinese resource utilization.Proceedings of geothermal energy and geothermal heat pump technique application, volume 1 [M].Beijing∶ China land press, 2007). [3] 国土资源部地质环境司组织编写.浅层地热能-全国地热(浅层地热能)开发利用现场经验交流论文集[M].北京:地质出版社,2007.( Geological environment department of ministry of land and resources.Shallow geothermal energy- Proceedings of national conference of geothermal energy development and utilization experiences communication [M].Beijing∶ Geology press, 2007).[4] 北京市地质矿产勘查开发局,北京市地质勘查技术院编著.北京浅层地温能资源[M].北京:中国大地出版社, 2008.( Beijing geological mineral survey and exploitation bureau, Beijing geological survey technique institute,etal.Shallow geothermal energy of Beijing [M].Beijing∶ China land press,2008).。
济南地区地埋管地源热泵系统对土壤温度场的影响研究发布时间:2021-06-22T10:21:20.913Z 来源:《基层建设》2021年第8期作者:贺继超刘为民肖利涛赵秉南焦时飞别舒[导读] 摘要:为了研究地源热泵系统长期运行对土壤温度场、出水温度及机组自身COP的影响,本文基于TRNSYS软件模拟了济南地区某一办公楼冷热负荷和地源热泵系统运行20年后土壤平均温度、出水温度及机组自身COP变化。
中国中元国际工程有限公司北京市 100089摘要:为了研究地源热泵系统长期运行对土壤温度场、出水温度及机组自身COP的影响,本文基于TRNSYS软件模拟了济南地区某一办公楼冷热负荷和地源热泵系统运行20年后土壤平均温度、出水温度及机组自身COP变化。
模拟结果表明:济南地区该系统排热量是取热量的2.07倍,由于冷热不平衡导致土壤平均温度升高约4.85℃,热堆积率为0.24℃/a。
地源测出水温度冬/夏季分别增加了4.5℃/5℃,其夏季COP下降了0.45,冬季COP上升了0.1。
总体而言,地埋管地源热泵系统较适合应用于济南地区。
关键词:地埋管地源热泵;TRNSYS模拟;出水温度;土壤温度场;COPStudy on the Influence of Ground Source Heat Pump System on Soil Temperature field in Jinan AreaAbstract:In order to study the influence of long-term operation of the ground source heat pump system on soil temperature field,water outlet temperature and COP of the unit itself,Based on TRNSYS software,this paper simulates the cooling and heating load of an office building in Jinan,and simulates the changes of the average soil temperature,water outlet temperature and COP of the ground source heat pump system after 20 years of operation .The simulation results show that:In Jinan area,the heat discharged by this system is 2.07 times of the heat taken out. Due to the imbalance of cold and heat,the average soil temperature increases by about 4.85℃,and the heat accumulation rate is 0.24℃/a. The measured water temperature in the ground source increased by 4.5℃/5℃ in winter and summer,respectively. The COP in summer decreased by 0.45 and that in winter increased by 0.1. In general,the ground source heat pump system is more suitable for application in Jinan area.Keywords:Ground source heat pump,TRNSYS Simulation,Outlet temperature,Soil temperature field,COP1 引言目前,经济的快速发展导致全球能源消耗呈指数级增长,其中建筑能耗约占全国总能耗的28%,采暖空调能耗占建筑使用能耗的65%左右[1]。
专业论坛上海世博园地表水地源热泵的应用及环境影响分析同济大学 张文宇☆ 龙惟定摘要 介绍了国内外地表水地源热泵的研究现状,分析了上海世博园区地理、气候条件以及空调负荷,认为以黄浦江江水作为冷热源的热泵系统可行,指出热泵系统与环境之间具有双向影响。
关键词 上海世博园 黄浦江 地表水地源热泵Ap p li c a ti o n of s urf a c e w a t e r s o ur c e h e a t p u m p s yst e ms i n S h a n g h a i Exp o a n d t h e e n vir o n m e nt eff e c t a n a l ysisBy Zhang Wenyu★and Long WeidingAbst r a ct Presents t he current research status of surf ace water source heat p ump syste ms in and out of China.A nalyses t he geograp hic,climatic conditions and cooling load in Sha nghai Exp o area.Concludes t hatt he water of Hua ngp u River is available as t he cold a nd heat sources of t he heat p ump syste m during t he Exp o period.Points out t hat t here are reversible eff ects between t he heat p ump syste m a nd e nvironme nt.Keywor ds Sha nghai Exp o,Hua ngp u River,surf ace water source heat p ump★Tongji University,Shanghai,China1 国内外地表水地源热泵研究现状国外地表水地源热泵的研究始于20世纪30年代,瑞士苏黎世议会大厦安装了欧洲第一台大型热泵,以河水作为热源,输出热量175kW。
典型气候带地埋管地源热泵运行对地温场的影响分析贾子龙;郑佳;杜境然;刘爱华;李娟;李富【摘要】我国的浅层地温能开发利用以寒冷地区和夏热冬冷地区应用最为广泛,利用方式以地埋管地源热泵系统为主.其中寒冷地区北京、天津、河北等省市发展规模较大,夏热冬冷地区江苏和浙江两地发展规模较大.本文选取寒冷地区和夏热冬冷地区规模较大、具有代表性的地埋管地源热泵工程开展了地温场的监测,分析了地温场的监测数据.结果表明,受气候带的影响建筑物的供暖和制冷情况会有所差异,但其所使用的地源热泵系统运行对地温场的影响非常有限,不会因气候带的差异而有所差别.【期刊名称】《城市地质》【年(卷),期】2019(014)003【总页数】6页(P81-86)【关键词】浅层地温能;地埋管地源热泵;气候带;地温场;监测数据【作者】贾子龙;郑佳;杜境然;刘爱华;李娟;李富【作者单位】北京市地热研究院,北京 102218;北京市地热研究院,北京 102218;北京市地热研究院,北京 102218;北京市地热研究院,北京 102218;北京市地热研究院,北京 102218;北京市地热研究院,北京 102218【正文语种】中文【中图分类】P314;X1410 引言我国浅层地温能资源开发利用起步较晚,但是近年来发展十分迅速。
2010年,我国浅层地温能年利用量已高居全球第二(丁宏伟等,2016),2015年更一跃成为世界浅层地温能利用量最大的国家,地源热泵当前的发展速度已领跑世界。
全国31个省市区均有浅层地温能开发利用工程项目,80%的项目集中在华北和东北南部地区,包括北京、天津、河北、辽宁、河南、山东等省市。
据统计,截至2016年,我国浅层地温能应用建筑面积约4.78亿m2,替代标煤1505万吨,占全国能源消费总量的0.463%,每年可节约标煤806万吨,减排二氧化碳1792万吨、二氧化硫12.76万吨,经济环境效益显著。
按照现行国家标准《民用建筑热工设计规范》(GB 50176-2016)中建筑热工设计分区的有关规定,我国气候带可划分为5个地区,分别是严寒地区、寒冷地区、夏热冬冷地区、夏热冬暖地区和温和地区。
地下水地源热泵系统对地下水的影响地下水地源热泵系统对地下水的影响及对策摘要:地源热泵系统是一种可持续发展的绿色能源技术,地下水地源热泵系统作为地源热泵系统中的一种形式,相较于其他地源热泵系统有相比效率更高,投资低的优点,但对地下水的影响也是最大的。
本文通过认真分析地下水地源热泵系统建成运营后地下水的渗流场、温度场、水化学场的变化,指出这些变化可能会引发的地质环境和环境问题,并提出工程防治措施。
前言随着现代科技的发展,环境和能源问题日益突出,实施环境保护和可持续发展能源战略已越来越受到国际社会和我国政府的重视。
地源热泵系统作为一种可持续发展的绿色能源技术,有着高效、节能、环保的特点,因此,近年来在国内外得到了日益广泛的应用。
“地源热泵”的概念最先由瑞士Zoelly于1912年提出。
1946年美国开始对地源热泵进行系统研究,在俄勒冈州建成第一个地源热泵系统,运行很成功,由此掀起了地源热泵系统在美国的商用高潮。
1985年美国安装地源热泵14000台,1997年则安装了45000台,1998年美国商用建筑的地源热泵空调系统已经占到空调保有量的19%以上,其中在新建筑里面占30%,并且以每年20%的速度递增[1]。
在全世界,到2005年地源热泵已在33个国家安装了130万台装置,总装机15723MWt,是2000年的2.98倍,合每年累进增长24.4%,占世界地热直接利用总装机容量的56.5%,已是地热供暖份额14.9%的3.8倍[2]。
在我国,地源热泵系统的研究起始于20世纪80年代,在1997年开始学习和引进欧洲产品,出现了大规模的地下水源热泵采暖工程项目,到1999年底,全国大约有100套地下水源热泵供热或制冷系统[3]。
2006年,伴随《可再生能源法》的实施,地源热泵系统作为一项节能又环保的绿色能源技术,成了国内建筑节能及暖通空调界热门的研究课题,少数经济发达城市的政府部门也已经开始有计划、有规模的做技术推广工作。