卫星通信地基础知识
- 格式:doc
- 大小:241.67 KB
- 文档页数:9
卫星通信基础知识(六)卫星天线的方位仰角极化角要进行卫星接收,关键点是卫星接收天线的定位,它包括:天线的方位角、仰角和馈源的极化角这三大参数。
1、方位角从地球的北极到南极的等分线称为经线(0-180度),把地球分为东方西方,偏东的经线称为东经,偏西方的经线称为西经。
从地球的东到西的等分线称纬线(0-90度),把地球分为南北半球,以赤道为界(赤道的纬度为0),北半球的纬线称北纬,南半球的纬线称南纬。
我国处于北半球的东方,约在东经75-135度,北纬18-55度之间。
所有的广播电视卫星都分布在地球赤道上空35786.6公里的高空同步轨道的不同经度上,平时我们惯称多少度的卫星,这个度指的是地球的经线。
卫星在地球上的投影称为星下点,它是位于赤道上,经度与卫星经度相同的地方。
如亚太6号卫星的星下点是位于赤道上的东经134度的位置。
我们在寻星时,如果你所在的地方(北半球)的经度大于星下点的经度,那么天线的方位角必定时正南(以正南为基准)偏西,反过来,如果你所在的位置的经度小于星下点的经度,那么天线的方位角是正南偏东。
卫星天线的方位角计算公式是:A=arctg{tg(ψs-ψg)/sinθ}----------(1)公式(1)中的ψg是接收站经度,ψs为卫星的经度,θ为接收站的纬度。
图1是卫星的方位角示意图。
方位角的调整方法很简单,首先用指南针找到正南方,天线方向正对正南方,如果计算的角度A是负值,则天线向正南偏西转动A度,如果A是正值,则天线向正南偏东方向转动A度。
即可完成方位角的调整。
2、仰角 仰角是接收站所在地的地平面水平线于天线中心线所形成的角度,如图2所示。
仰角的计算公式是: .-----------------⑵ 仰角的调整最好是用量角器加上一个垂针作成的仰角调整专用工具进行调整。
方位角和仰角的调整顺序是,先调整好仰角,在调整方位角。
3、极化角 国内或区域卫星一般都是线极化,线极化分为水平极化(以E‖表示)和垂直极化(以E⊥表示)。
卫星通信基础知识第一节电磁波常识一、电磁波振动的电场和磁场在空间的传播叫做电磁波。
由收音机收到的无线电广播信号,由电视机收到的高频电视信号, 医院里物理治疗用的红外线,消毒和杀菌用的紫外线,透视照相用的X射线,以及各种可见光,都属于电磁波。
二、电磁波的频率、波长人们用频率、波长和波速来描述电磁波的性质。
频率是指在单位时间内电场强度矢量E (或磁场强度矢量H)进行完全振动的次数,通常用f表示。
波长是指在波的传播方向上相邻两个振动完全相同点之间的距离,通常用入表示。
波速是指电磁波在单位时间内传播的距离,通常用v表示。
频率f,波长入,和波速v 之间满足如下关系:v=Xf如果一电磁波在一秒内振动一次,该电磁波的频率就是1Hz , 在国际单位制中,波速的单位是m/s(米/秒),波长的单位是m(米), 频率的单位是Hz.对于无线电信号,它属于电磁波,它的传播速度为光速,即每秒约前进30万公里。
例如:对于一个频率为98MHz的调频广播节目,其波长为300,000,000 米除98,000,000Hz,等于3.06 米。
不同的频率的(或不同波长)电磁波具有不同的性质用途。
人们按照其频率或波长的不同把电磁波分为不同的种类,频率在300GHz(lGHz=109Hz)以下的波称为无线电波,主要用于广播,电视或其他通讯。
频率在3 X1011HZ-4X 1014Hz之间的波称为红外线, 它的显著特点是给人以“热”的感觉,常用于医学上的物理治疗或红外线加热,探测等,频率在3.84X 1014HZ-7.69X 1014Hz之间的波为1417可见光,它能引起人们的视觉,频率在8X10Hz-3X10Hz 之间的波称为紫外线,具有较强的杀菌能力,常用于杀菌,消毒,频率在3X1017 Hz-5X 1019Hz之间的波称为X射线(或伦琴射线)它的穿透能力很强,常用于金属探测,人体透视等,在原子核物理中还有频率为1018Hz-1022Hz以上的射线,其穿透能力就更强了。
卫星通信系统基础知识及设备操作使用与维护管理卫星通信系统是利用卫星作为中间传输媒介的通信方式。
卫星通信通过将信号传输到地球上的接收站,实现了全球范围内的通信。
它具有全天候、全天时、全球覆盖、无距离限制等优点,被广泛应用于军事、民用、航空、航天等领域。
1.设备操作使用:-在操作卫星通信系统设备之前,需要仔细阅读设备的使用说明书和操作手册,了解设备的工作原理、操作流程以及安全注意事项。
-进行设备操作时,需要按照操作流程的指导进行操作,遵循正确的操作步骤,避免操作错误导致设备损坏或故障。
-在设备操作过程中,应注意设备的状态和指示灯的变化,及时处理设备异常情况,避免出现故障。
2.设备使用:-卫星通信设备通常需要安装在固定的位置上,以保证信号传输的稳定性。
因此,在安装设备时,需要选择合适的位置,并按照设备说明书进行正确的安装和固定。
-设备使用过程中,需要注意设备的环境要求,如温度、湿度、电源供应等。
避免设备在恶劣的环境条件下工作,导致设备故障或损坏。
-使用设备时,应遵循设备的操作规程,合理调节设备参数,保证设备的正常运行。
3.设备维护管理:-定期检查卫星通信设备的硬件和软件状态,检测设备是否正常工作,并及时处理设备异常情况。
例如,设备的散热情况、电源供应是否正常等。
-对设备进行定期的清洁和维护,保持设备的良好状态。
同时,定期对设备进行保养,如更换电池、更新软件等。
-设备的安全保护措施也是重要的一环。
例如,设备需要定期备份数据,以防止数据丢失或损坏。
同时,设备的接入口需要设置密码保护,避免未经授权的人员操作设备。
总结起来,卫星通信系统的设备操作使用与维护管理需要关注设备的正确操作、合理使用和定期维护。
通过正确操作和及时维护,可以确保卫星通信系统的稳定运行,提高通信的可靠性和效率。
卫星通信知识点总结一、卫星通信系统概述卫星通信是通过人造卫星作为中继器进行通信的一种通信方式,其优点是覆盖范围广,通信距离远,适用于远距离通信和偏远地区通信。
卫星通信系统由地面站、卫星和用户终端组成,地面站与用户终端间通过卫星进行数据传输。
二、卫星通信工作原理卫星通信系统工作原理主要包括地面站的发送和接收过程、卫星的中继传输过程、用户终端的接收和发送过程。
地面站发送的信号经过卫星中继后到达指定的用户终端,用户终端发送的信号也通过卫星中继后到达地面站。
三、卫星通信系统的分类卫星通信系统主要分为地球静止轨道通信卫星系统(GEO)、中低轨卫星通信系统(LEO/MEO)和其他非地球轨道卫星系统。
GEO卫星通信系统主要应用于广播电视、互联网接入等广泛覆盖通信需求,而LEO/MEO卫星通信系统主要应用于移动通信、数据传输等特定领域。
四、卫星通信系统的关键技术1. 卫星轨道技术卫星轨道技术是卫星通信系统设计的基础,根据通信需求选择合适的卫星轨道,包括地球静止轨道(GEO)、中低轨轨道(LEO/MEO)等。
2. 卫星天线技术卫星天线技术涉及卫星天线的设计、优化和部署,包括指向性天线、平面天线、阵列天线等不同类型,以满足不同的通信需求。
3. 卫星通信链接技术卫星通信链接技术主要包括上行链路、中继链路和下行链路,涉及调制解调、多址接入、信道编解码等关键技术。
4. 卫星通信网络技术卫星通信网络技术包括卫星网的设计、优化和管理,通过地面站和用户终端间的通信连接,在实现卫星覆盖范围内的各种通信需求。
5. 卫星通信安全技术卫星通信安全技术主要包括数据加密、用户认证、通信链路保护等技术,保障卫星通信系统的安全可靠运行。
五、卫星通信系统的应用卫星通信系统广泛应用于广播电视、军事通信、航空航天、海洋监测、移动通信、救援通信等领域,为人类的通信需求提供了便利。
总结:卫星通信系统是一种重要的通信方式,其应用范围广泛,技术含量高,对于地理位置偏僻,通信需求大的地区尤为重要。
第1章1.卫星通信:利用人造地球卫星作为中继站转发无线电破,在两个或多个地球站之间进行通信。
它是宇宙通信形式之一。
2.卫星通信的特点:①覆盖面积大, 通信距离远。
一颗静止卫星可最大覆盖地球表面三分之一, 三颗同步卫星可覆盖除两极外的全球表面, 从而实现全球通信。
②设站灵活, 容易实现多址通信。
③通信容量大, 传送的业务类型多。
④卫星通信一般为恒参信道, 信道特性稳定。
⑤电路使用费用与通信距离无关。
⑥建站快, 投资省。
3.卫星通信的缺点:①卫星要求严格,要求有高可靠性、长寿命。
②通信地球站设备较复杂、庞大。
③存在日凌和星蚀现象。
④卫星传输信号有延迟4.非同步卫星系统按轨道分:1)低轨道卫星通信系统(LEO),如极轨道卫星, 当卫星通过赤道上空时卫星间的距离最大, 此时须多开放一些小区; 当卫星通过两极时, 卫星间的距离变小, 这时会出现小区重叠, 在切换时要关闭一些小区。
2)中轨道卫星通信系统(MEO)3)同步(静止)卫星通信系统(GEO):当卫星的运行轨道在赤道平面内,其高度大约为35800 km 时,它的运行方向与地球自转的方向相同.5.地球卫星轨道分为:赤道轨道,极轨道,倾斜轨道。
6.卫星通信系统的组成:通信卫星,地球站,跟走遥测及指令系统和监控管理系统。
7.地球站的组成:天馈设备,收信机,发信机,终端设备,天线跟踪设备,以及电源设备。
8.基本工作原理:当甲地一些用户要与乙地的某些用户通话时, 甲地首先要把本站的信号组成基带信号, 经过调制器变换为中频信号(70 MHz), 再经上变频变为微波信号, 经高功放放大后, 由天线发向卫星(上行线)。
卫星收到地面站的上行信号,经放大处理, 变换为下行的微波信号。
9.影响同步卫星通信的因素:1)摄动:在空中运行的卫星, 受到来自地球、太阳、月亮的引力以及地球形状不均匀, 太阳辐射压力等影响, 使卫星运行轨道偏离预定理想轨道, 这种现象称为摄动。
2)轨道平面倾斜效应3)星蚀与日凌中断4)卫星姿态的保持与控制10.同步卫星通信卫星的组成:控制分系统,通信分系统,遥测指令分系统,电源分系统,温控分系统。
卫星通信概述
1.卫星通信的基本概念与特点
定义:卫星通信是指利用人造地球卫星作为中继站,转发或反射无线电波,在两个或多个地球站之间进行的通信。
卫星通信又是宇宙无线电通信形式之一,而宇宙
(1)宇宙站与地球站之间的通信;(直接通信)
(2(直接通信)
(3)通过宇宙站转发或反射而进行的地球站间的通信。
(间接通信)
第三种通信方式通常称为卫星通信,当卫星为静止卫星时称为静止卫星通信。
大多数通信卫星是地球同步卫星(静止卫星:轨道在一定高度时卫星与地球相对静止)。
静止卫星是指卫星的运行轨道在赤道平面内。
轨道离地面高度约为
35800km(为简单起见,经常称36000km)。
静止卫星通信的特点
(1
a 通信距离远,且费用与通信距离无关(只要在卫星波束范围内两站之间的传
输与距离无关)
b 覆盖面积大(三颗卫星即可覆盖所有地方),可进行多址通信(一发多收)
c 通信频带宽(带宽为500M
d 信号传输质量高,通信线路稳定可靠
e 建立通信电路灵活、机动性好(只要卫星覆盖到,均可建立地面站进行通信)
f 可自发自收进行监测
(2
a 静止卫星的发射与控制技术比较复杂(所以国内做卫星发射的很少)。
b 地球的两极地区为通信盲区(轨道与赤道平行,切线方向下来无法到达两
c 存在星蚀(卫星在地球和太阳之间)和日凌(地球在太阳和卫星之间)中断
——(现今可通过处理缩短这种现象)
d 有较大的信号传输时延(发射和接受时间)和回波干扰。
2. 卫星通信系统的组成
(1
通常卫星通信系统是由地球站、通信卫星(前两个为主要组成,负责卫星收发)、跟踪遥测及指令系统和监控管理系统(后两个提供辅助功能,监测卫星、姿态调整等)4大部分组成的,如图所示。
(2
两个地球站通过通信卫星进行通信的卫星通信线路的组成如图所示,是由发端地球站,上、下行无线传输路径和收端地球站组成的。
3.卫星通信地球站设备
①发送的信号应是宽频带、稳定、大功率的信号,能接收由卫星转发
器转发来的微弱信号(可通过放大解调处理)。
②可以传输多路电话、电报、传真,以及高速数据、电视等多种业务
的信号。
③性能稳定、可靠,维护、使用方便。
④建设成本和维护费用不应太高。
(1)地球站的性能指标——品质因数(G/T)
G/T是地球站接收天线的增益G与地球站接收系统的等效噪声温度T的比值,它表征了地球站对微弱信号的接收能力,称为地球站的品质因数。
(2
为了保证所传送信号的质量,要求地球站的发射机能够发射较大的功率,
一般为几百瓦~十几千瓦,而且要求所发射的射频信号功率非常稳定。
(3)射频频率的稳定度
地球站所发射的射频信号的频率必须很精确,如果有较大漂移,不但要
影响卫星转发器频带的有效利用,还会在卫星转发器中产生交调噪声。
(4
为减小交调干扰,必须对地球站在负载轻(即通话数少)的时候所发射
的射频频谱能量密度加以限制。
(5
为防止干扰波对卫星转发器和其他微波通信系统形成干扰,规定地球站
因多载波引起的交调干扰及带外总的有效全向幅射功率应小于限定值。
标准地球站的组成,主要由天线分系统、发射机分系统、接收机分系统、通信控制分系统、信道终端设备分系统和电源分系统6个分系统组成。
(固定站涉及到信道终端设备分系统,一般情况下产品涉及发射系统、接收系统以及天线系统)
发射机分系统由上变频器(如上图,信道终端出来的是L频段,而天线
系统的频段为Ku/Ka,因此需要做变频处理,从上图的上半部分故叫做上变频器)、自动功率控制电路、发射波合成装置、激励器和大功率放大器等组成。
接收机分系统
{LNB
LNA:只放大不变频
由于卫星转发器的发射功率较小,只有几瓦至几十瓦,而且天线的增益也不高,经200dB左右的下行线路损耗之后,到达地球站的信号极微弱。
对接收机
①噪声温度低,接收机分系统的噪声温度很低,
一般只有几十开尔文(K)。
②工作频带宽,一般要求具有500MHz
③增益稳定。
放大器和参量放大器等。
经低噪声放大器放大的微波信号,要送到下变频器变换成中频,再经过
中频放大后送到解调器。
4.地球站的天线系统(以地球站为基础,结合公司产品)
地球站的天线是卫星通信中最具特色的设备,是一个庞大的系统。
大多
数地球站采用反射面型天线。
反射面型天线的特点是方向性好,增益高,便于电波的远距离传输。
反射面的分类方法很多,按反射面的数量可分为双反射面天线(如动中通和固定站,波束反射到主面,在反射到副面,再进入喇叭)和单反射面天线(如静中通,喇叭在前端,卫星波束经过天线面直接进入喇叭);按馈电方式分为正馈天线和偏馈天线;按频段可分为单频段天线和多频段天线;按反射面的形状分为平板天线和抛物面天线等。
目标:地球站天线的轴要始终对准卫星方向
固定卫星地球站系统主要由天馈分系统(喇叭、主副面、双工器等主要完成
信号收发)、伺服及接收机分系统(复杂时可划分为伺服分系统和接收机分系统,主要负责运动控制)以及传动分系统(指转台部分,主要提供可靠支撑和功能平台)组成。
其中天馈分系统完成信号的收发功能,伺服及接收机分系统控制天线转动及
天馈分系统
辐射或接收无线电波能量的装置
天线分类:
天线随着波段不同,可分长中波天线、短波天线(线天线:手机、路由器)、微波天
线(面天线:公司产品)。
不同频段有不同类型,前者多为线天线,后者多为面天线。
面天线又有:喇叭天线、缝隙天线、透镜天线、抛物面天线。
抛物面天线最为常用,
它又分:前馈抛物面天线、后馈抛物面天线(双反射面天线)。
后馈抛物面天线都是
双反射面天线,它又有:卡塞格伦天线、格里戈里天线、环焦天线。
为了提高天线增益、降低旁瓣,双反射面天线都可以采用反射面修正技术。
组成:
主反射面、(副反射面)、波纹喇叭、-----馈源系统---- 双工器、功分器、多路旋转关节、多个滤波器等部件组成
单脉冲跟踪:多模产生器、组合网络(会分成合分路、差分路,再到伺服系统,精度较高;但是馈源系统复杂,成本高,需要使用单脉冲接收机解调两个分路)
方向图(信号强弱能量分布图,纵坐标单位dB,横坐标单位角度)
中心频率(如图 14.25GHz)
波束宽度 (y=-6时抛物线对应的X2-X1=1-(-1))=2即为2dB波束宽度
旁瓣(X=0点位天线对准卫星处,偏离此处的第一个最高点即为第一旁瓣,以此类推,越偏离X=0处接受信号的能力越弱;主瓣越大,对其他卫星的影响会更厉害)
极化(电磁波传输方向与大地水平时为水平极化,垂直时为垂直极化,采用两种方式
利用率会更高,另外一个概念交叉极化。
水平极化和垂直极化频点—频谱仪的电平值--不一样,运用反极化(两者的电平差)找到的点就是极化方向。
结构组成
前国内外,比较成熟的转台主要有两种形式,A-E型天线转台和X-Y型天线转台。