2019-2020年高三数学大一轮复习 8.8立体几何中的向量方法(Ⅱ)求空间角、距离教案 理 新人教A版
- 格式:doc
- 大小:967.00 KB
- 文档页数:22
第45讲立体几何中的向量方法(2)—求空间角和距离考纲要求:能用向量方法解决直线与直线、直线与平面、平面与平面的夹角的计算问题,了解向量方法在研究立体几何问题中的应用.命题趋势:用向量法证明线线、线面、面面的平行与垂直,用向量法求空间角和空间距离,用向量法解决探索性问题.1.两条异面直线所成角的求法设a,b分别是两异面直线l1,l2的方向向量,则l1与l2所成的角θa与b的夹角β范围θ∈β∈求法cos θ=____________cos β=___________2.直线与平面所成角的求法设直线l的方向向量为a,平面α的法向量为n,直线l与平面α所成角为θ,a与n的夹角为β,则sin θ=|cos β|=_______________.3.求二面角的大小(1)如图①,AB,CD分别是二面角α-l-β的两个面内与棱l垂直的直线,则二面角的大小θ为__________________.(2)如图②③,n1,n2分别是二面角α-l-β的两个半平面α,β的法向量,则二面角的大小θ满足|cos θ|=_________|__,二面角的平面角大小是向量n1与n的夹角(或其补角).4.利用空间向量求距离(供选用)(1)两点间的距离设点A(x1,y1,z1),点B(x2,y2,z2),则|AB|=|AB→|=___________________.(2)点到平面的距离如图所示,已知AB为平面α的一条斜线段,n为平面α的法向量,则B到平面α的距离为|BO→|=_____________.(3)设a,b为两异面直线,则这两异面直线间的距离为______________。
探究案探究一求异面直线所成的角用向量法求异面直线所成角的一般步骤(1)选择三条两两垂直的直线建立空间直角坐标系;(2)确定异面直线上两个点的坐标,从而确定异面直线的方向向量;(3)利用向量的夹角公式求出向量夹角的余弦值;(4)两异面直线所成角的余弦等于两向量夹角余弦值的绝对值.【例1】如图,在平行六面体ABCD-A1B1C1D1中,AA1⊥平面ABCD,且AB=AD=2,AA1=3,∠BAD=120°.(1)求异面直线A1B与AC1所成角的余弦值;(2)求二面角B-A1D-A的正弦值【跟踪训练1】1.如图所示正方体AC′,已知点H在对角线B′D′上,∠HDA=60°.则DH与CC′所成角的大小为_________.探究二求直线与平面所成的角利用向量法求线面角的方法(1)分别求出斜线和它在平面内射影直线的方向向量,转化为求两个方向向量的夹角(或其补角).(2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所成的锐角,取其余角就是斜线和平面所成的角.【例2】如图,长方体ABCD-A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F分别在A1B1,D1C1上,A1E=D1F=4.过点E,F的平面α与此长方体的底面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由);(2)求直线AF与平面α所成角的正弦值.【跟踪训练2】1.(2017·山东模拟)如图,在直棱柱ABCD-A1B1C1D1中,AD∥BC,∠BAD=90°,AC⊥BD,BC=1,AD=AA1=3.(1)证明:AC⊥B1D;(2)求直线B1C1与平面ACD1所成角的正弦值.探究三 求二面角求二面角最常用的方法就是分别求出二面角的两个半平面所在面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角是锐角还是钝角. 【例3】 (2017·浙江卷)如图,已知正四面体D -ABC (所有棱长均相等的三棱锥),P ,Q ,R 分别为AB ,BC ,CA 上的点,AP =PB ,BQ QC =CRRA=2.分别记二面角D -PR -Q ,D -PQ -R ,D -QR -P 的平面角为α,β,γ,则( )A .γ<α<βB .α<γ<βC .α<β<γD .β<γ<α【例4】 (2017·北京卷)如图,在四棱锥P -ABCD 中,底面ABCD 为正方形,平面P AD ⊥平面ABCD ,点M 在线段PB 上,PD ∥平面MAC ,P A =PD =6,AB =4.(1)求证:M 为PB 的中点;(2)求二面角为B -PD -A 的大小; (3)求直线MC 与平面BDP 所成角的正弦值.【例5】如图,四棱锥P -ABCD 中,侧面P AD 为等边三角形且垂直于底面ABCD ,AB =BC =12AD ,∠BAD =∠ABC =90°,E 是PD 的中点.(1)证明:直线CE ∥平面P AB ;(2)点M 在棱PC 上,且直线BM 与底面ABCD 所成角为45°,求二面角M -AB -D 的余弦值.【跟踪训练3】1.如图三棱锥P -ABC 中,PC ⊥平面ABC ,PC =3, ∠ACB =π2,D ,E 分别为线段AB ,BC 上的点,且CD =DE =2,CE =2EB =2.(1)证明:DE ⊥平面PCD ;(2)求二面角A -PD -C 余弦值.探究四 求空间距离求点面距一般有以下三种方法:①作点到面的垂线,点到垂足的距离即为点到平面的距离;②等体积法;③向量法.其中向量法在易建立空间直角坐标系的规则图形中较简便. 【例6】 如图,三棱柱ABC -A 1B 1C 1中,CC 1⊥平面ABC , AC =BC =12AA 1,D 是棱AA 1的中点,DC 1⊥BD .(1)证明:DC 1⊥BC ;(2)设AA 1=2,A 1B 1的中点为P ,求点P 到平面BDC 1的距离.【跟踪训练4】1.如图所示,在直三棱柱ABC -A 1B 1C 1中,∠BAC =90°,AB =AC =AA 1=1,P 是AD 的延长线与A 1C 1的延长线的交点, 且PB 1∥平面BDA 1. (1)求证:CD =C 1D ;(2)求二面角A -A 1D -B 的 平面角的余弦值;(3)求点C 到平面B 1DP 的距离.。
2020 年高考数学(理)总复习:立体几何中的向量方法题型一利用向量证明平行与垂直【题型重点】 向量证明平行与垂直的4 步骤(1)成立空间直角坐标系,建系时,要尽可能地利用载体中的垂直关系; (2)成立空间图形与空间向量之间的关系,用空间向量表示出问题中所波及的点、直线、平面的因素;(3)经过空间向量的运算求出平面向量或法向量,再研究平行、垂直关系; (4)依据运动结果解说有关问题.【例 1】如图,在直三棱柱 ADE —BCF 中,面 ABFE 和面 ABCD 都是正方形且相互垂直,点 M 为 AB 的中点,点 O 为 DF 的中点.运用向量方法证明:(1)OM ∥平面 BCF ; (2)平面 MDF ⊥平面 EFCD . 【证明】方法一(1)由题意,得 AB , AD , AE 两两垂直,以点 A 为原点成立如图所示的空间直角坐标系.设正方形边长为 1,则 A(0,0,0) , B(1,0,0) , C(1,1,0) ,D (0,1,0) ,F(1,0,1) , M1,0,0 ,2O 1 ,1 ,1.2 2 2→1 1→OM = 0, ,2 ,BA = (- 1,0,0),2→ → → →∴ OM ·BA = 0, ∴ OM ⊥BA.∵棱柱 ADE — BCF 是直三棱柱,→∴ AB ⊥平面 BCF ,∴ BA 是平面 BCF 的一个法向量, 且 OM? 平面 BCF ,∴ OM ∥平面 BCF .(2)设平面 MDF 与平面 EFCD 的一个法向量分别为 n 1= (x 1,y 1,z 1), n 2= (x 2, y 2, z 2).→ → ∵ DF = (1,- 1,1), DM =1 →→,- 1,1),, 1,0 , DC = (1,0,0),CF =(02→x 1- y 1+ z 1=0, n 1·DF = 0,得 1由→2x 1- y 1= 0,n 1·DM = 0,令 x 1= 1,则 n 1= 1, 1 ,1.同理可得 n 2= (0,1,1) .2 2∵ n 1·n 2= 0,∴平面 MDF ⊥平面 EFCD .方法二→→→→1 → → 1→ (1)OM = OF +FB + BM = DF - BF +2 BA21→→→ 1 → 1 → 1 → 1 →= (DB + BF)- BF + BA =-2 BD - BF + BA22221 → → 1 → 1→=- ( BC + BA)-BF + BA2221 → 1 →=- 2BC -2BF.∴向量 → 与向量 →,→共面,OM BF BC又 OM? 平面 BCF ,∴ OM ∥平面 BCF .(2)由题意知, BF , BC , BA 两两垂直,→ → → → → ∵ CD =BA , FC =BC -BF ,→ →1 1 BF → ∴ OM ·CD =2BCBA = 0,2→ →1 1 OM ·FC =2BCBF2→ →·(BC - BF)1 →2 1 → 2= 0.=- BC + BF 2 2∴ OM ⊥ CD , OM ⊥ FC ,又 CD ∩FC = C , CD , FC ? 平面 EFCD ,∴ OM ⊥平面 EFCD .又 OM? 平面 MDF ,∴平面 MDF ⊥平面 EFCD .题组训练一 利用向量证明平行与垂直如图,在底面是矩形的四棱锥 P — ABCD 中,PA ⊥底面 ABCD ,点 E ,F 分别是 PC ,PD 的中点, PA = AB = 1, BC = 2.(1)求证: EF ∥平面 PAB ; (2)求证:平面 PAD ⊥平面 PDC .【证明】(1) 以点 A 为原点, AB 所在直线为 x 轴, AD 所在直线为 y 轴, AP 所在直线为 z 轴,成立以下图的空间直角坐标系, 则 A(0,0,0) ,B(1,0,0) ,C(1,2,0),D(0,2,0) ,P(0,0,1) .∵点 E , F 分别是 PC , PD 的中点,∴ E1,1,1,F 0,1,1,2 22→ 1 →→ 1 → EF = 2 ,0,0 ,AB =(1,0,0) .∵ EF =-AB ,2→ → ,即 EF ∥ AB ,∴ EF ∥ AB又 AB? 平面 PAB ,EF? 平面 PAB ,∴ EF ∥平面 PAB.→ →→ → → , (2)由 (1) 可知,PB = (1,0,- 1),PD = (0,2 ,- 1),AP = (0,0,1) ,AD =(0,2,0) ,DC = (1,0,0) → → → → → → → → ∵AP ·DC = (0,0,1) (1,0,0)· = 0,AD ·DC = (0,2,0) (1,0,0)· = 0,∴ AP ⊥ DC ,AD ⊥ DC ,即 AP ⊥DC , AD ⊥DC .又 AP ∩AD = A , AP ,AD ? 平面 PAD ,∴ DC ⊥平面 PAD.∵ DC? 平面 PDC ,∴平面 PAD ⊥平面 PDC.题型二利用空间向量求空间角【题型重点】的法向量的夹角的关系,必定要注意线面角θ与夹角 α的关系为sin θ= |cos α|.2.求二面角 θ,主要经过两平面的法向量n , m 的夹角求得,即先求 |cos 〈n , m 〉 |,再依据所求二面角是钝角仍是锐角写出其他弦值.若θ为锐角,则 cos θ= |cos 〈 n , m 〉 |;若 θ为钝角,则 cos θ=- |cos 〈 n ,m 〉|.【例 2】如图, AD ∥BC 且 AD = 2BC , AD ⊥ CD ,EG ∥ AD 且 EG = AD , CD ∥ FG 且 CD = 2FG , DG ⊥平面 ABCD , DA = DC = DG = 2.(1)若 M 为 CF 的中点, N 为 EG 的中点,求证: MN ∥平面 CDE ;(2)求二面角 E-BC- F 的正弦值;(3) 若点 P 在线段 DG 上,且直线 BP 与平面 ADGE 所成的角为 60°,求线段 DP 的长.【解】 依题意,能够成立以 D 为原点,分别以 → → →轴、 y 轴、 zDA , DC , DG 的方向为 x 轴的正方向的空间直角坐标系 (如图 ),可得 D(0,0,0) ,A(2,0,0) ,B(1,2,0) ,C(0,2,0) ,E(2,0,2) ,F(0,1,2) , G(0,0,2) , M 0,3,1 , N(1,0,2) .2(1)证明:依题意得 → →DC = (0,2,0), DE = (2,0,2) .设 n 0= (x , y ,z)为平面 CDE 的法向量,则2y = 0, 即不如令 z =- 1,2x + 2z = 0.可得 n 0=(1,0,- 1).n 0·DC →= 0,→n 0·DE =0,→ 3 又 MN = 1,,1 2→,可得 MN ·n 0= 0.又因为直线 MN? 平面 CDE ,所以 MN ∥平面 CDE .→ →(2)解:依题意,可得 BC =(-1,0,0) , BE = (1,- 2,2),→CF = (0,- 1,2).→ n ·BC = 0,设 n =(x ,y , z)为平面 BCE 的法向量,则→n ·BE =0,-x = 0, 即不如令 z = 1,可得 n = (0,1,1) .x -2y + 2z = 0.→ m ·BC =0,设 m = (x , y , z)为平面 BCF 的法向量,则m ·CF →= 0,- x = 0, 即不如令 z = 1,可得 m = (0,2,1) . - y + 2z = 0.m ·n310所以有 cos 〈 m , n 〉== ,10于是 sin 〈 m , n 〉= 10 .10所以,二面角E-BC-F 的正弦值为10 .→(3)解:设线段 DP 的长为 h(h ∈ [0,2]) ,则点 P 的坐标为 (0,0,h),可得 BP = (- 1,- 2,h).→为平面 ADGE 的一个法向量, 易知, DC = (0,2,0) → → → → 2|BP ·DC |故 |cos 〈 BP , DC 〉 |= → → = 2 ,|BP||DC | h + 5 由题意,可得2 = sin 60 =° 3,h 2+ 52解得 h = 33∈ [0,2] .3所以,线段DP 的长为 3 .题组训练二 利用空间向量求空间角如图,四周体 ABCD 中,△ ABC 是正三角形, △ACD 是直角三角形, ∠ABD =∠ CBD ,AB= BD.(1)证明:平面ACD ⊥平面 ABC;(2)过 AC 的平面交BD 于点 E,若平面AEC 把四周体ABCD 分红体积相等的两部分,求二面角D- AE- C 的余弦值.【分析】(1) 证明:由题设可得,△ ABD≌△ CBD,进而AD=DC又△ ACD 是直角三角形,所以∠ACD= 90°取 AC 的中点 O,连结 DO, BO,则 DO ⊥ AC, DO = AO又因为△ ABC 是正三角形,故BO⊥ AC.所以∠ DOB 为二面角D- AC- B 的平面角.在 Rt△AOB 中, BO 2+AO 2= AB2.又 AB= BD,所以 BO2+DO2= BO2+ AO2= AB2=BD 2,故∠ DOB = 90°.所以平面 ACD ⊥平面 ABC.→(2)由题设及 (1)知, OA, OB, OC 两两垂直,以O 为坐标原点,OA的→方向为 x 轴正方向, |OA|为单位长,成立以下图的空间直角坐标系O- xyz.则 A(1,0,0) , B(0, 3, 0), C(- 1,0,0), D (0,0,1)1由题设知,四周体 ABCE 的体积为四周体ABCD 的体积的,进而E到平面 ABC 的距离为 D 到平面 ABC 的距离的1,即 E 为 DB 的中点,得 E 0,3 1 →2,2.故AD=2→→ 3 1 (- 1,0,1), AC= (- 2,0,0), AE=1, , .2 2设 n=(x,y,z)是平面DAE的法向量,→- x+ z= 0,n·AD=0,即则3 1→- x+n·AE=0,2 y+2z=0.可取 n=31,,1.3m·AC→=0,设 m 是平面AEC的法向量,则同理可得m=(0,-1,3).→m·AE=0,则 cos〈n,m〉=n·m=7.|n||m| 77所以二面角D- AE- C 的余弦值为7 .题型三利用空间向量解决探究性问题【题型重点】利用空间向量巧解探究性问题(1)空间向量最合适于解决立体几何中的探究性问题,它无需进行复杂的作图、论证、推理,只要经过坐标运算进行判断.(2) 解题时,把要成立的结论看作条件,据此列方程或方程组,把“能否存在”问题转变为“点的坐标能否有解,能否有规定范围内的解”等,所认为使问题的解决更简单、有效,应擅长运用这一方法解题.【例 3】如图,在长方体ABCD -A1B1C1D1中, AB= AA1= 1, E 为 BC 中点.(1)求证: C1D ⊥ D1E;(2)在棱 AA1上能否存在一点M,使得 BM∥平面 AD1E?若存在,求AM的值,若不存在,说明原因.AA 1(3)若二面角B1- AE- D1的大小为 90°,求 AD 的长.【分析】以 D 为原点,成立以下图的空间直角坐标系D- xyz 设 AD= a,则 D (0,0,0) ,A(a,0,0),B(a,1,0),B1(a,1,1),C1(0,1,1) ,D 1(0,0,1) ,E a ,1,0 , 2→→ a1 ,∴ C1 D= (0,- 1,- 1), D1E=,1,2→→=0,∴ C(1)证明: C1 D·D 1E 1D⊥D 1E.AM(2)设AA1= h,则 M(a,0, h),→→ a,∴ BM= (0,-1, h), AE=,1,02→,AD1= (- a,0,1)设平面 AD 1E 的法向量为n=(x,y,z),→ aAE·n=-2x+ y= 0,则→AD 1·n=- ax+ z= 0,令 x= 2,∴平面 AD 1E 的一个法向量为n=(2,a,2a),→→∵ BM∥平面 AD 1E,∴ BM ⊥n,即 BM·n= 2ah- a=0,∴ h=1 .2即在 AA 1上存在点 M,使得 BM∥平面 AD 1E,此时AM=1.AA1 2→(3)连结 AB1, B1E,设平面B1AE 的法向量为m=(x′,y′,z′),AE=(0,1,1) ,→a则 AE·m=-2x′+ y′=0,→AB1·m= y′+ z′=0,令 x′= 2,∴平面 B1AE 的一个法向量为m=(2,a,-a).∵二面角 B1- AE- D1的大小为90°,∴ m⊥ n,∴ m·n=4+a2-2a2=0,a →,1,0 , AB1=2∵a>0 ,∴ a= 2,即 AD= 2.题组训练三利用空间向量解决探究性问题如图,已知等边△ ABC中,E,F分别为AB,AC边的中点, M 为 EF 的中点, N 为 BC 边上一点,且1 CN= BC,4将△ AEF 沿 EF 折到△ A′EF 的地点,使平面A′EF ⊥平面EFCB .(Ⅰ )求证:平面 A′MN ⊥平面 A′BF;(Ⅱ )求二面角E-A′F-B 的余弦值.【解】(Ⅰ )因为 E,F 为等边△ ABC 的 AB ,AC 边的中点,所以△A′EF 是等边三角形,且 EF∥BC.因为 M 是 EF 的中点,所以A′M⊥ EF.又因为平面A′EF⊥平面 EFCB ,A′M ? 平面 A′EF ,所以 A′M⊥平面 EFCB又 BF? 平面 EFCB ,所以 A′M⊥ BF.1因为 CN =4BC,所以 MF 綊 CN,所以 MN ∥ CF .在正△ABC 中知 BF⊥ CF ,所以 BF⊥ MN .而 A′M∩MN= M,所 BF ⊥平面 A′MN.又因为 BF ? 平面 A′BF ,所以平面A′MN ⊥平面 A′BF .(Ⅱ )设等边△ABC 的边长为 4,取 BC 中点 G,连结 MG ,由题设知 MG ⊥ EF,由 (Ⅰ ) 知A′M⊥平面 EFCB ,又 MG? 平面 EFCB ,所以 A′M⊥ MG ,如图成立空间→直角坐标系M- xyz,则 F(- 1,0,0),A′(0,0, 3),B(2,3,0),FA= (1,0,→3), FB= (3,3, 0).设平面 A′BF 的一个法向量为n=(x,y,z),则由→x+ 3z= 0,FA·n= 0,3, 3,1).得令 z= 1,则n= (-→3x+3y= 0,FB ·=n 0,平面 A′EF 的一个法向量为p=(0,1,0),p·n313所以 cos〈n,p〉==,明显二面角 E- A′F- B 是锐角,所以二面角E-A′F- B 的余弦值为3 1313.题型四成立空间直角坐标系的方法坐标法是利用空间向量的坐标运算解答立体几何问题的重要方法,运用坐标法解题常常需要成立空间直角坐标系,依照空间几何图形的构造特点,充足利用图形中的垂直关系或构造垂直关系来成立空间直角坐标系,是运用坐标法解题的重点,下边举例说明几种常有的空间直角坐标系的建立策略.方法一利用共极点的相互垂直的三条棱建立直角坐标系【例 4】已知直四棱柱 ABCD -A1B1C1D1中, AA1= 2,底面 ABCD 是直角梯形,∠ A 为直角, AB∥ CD ,AB =4, AD = 2,DC= 1,求异面直线BC1与 DC 所成角的余弦值.【分析】如图,以 D 为坐标原点,分别以DA ,DC ,DD 1所在直线为 x,y,z 轴成立空间直角坐标系,则 C(0,1,0) , C1(0,1,2) , B(2,4,0) ,→→∴ BC1= (- 2,- 3,2), CD = (0,- 1,0).→→→ →3 17 |BC1·CD |=.设 BC1与 CD所成的角为θ,则 cos θ=→→17|BC 1||CD|317故所求异面直线所成角的余弦值为17 .方法二利用线面垂直关系建立直角坐标系【例 5】如图,在三棱柱 ABC-A1B1C1中,AB⊥侧面 BB1C1C,E 为棱 CC1上异于 C,C1 的一点, EA⊥ EB1.已知 AB=2, BB1=π2, BC= 1,∠ BCC1=.3求二面角 A-EB 1- A1的平面角的正切值.【分析】如图,以 B 为原点,分别以BB1, BA 所在直线为y 轴、z 轴,过 B 点垂直于平面ABB1A1的直线为x 轴成立空间直角坐标系.因为 BC= 1, BB1= 2, AB=πABC- A1B1C1中,2,∠ BCC1=,∴在三棱柱3有 B(0,0,0) , A(0,0,3 1 3 1, C13 3 2), B1(0,2,0) , C , ,0 , ,0 , ,0 .2 2 2 2 2 23, a,0 ,且- 1 3 →设 E <a< ,即 EA=2 2 2→→由 EA⊥ EB1,得 EA·EB 1= 0,3 →1=3, a, 2 ,EB ,2 a,0 .2 23, a, 2 ·3,2 a,03 2 3即 2 2 =4+ a(a- 2)= a -2a+4=0,∴1 3a · a2 21 3 3 1= 0,即 a=或 a= (舍去 ).故 E , ,0 .2 2 2 2→→→→→由已知有 EA⊥ EB1,B1 A1⊥ EB1,故二面角A- EB1-A1的平面角θ的大小为向量 B1A1与→EA的夹角.→→,→因为 B1A1= BA= (0,0 2), EA=3,1,2, 2 2→ →2 6 2EA·B1A1故 cos θ=→ →=2× 3 =3,即 tan θ=2.|EA||B1A1|2故所求二面角的平面角的正切值为2 .方法三利用面面垂直关系建立直角坐标系【例 6】如图,在四棱锥V- ABCD 中,底面 ABCD 是正方形,侧面 VAD 是正三角形,平面VAD⊥底面 ABCD .(1)求证 AB⊥平面 VAD;(2)求二面角A- VD-B 的余弦值.间直角坐标系.设 AD = 2,则 A(1,0,0), D (- 1,0,0), B(1,2,0) , V(0,0, 3),→ →,- 3).∴ AB = (0,2,0) , VA =(1,0→ →由 AB ·VA = (0,2,0) (1,0·,- 3)= 0,得 AB ⊥ VA.又 AB ⊥ AD ,进而 AB 与平面 VAD 内两条订交直线VA , AD 都垂直,∴ AB ⊥平面 VAD.(2)设 E 为 DV 的中点,则 E1,0, 3 ,2 2→3 3 →3 3 ,∴ EA =2,0,, EB =,2,222→DV = (1,0, 3).→ → 3 3= 0,∴ EB ⊥ DV . ∴ EB ·DV = - 2 2又 EA ⊥ DV ,所以∠ AEB 是所求二面角的平面角.→ → → →21 EA ·EB∴ cos 〈 EA , EB 〉= → → = 7 .|EA||EB|21故所求二面角的余弦值为7 .方法四利用正棱锥的中心与高所在直线建立直角坐标系【例 7】已知正四棱锥 V - ABCD 中, E 为 AC 中点,正四棱锥底面边长为2a ,高为h.(1)求∠ DEB 的余弦值;(2)若 BE ⊥ VC ,求∠ DEB 的余弦值.【分析】如图,以 V 在平面 ABCD 的射影 O 为坐标原点成立空间直角坐标系,此中Ox ∥ BC , Oy ∥AB ,则由 AB=2a , OV =h ,有 B( a , a,0),C(- a ,a,0), D(- a ,- a,0), V(0,0,h), Ea , a, h ,即2 2 2→3a a hBE =2,,2 2→ a 3a h , DE =,, 22 2→ , VC = (- a , a ,- h).→ →→ →2 2BE ·DE- 6a + h(1)cos 〈 BE , DE 〉=→ →=22 ,10a+ h|BE||DE |- 6a 2+h 2即 cos ∠ DEB = 10a 2+ h 2 .→ →(2)因为 BE ⊥ AC ,所以 BE ·VC = 0,即3a , a , h ·(- a ,a ,- h)=0,2 2 23222 - a- h= 0,解得 h = 2a.所以 a2 22→ →- 6a 2+h 2 1这时 cos 〈BE , DE 〉= 10a 2+ h 2=- 3,即 cos ∠ DEB =- 13.【专题训练】1.如图,在四棱锥 P - ABCD 中,PC ⊥底面 ABCD ,底面 ABCD 是直角梯形, AB ⊥ AD , AB ∥ CD , AB =2AD = 2CD =2, PE = 2BE.(1)求证:平面 EAC ⊥平面 PBC ;6(2)若二面角 P - AC - E 的余弦值为 3 ,求直线 PA 与平面 EAC所成角的正弦值.【分析】(1) 证明:∵ PC ⊥底面 ABCD , AC? 平面 ABCD ,∴PC ⊥AC .∵ AB = 2,AD = CD = 1,∴ AC = BC = 2,∴ AC 2+ BC 2= AB 2,∴ AC ⊥ BC ,又 BC ∩PC=C ,∴ AC ⊥平面 PBC ,又 AC? 平面 EAC ,∴平面 EAC ⊥平面 PBC.得: C(0,0,0) , A(1,1,0) , B(1,- 1,0),设 P(0,0, a)(a > 0),则 E 2 , 2 , a,3 3 3→→ →CA = (1,1,0) , CP = (0,0, a), CE =2 ,2 , a,33 3→ →取 n =(1,- 1,0),则 m ·CP = m ·CA = 0,∴ n 为平面 PAC 的法向量.→= 0 x + y = 0 设 n =(x ,y , z)为平面 EAC 的法向量,则n ·EA,即,→ 2x - 2y + az =0n ·CE = 0取 n =(a ,- a ,- 4) ,∵二面角 P -AC -E 的余弦值为6,3∴ |cos 〈 m , n 〉|=|m ·n |=2a= 6,|m ||n |2× 2a 2+ 163→解得 a = 4,∴ n = (4,- 4,- 4), PA = (1,1,- 4). 设直线 PA 与平面 EAC 所成角为 θ,→→162 6|PA ·n |= = ,则 sin θ= |cos 〈 PA , n 〉 |=→918× 16×3|PA||n |∴直线 PA 与平面 EAC 所成角的正弦值为2 9 6.2.如图,四棱锥 P - ABCD 中,侧面 PAD 为等边三角形且垂直于底面 ABCD ,AB =BC =12AD ,∠ BAD =∠ ABC =90°,E 是PD 的中点.(1)证明:直线 CE ∥平面 PAB ; (2)点 M 在棱 PC 上,且直线 BM 与底面 ABCD 所成角为 45°,求二面角 M - AB -D 的余弦值.【分析】(1) 证明:取 PA 的中点 F ,连结 EF ,BF .因为 E 是 PD 的中点,所以EF ∥AD , EF = 1AD ,由∠ BAD =∠ ABC = 90°得 BC ∥ AD ,21又 BC = 2AD ,所以 EF 綊 BC.四边形 BCEF 为平行四边形, CE ∥ BF.又 BF? 平面 PAB ,CE ? 平面 PAB ,故 CE ∥平面 PAB .→→ (2)由已知得 BA ⊥AD ,以 A 为坐标原点, AB 的方向为 x 轴正方向, |AB|为单位长,成立以下图的空间直角坐标系 A - xyz ,则 A(0,0,0),B(1,0,0) ,C(1,1,0) ,P(0,1, → →3),PC = (1,0,- 3),AB =(1,0,0) ,→ → 设 M(x ,y ,z)(0< x<1) 则 BM = (x - 1,y ,z) ,PM = (x ,y - 1,z - 3),因为 BM 与底面 ABCD 所成的角为 45°,而 n = (0,0,1)是底面 ABCD 的法向量,所以,|cos →|z|2 22 2〈BM , n 〉|= sin 45 °, x - 1 2+ y 2+ z2=2 ,即 (x - 1)+ y - z = 0. ①→ →又 M 在棱 PC 上,设 PM = λPC ,则x = λ, y = 1, z = 3- 3λ. ②22x = 1+ 2x = 1- 2 由①,②解得y =1 舍去, y = 1.66z =- 2z = 2所以 M2 6 →2 6 1,1,,进而 AM = 1,1,.2222设 m = (x 0, y 0, z 0) 是平面 ABM 的法向量,则→2- 2 x 0+ 2y 0+ 6z 0= 0, m ·AM = 0,即→ = 0, x 0= 0,m ·AB以可取 m = (0,-6, 2).于是 cos 〈 m , n 〉= m ·n=10,所以二面角 M -AB -D|m ||n | 5的余弦值为105.3.以下图的几何体中,四边形ABCD 为等腰梯形,AB∥ CD, AB= 2AD = 2, ∠ DAB =60°,四边形 CDEF 为正方形,平面CDEF ⊥平面 ABCD .(1)若点 G 是棱 AB 的中点,求证:EG∥平面 BDF ;(2)求直线 AE 与平面 BDF 所成角的正弦值;FH(3)在线段 FC 上能否存在点H,使平面 BDF ⊥平面 HAD ?若存在,求HC的值;若不存在,说明原因.(1)【证明】因为四边形因为G是棱由已知得EF∥ CD ,且 EF=CD . ABCD 为等腰梯形,所以BG∥ CD . AB 的中点,所以BG= CD .所以 EF ∥ BG,且 EF= BG,故四边形EFBG 为平行四边形,所以EG∥FB .因为 FB ? 平面 BDF, EG? 平面 BDF ,所以 EG∥平面 BDF .(2)【解】因为四边形CDEF 为正方形,所以ED⊥ DC.因为平面 CDEF ⊥平面 ABCD ,平面 CDEF ∩平面 ABCD =DC , DE ? 平面 CDEF ,所以 ED ⊥平面 ABCD .在△ ABD 中,因为∠ DAB =60°, AB= 2AD= 2,所以由余弦定理,得BD =3,所以 AD ⊥ BD.在等腰梯形ABCD 中,可得DC=CB =1.如图,以 D 为原点,以DA ,DB , DE 所在直线分别为x, y, z 轴,成立空间直角坐标系,则 D(0, 0,0), A(1, 0,0), E(0, 0, 1), B(0,1 3,3, 0), F ,,12 2→ →1 3 , 所以 AE = (- 1, 0, 1), DF =2,,12DB →= (0,3, 0).设平面 BDF 的法向量为n = (x , y ,z ),→3y = 0,n ·DB = 0,所以因为1 3→-2x + 2 y +z =0.n ·DF =0,取 z = 1,则 x = 2,y = 0,则 n = ( 2,0, 1).→10, 设直线 AE 与平面 BDF 所成的角为 θ,则 sin θ=→= |AE ·n |=cos 〈 AE , n 〉||n | 10|→ | |AE所以 AE 与平面 BDF 所成角的正弦值为1010.(3)【解】 线段 FC 上不存在点 H ,使平面 BDF ⊥平面 HAD .证明以下:假定线段FC 上存在点 H ,1 3 →1 3设 H,,t (0≤t ≤1),则 DH =2 ,,t222设平面 HAD 的法向量为m =(a , b ,c ),→a = 0,m ·DA = 0,因为所以13 →- a +2 b +tc = 0.m ·DH = 0,2取 c = 1,则 a = 0, b =-2t ,得 m = 0,2,1.33要使平面 BDF ⊥平面 HAD ,只要 m ·n = 0, 即 2×0-2t ×0+ 1×1= 0, 此方程无解. 3所以线段 FC 上不存在点 H ,使平面 BDF ⊥平面 HAD .4.如图,已知圆锥 OO1和圆柱 O1O2的组合体 (它们的底面重合 ),圆锥的底面圆 O1半径为 r =5, OA 为圆锥的母线, AB 为圆柱 O1O2的母线, D, E 为下底面圆 O2上的两点,且 DE = 6,AB=, AO= 5 2, AO⊥ AD .(1)求证:平面 ABD ⊥平面 ODE;(2)求二面角 B— AD—O 的正弦值.(1)【证明】依题易知,圆锥的高为 h= 5 2 2- 52= 5,又圆柱的高为 AB=,AO⊥ AD ,所以OD 2= OA2+ AD 2,因为 AB⊥BD ,所以 AD2= AB2+ BD2,连结 OO1,O1O2,DO 2,易知 O, O1, O2三点共线,OO2⊥ DO2,所以 OD2= OO22+O2D 2,所以 BD 2=OO22+O2D2-AO2-AB2=+ 5)2+ 52- (52)2-2= 64,解得 BD =8,又因为 DE =6,圆 O2的直径为10,圆心 O2在∠ BDE 内,所以∠ BDE= 90°,所以 DE ⊥ BD .因为 AB ⊥平面 BDE ,所以 DE ⊥ AB,因为 AB ∩BD = B,AB,BD ? 平面 ABD ,所以 DE ⊥平面 ABD .又因为 DE ? 平面 ODE ,所以平面ABD ⊥平面 ODE.(2)【解】如图,以 D 为原点,DB, DE 所在的直线为x, y 轴,成立空间直角坐标系.则 D(0,0,0) , A(8,0,6.4), B(8,0,0) , O(4,3,11.4).→→→,所以 DA= (8,0,6.4) , DB = (8,0,0) , DO= (4,3,11.4)设平面 DAO 的法向量为→u=(x,y,z),所以DA·u=8x+=0,→DO·u= 4x+ 3y+= 0,令 x= 12,则u= (12,41,- 15).可取平面 BDA 的一个法向量为v=(0,1,0),所以 cos〈u,v〉=u·v=41=82,所以二面角B—AD — O 的正弦值为3 2 |u||v| 5 82 10 10.。
第64课立体几何中的向量方法[最新考纲]1.直线的方向向量与平面的法向量(1)直线的方向向量:如果表示非零向量a的有向线段所在直线与直线l平行或重合,则称此向量a为直线l的方向向量.(2)平面的法向量:直线l⊥α,取直线l的方向向量a,则向量a叫作平面α的法向量.2.空间位置关系的向量表示设a,b分别是两异面直线l1,l2的方向向量,则设直线l 的方向向量为a ,平面α的法向量为n ,直线l 与平面α所成的角为θ,则sin θ=|cos 〈a ,n 〉|=|a ·n ||a ||n |.5.求二面角的大小(1)若AB ,CD 分别是二面角α-l -β的两个面内与棱l 垂直的异面直线,则二面角的大小就是向量AB →与CD →的夹角(如图①).图64-1(2)设n 1,n 2分别是二面角α-l -β的两个面α,β的法向量,则向量n 1与n 2的夹角(或其补角)的大小就是二面角的平面角的大小(如图②③).1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)两直线的方向向量所成的角就是两条直线所成的角.( )(2)直线的方向向量和平面的法向量所成的角就是直线与平面所成的角.( )(3)两个平面的法向量所成的角是这两个平面所成的角.( )(4)两异面直线夹角的范围是⎝ ⎛⎦⎥⎤0,π2,直线与平面所成角的范围是⎣⎢⎡⎦⎥⎤0,π2,二面角的范围是[0,π].[答案] (1)× (2)× (3)× (4)√2.(教材改编)设u =(-2,2,t ),v =(6,-4,4)分别是平面α,β的法向量.若α⊥β,则t =________.5 [∵α⊥β,则u ·v =-2×6+2×(-4)+4t =0, ∴t =5.]3.已知向量m ,n 分别是直线l 和平面α的方向向量和法向量,若cos 〈m ,n 〉=-12,则l 与α所成的角为________.π6 [设l 与α所成的角为θ,则 sin θ=|cos 〈m ,n 〉|=12, 又θ∈[0,π], ∴θ=π6.]4.如图64-2所示,在正方体ABCD -A 1B 1C 1D 1中,O 是底面正方形ABCD 的中心,M 是D 1D 的中点,N 是A 1B 1的中点,则直线ON ,AM 所成的角为________.图64-290° [以A 为原点,分别以AB →,AD →,AA 1→所在直线为x ,y ,z 轴,建立空间直角坐标系(图略),设正方体的棱长为1,则A (0,0,0),M ⎝ ⎛⎭⎪⎫0,1,12,O ⎝ ⎛⎭⎪⎫12,12,0,N ⎝ ⎛⎭⎪⎫12,0,1,AM →·ON →=⎝ ⎛⎭⎪⎫0,1,12·⎝ ⎛⎭⎪⎫0,-12,1=0,∴ON 与AM 垂直.即直线ON ,AM 所成的角为90°.]5.过正方形ABCD 的顶点A 作线段P A ⊥平面ABCD ,若AB =P A ,则平面ABP 与平面CDP 所成的二面角为________.45° [如图,建立空间直角坐标系,设AB =P A =1,则A (0,0,0),D (0,1,0),P (0,0,1),由题意,AD ⊥平面P AB ,设E 为PD 的中点,连结AE ,则AE ⊥PD ,又CD ⊥平面P AD ,∴CD ⊥AE ,从而AE ⊥平面PCD .∴AD →=(0,1,0),AE →=⎝ ⎛⎭⎪⎫0,12,12分别是平面P AB ,平面PCD 的法向量,且〈AD →,AE →〉=45°.故平面P AB 与平面PCD 所成的二面角为45°.],E ,F 分别是PC ,PD 的中点,P A =AB =1,BC =2.(1)求证:EF ∥平面P AB ; (2)求证:平面P AD ⊥平面PDC .图64-3[证明] 以A 为原点,AB ,AD ,AP 所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系如图所示,则A (0,0,0),B (1,0,0),C (1,2,0),D (0,2,0),P (0,0,1),所以E ⎝ ⎛⎭⎪⎫12,1,12,F ⎝ ⎛⎭⎪⎫0,1,12,EF →=⎝ ⎛⎭⎪⎫-12,0,0,AP →=(0,0,1),AD →=(0,2,0),DC→=(1,0,0),AB →=(1,0,0).(1)因为EF →=-12AB →,所以EF →∥AB →,即EF ∥AB . 又AB ⊂平面P AB ,EF ⊄平面P AB , 所以EF ∥平面P AB .(2)因为AP →·DC →=(0,0,1)·(1,0,0)=0, AD →·DC →=(0,2,0)·(1,0,0)=0,所以AP →⊥DC →,AD →⊥DC →,即AP ⊥DC ,AD ⊥DC .又因为AP ∩AD =A ,AP ⊂平面P AD ,AD ⊂平面P AD , 所以DC ⊥平面P AD . 因为DC ⊂平面PDC , 所以平面P AD ⊥平面PDC .[规律方法] 1.利用向量证明平行与垂直,充分利用已知的线面垂直关系构建空间直角坐标系,准确写出相关点的坐标,从而将几何证明转化为向量运算.其中灵活建系是解题的关键.2.运用向量知识判定空间位置关系,不可忽视几何定理满足的条件,如用直线的方向向量与平面的法向量垂直来证明线面平行,必需强调直线在平面外.[变式训练1] 如图64-4,四棱锥P -ABCD 的底面为正方形,侧棱P A ⊥底面ABCD ,且P A =AD =2,E ,F ,H 分别是线段P A ,PD ,AB 的中点.求证:(1)PB ∥平面EFH ; (2)PD ⊥平面AHF .图64-4[证明] 建立如图所示的空间直角坐标系A -xyz .∴A (0,0,0),B (2,0,0),C (2,2,0),D (0,2,0),P (0,0,2),E (0,0,1),F (0,1,1),H (1,0,0). (1)∵PB →=(2,0,-2),EH →=(1,0,-1), ∴PB →=2EH →,∴PB ∥EH .∵PB ⊄平面EFH ,且EH ⊂平面EFH , ∴PB ∥平面EFH .(2)PD →=(0,2,-2),AH →=(1,0,0),AF →=(0,1,1), ∴PD →·AF →=0×0+2×1+(-2)×1=0, PD →·AH →=0×1+2×0+(-2)×0=0, ∴PD ⊥AF ,PD ⊥AH .又∵AF ∩AH =A ,∴PD ⊥平面AHF .☞角度1 求异面直线所成的角将正方形ABCD 沿对角线AC 折起,当以A ,B ,C ,D 四点为顶点的三棱锥体积最大时,异面直线AD 与BC 所成的角为________.【导学号:62172342】π3 [不妨以△ABC 为底面,则由题意当以A ,B ,C ,D 为顶点的三棱锥体积最大,即点D 到底面△ABC 的距离最大时,平面ADC ⊥平面ABC .设点O 是AC 的中点,连结BO ,DO .则易知BO ,CO ,DO 两两互相垂直.以O 为坐标原点,建立如图所示的空间直角坐标系,令BO =CO =DO =1. 则O (0,0,0),A (0,-1,0),D (0,0,1),B (1,0,0),C (0,1,0), 于是AD →=(0,1,1),BC →=(-1,1,0),因此cos 〈AD →,BC →〉=AD →·BC →|AD →|·|BC →|=12×2=12.所以异面直线AD 与BC 所成的角为π3.][规律方法] 1.利用向量法求异面直线所成的角. (1)选好基底或建立空间直角坐标系; (2)求出两直线的方向向量ν1,ν2; (3)代入公式|cos 〈ν1,ν2〉|=|ν1·ν2||ν1||ν2|求解. 2.两异面直线所成角的范围是θ∈⎝ ⎛⎦⎥⎤0,π2,两向量的夹角α的范围是[0,π],当异面直线的方向向量的夹角为锐角或直角时,就是该异面直线的夹角;当异面直线的方向向量的夹角为钝角时,其补角才是异面直线的夹角. ☞角度2 求直线与平面所成的角如图64-5所示,长方体ABCD -A1B 1C 1D 1中,AB =16,BC =10,AA 1=8,点E ,F 分别在A 1B 1,D 1C 1上,A 1E =D 1F =4.过点E ,F 的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由); (2)求直线AF 与平面α所成角的正弦值.图64-5[解] (1)交线围成的正方形EHGF 如图所示.(2)作EM ⊥AB ,垂足为M ,则AM =A 1E =4,EM =AA 1=8, 因为四边形EHGF 为正方形,所以EH =EF =BC =10. 于是MH =EH 2-EM 2=6,所以AH =10.以D 为坐标原点,DA →的方向为x 轴正方向,建立如图所示的空间直角坐标系D -xyz ,则A (10,0,0),H (10,10,0),E (10,4,8),F (0,4,8),FE →=(10,0,0),HE →=(0,-6,8).设n =(x ,y ,z )是平面EHGF 的法向量,则⎩⎨⎧n ·FE →=0,n ·HE →=0,即⎩⎨⎧10x =0,-6y +8z =0,所以可取n =(0,4,3).又AF →=(-10,4,8),故|cos 〈n ,AF →〉|=|n ·AF →||n||AF →|=4515.所以AF与平面EHGF所成角的正弦值为45 15.[规律方法] 1.利用向量法求线面角的方法(1)分别求出斜线和它在平面内的射影,直线的方向向量,转化为求两个方向向量的夹角(或其补角).(2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角或钝角的补角,取其余角就是斜线和平面所成的角.2.(1)求直线与平面所成的角,不要误认为是直线的方向向量与平面法向量的夹角.(2)若求线面角的余弦值,要利用平方关系sin2θ+cos2θ=1求值.体中,面ABEF为正方形,AF=2FD,∠AFD=90°,且二面角D-AF-E与二面角C-BE-F都是60°.(1)证明:平面ABEF⊥平面EFDC;(2)求二面角E-BC-A的余弦值.图64-6[解](1)证明:由已知可得AF⊥DF,AF⊥FE,所以AF⊥平面EFDC.又AF⊂平面ABEF,故平面ABEF⊥平面EFDC.(2)过D 作DG ⊥EF ,垂足为G . 由(1)知DG ⊥平面ABEF .以G 为坐标原点,GF →的方向为x 轴正方向,|GF →|为单位长,建立如图所示的空间直角坐标系G -xyz .由(1)知∠DFE 为二面角D -AF -E 的平面角,故∠DFE =60°,则|DF |=2,|DG |=3,可得A (1,4,0),B (-3,4,0),E (-3,0,0),D (0,0,3).由已知得AB ∥EF ,所以AB ∥平面EFDC .又平面ABCD ∩平面EFDC =CD ,故AB ∥CD ,CD ∥EF . 由BE ∥AF ,可得BE ⊥平面EFDC ,所以∠CEF 为二面角C -BE -F 的平面角,∠CEF =60°. 从而可得C (-2,0,3).所以EC →=(1,0,3),EB →=(0,4,0),AC →=(-3,-4,3),AB →=(-4,0,0). 设n =(x ,y ,z )是平面BCE 的法向量, 则⎩⎨⎧n ·EC →=0,n ·EB →=0,即⎩⎪⎨⎪⎧x +3z =0,4y =0,所以可取n =(3,0,-3).设m 是平面ABCD 的法向量,则⎩⎨⎧m ·AC →=0,m ·AB →=0,同理可取m =(0,3,4). 则cos 〈n ,m 〉=n·m|n||m |=-21919. 故二面角E -BC -A 的余弦值为-21919.[规律方法] 1.求解本题要抓住几点:(1)充分利用垂线,建立恰当的直角坐标系;(2)确定二面角D-AF-E与二面角C-BE-F的平面角;(3)从空间图形能判定二面角E-BC-A为钝角.2.利用向量计算二面角大小的常用方法:(1)找法向量法:分别求出二面角的两个半平面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角的大小.(2)找与棱垂直的方向向量法:分别在二面角的两个半平面内找到与棱垂直且以垂足为起点的两个向量,则这两个向量的夹角的大小就是二面角的大小.[变式训练2]如图64-7,在梯形ABCD中,AB∥CD,AD=DC=CB=1,∠BCD=120°,四边形BFED为矩形,平面BFED⊥平面ABCD,BF=1.(1)求证:AD⊥平面BFED;(2)点P在线段EF上运动,设平面P AB与平面ADE所成锐二面角为θ,试求θ的最小值. 【导学号:62172343】图64-7[解](1)证明:在梯形ABCD中,∵AB∥CD,AD=DC=CB=1,∠BCD=120°,∴AB=2.∴BD2=AB2+AD2-2AB·AD·cos 60°=3.∴AB2=AD2+BD2,∴AD⊥BD.∵平面BFED ⊥平面ABCD , 平面BFED ∩平面ABCD =BD , ∴AD ⊥平面BFED .(2)由(1)知可建立以直线DA ,DB ,DE 为x 轴,y 轴,z 轴的如图所示的空间直角坐标系,令EP =λ(0≤λ≤3),则D (0,0,0),A (1,0,0),B (0,3,0),P (0,λ,1), ∴AB →=(-1,3,0),BP →=(0,λ-3,1). 设n 1=(x ,y ,z )为平面P AB 的法向量, 由⎩⎨⎧n 1·AB →=0,n 1·BP →=0,得⎩⎪⎨⎪⎧-x +3y =0,(λ-3)y +z =0,取y =1,则n 1=(3,1,3-λ). ∵n 2=(0,1,0)是平面ADE 的一个法向量, ∴cos θ=|n 1·n 2||n 1||n 2|=13+1+(3-λ)2×1=1(λ-3)2+4.∵0≤λ≤3,∴当λ=3时,cos θ有最大值12. ∴θ的最小值为π3.分别是AC 和BC 边的中点,现将△ABC 沿CD 翻折成直二面角A -DC -B ,如图②所示.(1)试判断直线AB 与平面DEF 的位置关系,并说明理由; (2)求二面角E -DF -C 的余弦值;(3)在线段BC 上是否存在一点P ,使AP ⊥DE ?证明你的结论.① ②图64-8[解] (1)如图,在△ABC 中,由E ,F 分别是AC ,BC 中点,得EF ∥AB .又AB ⊄平面DEF ,EF ⊂平面DEF , ∴AB ∥平面DEF .(2)以D 为原点,建立如图所示的空间直角坐标系,则A (0,0,2),B (2,0,0),C (0,23,0),E (0,3,1),F (1,3,0),易知平面CDF 的法向量为DA →=(0,0,2).设平面EDF 的法向量为n =(x ,y ,z ), 则⎩⎨⎧DF →·n =0,DE →·n =0,即⎩⎪⎨⎪⎧x +3y =0,3y +z =0.取n =(3,-3,3),cos 〈DA →,n 〉=DA →·n |DA →|·|n |=217,∴二面角E -DF -C 的余弦值为217. (3)设P (x ,y,0),则AP →·DE →=3y -2=0, ∴y =233.又BP →=(x -2,y,0),PC →=(-x,23-y,0). ∵BP →∥PC →,∴(x -2)(23-y )=-xy , ∴3x +y =2 3.把y =233代入上式得x =43, ∴BP →=13BC →,∴在线段BC 上存在点P ⎝ ⎛⎭⎪⎫43,233,0,使AP ⊥DE . [规律方法] 1.根据题目的条件进行综合分析和观察猜想,找出点或线的位置,并用向量表示出来,然后再加以证明,得出结论.2.假设所求的点或参数存在,并用相关参数表示相关点,根据线、面满足的垂直、平行关系,构建方程(组)求解,若能求出参数的值且符合该限定的范围,则存在,否则不存在.[变式训练3] (2017·常州模拟)如图64-9,在长方体ABCD -A 1B 1C 1D 1中,AA 1=AD =1,E 为CD 中点.(1)求证:B 1E ⊥AD 1;(2)在棱AA 1上是否存在一点P ,使得DP ∥平面B 1AE ?若存在,求AP 的长;若不存在,说明理由.图64-9[解] 以A 为原点,AB →,AD →,AA 1→的方向分别为x 轴,y 轴,z 轴的正方向建立如图所示的空间直角坐标系.设AB =a .(1)证明:A (0,0,0),D (0,1,0),D 1(0,1,1),E ⎝ ⎛⎭⎪⎫a 2,1,0,B 1(a,0,1),故AD 1→=(0,1,1),B 1E →=⎝ ⎛⎭⎪⎫-a 2,1,-1.因为B 1E →·AD 1→=-a 2×0+1×1+(-1)×1=0, 因此B 1E →⊥AD 1→, 所以B 1E ⊥AD 1.(2)存在满足要求的点P ,假设在棱AA 1上存在一点P (0,0,z 0), 使得DP ∥平面B 1AE ,此时DP →=(0,-1,z 0), 再设平面B 1AE 的一个法向量为n =(x ,y ,z ). AB 1→=(a,0,1),AE →=⎝ ⎛⎭⎪⎫a 2,1,0.因为n ⊥平面B 1AE ,所以n ⊥AB 1→,n ⊥AE →,得⎩⎨⎧ax +z =0,ax2+y =0,取x =1,则y =-a2,z =-a ,则平面B 1AE 的一个法向量n =⎝ ⎛⎭⎪⎫1,-a 2,-a . 要使DP ∥平面B 1AE ,只要n ⊥DP →,有a 2-az 0=0,解得z 0=12. 所以存在点P ,满足DP ∥平面B 1AE ,此时AP =12.[思想与方法]1.用向量法解决立体几何问题,是空间向量的一个具体应用,体现了向量的工具性,这种方法可把复杂的推理证明、辅助线的作法转化为空间向量的运算,降低了空间想象演绎推理的难度,体现了由“形”转“数”的转化思想.2.用向量来求空间角,都需将各类角转化成对应向量的夹角来计算,问题的关键在于确定对应线段的向量.[易错与防范]1.用向量知识证明立体几何问题,仍然离不开立体几何中的定理.若用直线的方向向量与平面的法向量垂直来证明线面平行,必需强调直线在平面外.2.利用向量求角,一定要注意将向量夹角转化为各空间角.因为向量夹角与各空间角的定义、范围不同.3.求二面角要根据图形确定所求角是锐角还是钝角.课时分层训练(八)A 组 基础达标 (建议用时:30分钟)1.(2017·苏州模拟)如图64-10,在棱长为3的正方体ABCD -A 1B 1C 1D 1中,A 1E =CF =1.图64-10(1)求两条异面直线AC 1与D 1E 所成角的余弦值; (2)求直线AC 1与平面BED 1F 所成角的正弦值. [解] ∵DA ,DC ,DD 1两两垂直,∴以DA ,DC ,DD 1所在直线为x ,y ,z 轴, 建立空间直角坐标系,如图所示, ∵棱长为3,A 1E =CF =1,则D (0,0,0),A (3,0,0),B (3,3,0),C (0,3,0),D 1(0,0,3),A 1(3,0,3),B 1(3,3,3),C 1(0,3,3),E (3,0,2),F (0,3,1),∴AC 1→=(-3,3,3),D 1E →=(3,0,-1)∴cos 〈AC 1→,D 1E →〉=-9-39+9+99+1=-23015.所以两条异面直线AG 与D 1E 所成的余弦值为-23015.(2)设平面BED 1F 的法向量是n =(x ,y ,z ),又∵BE →=(0,-3,2),BF →=(-3,0,1), n ⊥BE →,n ⊥BF →,∴n ·BE →=n ·BF →=0,即⎩⎪⎨⎪⎧-3y +2z =0-3x +z =0,令z =3,则x =1,y =2,所以n =(1,2,3),又AC 1→=(-3,3,3),∴cos 〈AC 1→,n 〉=-3+6+91+4+99+9+9=24221,∴直线AC 1与平面BED 1F 所成角是π2-〈AC 1→,n 〉, 它的正弦值是sin ⎝ ⎛⎭⎪⎫π2-〈AC 1→,n 〉=cos 〈AC 1→,n 〉=24221.2.(2017·南京模拟)如图64-11,已知正方形ABCD 和矩形ACEF 所在的平面互相垂直,AB =2,AF =1,M 是线段EF 的中点.图64-11(1)求二面角A -DF -B 的大小;(2)试在线段AC 上确定一点P ,使PF 与BC 所成的角是60°.【导学号:62172344】[解] (1)以CD →,CB →,CE →为正交基底,建立空间直角坐标系,则E (0,0,1),D (2,0,0),F (2,2,1),B (0,2,0),A (2,2,0),BD →=(2,-2,0),BF →=(2,0,1).平面ADF 的法向量t =(1,0,0),设平面DFB 法向量n =(a ,b ,c ),则n ·BD →=0,n ·BF →=0,所以⎩⎪⎨⎪⎧2a -2b =0,2a +c =0.令a =1,得b =1,c =-2,所以n =(1,1,-2).设二面角A -DF -B 的大小为θ⎝ ⎛⎭⎪⎫0<θ<π2,从而cos θ=|cos 〈n ,t 〉|=12,∴θ=60°, 故二面角A -DF -B 的大小为60°.(2)依题意,设P (a ,a,0)(0≤a ≤2),则PF →=(2-a ,2-a,1),CB →=(0,2,0).因为〈PF →,CB →〉=60°,所以cos 60°=2(2-a )2×2(2-a )2+1=12,解得a =22,所以点P 应在线段AC 的中点处.3.(2017·泰州期末)如图64-12,在直三棱柱ABC -A 1B 1C 1中,AC =3,BC =4,AB =5,AA 1=4.(1)设AD →=λAB →,异面直线AC 1与CD 所成角的余弦值为91050,求λ的值;图64-12(2)若点D 是AB 的中点,求二面角D -CB 1-B 的余弦值.[解] (1)由AC =3,BC =4,AB =5得∠ACB =90°,以CA ,CB ,CC 1所在直线分别为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系.则A (3,0,0),C 1(0,0,4),B (0,4,0),设D (x ,y ,z ),则由AD →=λAB →得CD →=(3-3λ,4λ,0),而AC 1→=(-3,0,4), 根据91050=⎪⎪⎪⎪⎪⎪⎪⎪-9+9λ525λ2-18λ+9,解得λ=15或λ=-13.(2)CD →=⎝ ⎛⎭⎪⎫32,2,0,CB 1→=(0,4,4),可取平面CDB 1的一个法向量为n 1=(4,-3,3).而平面CBB 1的一个法向量为n 2=(1,0,0),并且〈n 1n 2〉与二面角D -CB 1-B 相等,所以二面角D -CB 1-B 的余弦值为cos θ=cos 〈n 1,n 2〉=21734.4.(2017·扬州期中)如图64-13,已知直三棱柱ABC -A 1B 1C 1中,AB ⊥AC ,AB =3,AC =4,B 1C ⊥AC 1.图64-13(1)求AA 1的长.(2)在线段BB 1存在点P ,使得二面角P -A 1C -A 大小的余弦值为33,求BPBB 1的值. 【导学号:62172345】[解] (1)以AB ,AC ,AA 1所在直线分别为x ,y ,z 轴,建立如图所示的空间直角坐标,设BB 1=t ,则A (0,0,0),C 1(0,4,t ),B 1(3,0,t ),C (0,4,0) ∴AC 1→=(0,4,t ), B 1C →=(-3,4,-t ) ∵B 1C ⊥AC 1, ∴AC 1→·B 1C →=0,即16-t 2=0,由t >0,解得t =4,即AA 1的长为4. (2)设P (3,0,m ),又A (0,0,0),C (0,4,0),A 1(0,0,4) ∴A 1C →=(0,4,-4),A 1P →=(3,0,m -4),且0≤m ≤4 设n =(x ,y ,z )为平面P A 1C 的法向量, ∴n ⊥A 1C →,n ⊥A 1P →,∴⎩⎪⎨⎪⎧4y -4z =0,3x +(m -4)z =0,取z =1,解得y =1,x =4-m 3, ∴n =⎝ ⎛⎭⎪⎫4-m 3,1,1为平面P A 1C 的一个法向量.又知AB →=(3,0,0)为平面A 1CA 的一个法向量,则cos 〈n ,AB →〉=4-m3·1+1+⎝⎛⎭⎪⎫4-m 32.∵二面角P -A 1C 1-A 大小的余弦值为33, ∴4-m3·1+1+⎝⎛⎭⎪⎫4-m 32=33,解得m =1,∴BP BB 1=14.B 组 能力提升 (建议用时:15分钟)1.(2017·苏州市期中)在如图64-14所示的四棱锥S -ABCD 中,SA ⊥底面ABCD ,∠DAB =∠ABC =90°,SA =AB =BC =a ,AD =3a (a >0),E 为线段BS 上的一个动点.图64-14(1)证明DE 和SC 不可能垂直;(2)当点E 为线段BS 的三等分点(靠近B )时,求二面角S -CD -E 的余弦值. [解] (1)证明:∵SA ⊥底面ABCD ,∠DAB =90°, ∴AB ,AD ,AS 两两垂直.以A 为原点,AB ,AD ,AS 所在的直线分别为x 轴、y 轴、z 轴建立空间直角坐标系(如图).则S (0,0,a ),C (a ,a,0),D (0,3a,0)(a >0), ∵SA =AB =a 且SA ⊥AB , ∴设E (x,0,a -x )其中0≤x ≤a ,∴DE →=(x ,-3a ,a -x ),SC →=(a ,a ,-a ), 假设DE 和SC 垂直,则DE →·SC →=0,即ax -3a 2-a 2+ax =2ax -4a 2=0,解得x =2a ,这与0≤x ≤a 矛盾,假设不成立,所以DE 和SC 不可能垂直. (2)∵E 为线段BS 的三等分点(靠近B ), ∴E ⎝ ⎛⎭⎪⎫23a ,0,13a . 设平面SCD 的一个法向量是n 1=(x 1,y 1,z 1),平面CDE 的一个法向量是n 2=(x 2,y 2,z 2),∵CD →=(-a,2a,0),SD →=(0,3a ,-a ), ∴⎩⎨⎧n 1·CD →=0n 1·SD →=0,即⎩⎪⎨⎪⎧ -ax 1+2ay 1=03ay 1-az 1=0,即⎩⎪⎨⎪⎧x 1=2y 1z 1=3y 1,取n 1=(2,1,3), ∵CD →=(-a,2a,0), DE →=⎝ ⎛⎭⎪⎫23a ,-3a ,13a ,∴⎩⎨⎧n 2·CD →=0n 2·DE →=0,即⎩⎨⎧-ax 2+2ay 2=023ax 2-3ay 2+13az 2=0,即⎩⎪⎨⎪⎧x 2=2y 2z 2=5y 2, 取n 2=(2,1,5),设二面角S -CD -E 的平面角大小为θ,由图可知θ为锐角, ∴cos θ=|cos 〈n 1,n 2〉|=n 1·n 2|n 1|·|n 2|=4+1+1514·30=210521,即二面角S -CD -E 的余弦值为210521. 2.(2017·南通模拟)如图64-15,在四棱锥P -ABCD 中,底面ABCD 为直角梯形,∠ABC =∠BAD =90°,且P A =AB =BC =12AD =1,P A ⊥平面ABCD .图64-15(1)求PB 与平面PCD 所成角的正弦值;(2)棱PD 上是否存在一点E 满足∠AEC =90°?若存在 ,求AE 的长;若不存在,说明理由.[解] (1)依题意,以A 为坐标原点,分别以AB ,AD ,AP 为x ,y ,z 轴建立空间直角坐标系A -xyz ,则P (0,0,1),B (1,0,0),C (1,1,0),D (0,2,0),从而PB →=(1,0,-1),PC →=(1,1,-1),PD →=(0,2,-1),设平面PCD 的法向量为n =(a ,b ,c ),则n ·PC →=0,且n ·PD →=0,即a +b -c =0,且2b -c =0,不妨取c =2,则b =1,a =1,所以平面PCD 的一个法向量为n =(1,1,2),此时cos 〈PB →,n 〉=1-22×6=-36,所以PB 与平面PCD 所成角的正弦值为36. (2)设PE →=λPD →(0≤λ≤1),则E (0,2λ,1-λ), 则CE →=(-1,2λ-1,1-λ),AE →=(0,2λ,1-λ), 由∠AEC =90°得,AE →·CE →=2λ(2λ-1)+(1-λ)2=0, 化简得,5λ2-4λ+1=0,该方程无解, 所以,棱PD 上不存在一点E 满足∠AEC =90°.3.(2017·南京盐城一模)直三棱柱ABC -A 1B 1C 1中,AB ⊥AC ,AB =2,AC =4,AA 1=2,BD →=λDC →.图64-16(1)若λ=1,求直线DB 1与平面A 1C 1D 所成角的正弦值; (2)若二面角B 1-A 1C 1-D 的大小为60°,求实数λ的值.[解] 分别以AB ,AC ,AA 1所在直线为x ,y ,z 轴建立空间直角坐标系(图略).则A (0,0,0,)B (2,0,0),C (0,4,0),A 1(0,0,2),B 1(2,0,2),C 1(0,4,2)(1)当λ=1时,D 为BC 的中点,所以D (1,2,0),DB 1→=(1,-2,2),A 1C 1→=(0,4,0),A 1D →=(1,2,-2),设平面A 1C 1D 的法向量为n 1=(x ,y ,z )则⎩⎪⎨⎪⎧4y =0,x +2y -2z =0,所以取n 1=(2,0,1),又cos 〈DB 1→,n 1〉=DB 1→·n 1|DB 1→||n 1|=435=415 5,所以直线DB 1与平面A 1C 1D 所成角的正弦值为415 5. (2)∵BD →=λDC →,∴D ⎝⎛⎭⎪⎫2λ+1,4λλ+1,0, ∴A 1C 1→=(0,4,0),A 1D →=⎝⎛⎭⎪⎫2λ+1,4λλ+1,-2, 设平面A 1C 1D 的法向量为n 1=(x ,y ,z ), 则⎩⎪⎨⎪⎧4y =0,2λ+1x +4λλ+1y -2z =0,所以取n 1=(λ+1,0,1).又平面A 1B 1C 1的一个法向量为n 2=(0,0,1), 由题意得|cos 〈n 1,n 2〉|=12, 所以1(λ+1)2+1=12,解得λ=3-1或λ=-3-1(不合题意,舍去).所以实数λ的值为3-1.4.(2017·无锡模拟) 如图64-17,在四棱柱ABCD -A 1B 1C 1D 1中,侧面ADD 1A 1⊥底面ABCD ,D 1A =D 1D =2,底面ABCD 为直角梯形,其中BC ∥AD ,AB ⊥AD ,AD =2AB =2BC =2.图64-17(1)在平面ABCD 内找一点F ,使得D 1F ⊥平面AB 1C ; (2)求二面角C -B 1A -B 的平面角的余弦值.[解] (1)以A 为坐标原点,建立如图所示的空间直角坐标系A -xyz ,则A (0,0,0),B (1,0,0),C (1,1,0),D 1(0,1,1),B 1(1,-1,1),设F (a ,b,0),则D 1F →=(a ,b -1,-1),由⎩⎨⎧D 1F →·AC →=a +b -1=0,D 1F →·AB 1→=a -b =0,得a =b =12, 所以F ⎝ ⎛⎭⎪⎫12,12,0,即F 为AC 的中点.(2)由(1)可取平面B 1AC 的一个法向量n 1=D 1F →=⎝ ⎛⎭⎪⎫12,-12,-1.设平面B 1AB 的法向量n 2=(x ,y ,z ), 由⎩⎨⎧ n 2·AB →=x =0,n 2·AB 1→=x -y +z =0,得⎩⎪⎨⎪⎧x =0,y =z ,取n 2=(0,1,1).则cos 〈n 1,n 2〉=-322×32=-32, 所以二面角C -B 1A -B 的平面角的余弦值为32.。
第8节 立体几何中的向量方法(二)——求空间角最新考纲 1.能用向量方法解决直线与直线、直线与平面、平面与平面的夹角的计算问题;2.了解向量方法在研究立体几何问题中的应用.知 识 梳 理1.异面直线所成的角设a ,b 分别是两异面直线l 1,l 2的方向向量,则2.求直线与平面所成的角设直线l 的方向向量为a ,平面α的法向量为n ,直线l 与平面α所成的角为θ,则sin θ=|cos 〈a ,n 〉|=|a ·n ||a ||n |.3.求二面角的大小(1)如图①,AB ,CD 是二面角α-l -β的两个面内与棱l 垂直的直线,则二面角的大小θ=__〈AB →,CD →〉.(2)如图②③,n 1,n 2 分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小θ满足|cos θ|=|cos 〈n 1,n 2〉|,二面角的平面角大小是向量n 1与n 2的夹角(或其补角).[常用结论与微点提醒]1.线面角θ的正弦值等于直线的方向向量a 与平面的法向量n 所成角的余弦值的绝对值,即sin θ=|cos 〈a ,n 〉|,不要误记为cos θ=|cos 〈a ,n 〉|.2.二面角与法向量的夹角:利用平面的法向量求二面角的大小时,当求出两半平面α,β的法向量n 1,n 2时,要根据向量坐标在图形中观察法向量的方向,来确定二面角与向量n 1,n 2的夹角是相等,还是互补.诊 断 自 测1.思考辨析(在括号内打“√”或“×”)(1)两直线的方向向量所成的角就是两条直线所成的角.( )(2)直线的方向向量和平面的法向量所成的角就是直线与平面所成的角.( ) (3)两个平面的法向量所成的角是这两个平面所成的角.( )(4)两异面直线夹角的范围是⎝ ⎛⎦⎥⎤0,π2,直线与平面所成角的范围是⎣⎢⎡⎦⎥⎤0,π2,二面角的范围是[0,π].( )解析 (1)两直线的方向向量所成的角是两条直线所成的角或其补角;(2)直线的方向向量a ,平面的法向量n ,直线与平面所成的角为θ,则sin θ=|cos a ,n |;(3)两个平面的法向量所成的角是这两个平面所成的角或其补角. 答案 (1)× (2)× (3)× (4)√2.(教材练习改编)已知两平面的法向量分别为m =(0,1,0),n =(0,1,1),则两平面所成的二面角为( ) A.45°B.135°C.45°或135°D.90°解析 cos 〈m ,n 〉=m ·n |m ||n |=11·2=22,即〈m ,n 〉=45°.∴两平面所成二面角为45°或180°-45°=135°. 答案 C3.已知向量m ,n 分别是直线l 和平面α的方向向量和法向量,若 cos 〈m ,n 〉=-12,则l 与α所成的角为________.解析 设l 与α所成角为θ,∵cos 〈m ,n 〉=-12,∴ sin θ=| cos 〈m ,n 〉|=12,∵0°≤θ≤90°,∴θ=30°. 答案 30°4.已知正方体ABCD -A 1B 1C 1D 1如图所示,则直线B 1D 和CD 1所成的角为________.解析 以A 为原点,AB →,AD →,AA 1→分别为x ,y ,z 轴的正方向建立空间直角坐标系,设正方体棱长为1,则CD 1→=(-1,0,1),B 1D →=(-1,1,-1),cos CD 1→,B 1D→=1+0-12×3=0.所以两直线所成的角为90°. 答案 90°5.(2018·郑州预测)过正方形ABCD 的顶点A 作线段PA ⊥平面ABCD ,若AB =PA ,则平面ABP 与平面CDP 所成的二面角为________.解析 如图,建立空间直角坐标系,设AB =PA =1,则A (0,0,0),D (0,1,0),P (0,0,1),由题意,AD ⊥平面PAB ,设E 为PD 的中点,连接AE ,则AE ⊥PD , 又CD ⊥平面PAD ,∴CD ⊥AE ,从而AE ⊥平面PCD .所以AD →=(0,1,0),AE →=⎝ ⎛⎭⎪⎫0,12,12分别是平面PAB ,平面PCD 的法向量,且〈AD →,AE →〉=45°.故平面PAB 与平面PCD 所成的二面角为45°. 答案 45°考点一 用空间向量求异面直线所成的角【例1】 (1)(一题多解)(2017·全国Ⅱ卷)已知直三棱柱ABC -A 1B 1C 1中,∠ABC =120°,AB =2,BC =CC 1=1,则异面直线AB 1与BC 1所成角的余弦值为( ) A.32B.155C.105D.33(2)(2018·江西五市联考)有公共边的等边三角形ABC 和BCD 所在平面互相垂直,则异面直线AB 和CD 所成角的余弦值为________.解析 (1)法一 以B 为原点,建立如图(1)所示的空间直角坐标系.图(1) 图(2)则B (0,0,0),B 1(0,0,1),C 1(1,0,1).又在△ABC 中,∠ABC =120°,AB =2,则A (-1,3,0). 所以AB 1→=(1,-3,1),BC 1→=(1,0,1), 则cos 〈AB 1→,BC 1→〉=AB 1→·BC 1→|AB 1→|·|BC 1→|=(1,-3,1)·(1,0,1)5·2=25·2=105,因此,异面直线AB 1与BC 1所成角的余弦值为105. 法二 如图(2),设M ,N ,P 分别为AB ,BB 1,B 1C 1中点,则PN ∥BC 1,MN ∥AB 1, ∴AB 1与BC 1所成的角是∠MNP 或其补角. ∵AB =2,BC =CC 1=1,∴MN =12AB 1=52,NP =12BC 1=22.取BC 的中点Q ,连接PQ ,MQ ,则可知△PQM 为直角三角形,且PQ =1,MQ =12AC ,在△ABC 中,AC 2=AB 2+BC 2-2AB ·BC ·cos ∠ABC=4+1-2×2×1×⎝ ⎛⎭⎪⎫-12=7,AC =7, 则MQ =72,则△MQP 中,MP =MQ 2+PQ 2=112, 则△PMN 中,cos ∠PNM =MN 2+NP 2-PM 22·MN ·NP=⎝ ⎛⎭⎪⎫522+⎝ ⎛⎭⎪⎫222-⎝ ⎛⎭⎪⎫11222·52·22=-105, 又异面直线所成角范围为⎝⎛⎦⎥⎤0,π2,则余弦值为105.法三 将直三棱柱ABC -A 1B 1C 1补形成直四棱柱ABCD -A 1B 1C 1D 1(如图(3)),连接AD 1,B 1D 1,则AD 1∥BC 1.图(3)则∠B 1AD 1为异面直线AB 1与BC 1所成的角(或其补角),易求得AB 1=5,BC 1=AD 1=2,B 1D 1= 3.由余弦定理得cos ∠B 1AD 1=105. (2)设等边三角形的边长为2.取BC 的中点O ,连接OA ,OD ,∵等边三角形ABC 和BCD 所在平面互相垂直,∴OA ,OC ,OD 两两垂直,以O 为坐标原点,建立如图所示的空间直角坐标系.则A (0,0,3),B (0,-1,0),C (0,1,0),D (3,0,0), ∴AB →=(0,-1,-3),CD →=(3,-1,0), ∴cos 〈AB →,CD →〉=AB →·CD→|AB →||CD →|=12×2=14,∴异面直线AB 和CD 所成角的余弦值为14.答案 (1)C (2)14规律方法 1.利用向量法求异面直线所成角的一般步骤是:(1)选好基底或建立空间直角坐标系;(2)求出两直线的方向向量v 1,v 2;(3)代入公式|cos 〈v 1,v 2〉|=|v 1·v 2||v 1||v 2|求解.2.两异面直线所成角的范围是θ∈⎝⎛⎦⎥⎤0,π2,两向量的夹角α的范围是[0,π],当异面直线的方向向量的夹角为锐角或直角时,就是该异面直线的夹角;当异面直线的方向向量的夹角为钝角时,其补角才是异面直线的夹角.【训练1】 (一题多解)直三棱柱ABC -A 1B 1C 1中,∠BCA =90°,M ,N 分别是A 1B 1,A 1C 1的中点,BC =CA =CC 1,则BM 与AN 所成角的余弦值为( ) A.110B.25C.3010D.22解析 法一 取BC 的中点Q ,连接QN ,AQ ,易知BM ∥QN ,则∠ANQ 或其补角即为所求, 设BC =CA =CC 1=2,则AQ =5,AN =5,QN =6,∴cos ∠ANQ =AN 2+NQ 2-AQ 22AN ·NQ =5+6-525×6=6230=3010,故选C.法二 以C 1为坐标原点,建立如图所示的空间直角坐标系, 设BC =CA =CC 1=2,则A (2,0,2),N (1,0,0),M (1,1,0),B (0,2,2),∴AN →=(-1,0,-2),BM →=(1,-1, -2),∴cos 〈AN →,BM →〉=AN →·BM→|AN →||BM →|=-1+45×6=330=3010.答案 C考点二 用空间向量求线面角【例2】 (2018·洛阳二模)已知三棱锥A -BCD ,AD ⊥平面BCD ,BD ⊥CD ,AD =BD =2,CD =23,E ,F 分别是AC ,BC 的中点,P 为线段BC上一点,且CP =2PB . (1)求证:AP ⊥DE ;(2)求直线AC 与平面DEF 所成角的正弦值. (1)证明 作PG ∥BD 交CD 于G ,连接AG .∴CG GD =CP PB =2,∴GD =13CD =233. ∵AD ⊥平面BCD ,∴AD ⊥DC , ∴在△ADG 中,tan ∠GAD =33,∴∠DAG =30°, 在Rt △ADC 中,AC 2=AD 2+CD 2=4+12=16, ∴AC =4,又E 为AC 的中点,∴DE =AE =2, 又AD =2,∴∠ADE =60°,∴AG ⊥DE . ∵AD ⊥平面BCD ,∴AD ⊥BD ,又∵BD ⊥CD ,AD ∩CD =D ,∴BD ⊥平面ADC , ∴PG ⊥平面ADC ,∴PG ⊥DE . 又∵AG ∩PG =G ,∴DE ⊥平面AGP , 又AP 平面AGP , ∴AP ⊥DE .(2)解 以D 为坐标原点,直线DB ,DC ,DA 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系D -xyz ,则D (0,0,0),A (0,0,2),B (2,0,0),C (0,23,0),E (0,3,1),F (1,3,0),∴DF →=(1,3,0),DE →=(0,3,1),AC →=(0,23,-2). 设平面DEF 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧DF →·n =0,DE →·n =0,即⎩⎨⎧x +3y =0,3y +z =0,令x =3,则n =(3,-3,3)为平面DEF 的一个法向量. 设直线AC 与平面DEF 所成角为θ, 则sin θ=|cos〈AC →,n 〉|=|AC →·n ||AC →|·|n |=|-6-6|421=217,所以AC 与平面DEF 所成角的正弦值为217. 规律方法 利用向量法求线面角的方法:(1)分别求出斜线和它在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角);(2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角或钝角的补角,取其余角就是斜线和平面所成的角.【训练2】 如图,在六面体ABCD -HEFG 中,四边形ABCD 为菱形,AE ,BF ,CG ,DH 都垂直于平面ABCD .若DA =DH =DB =4,AE =CG =3.(1)求证:EG ⊥DF ;(2)求BE 与平面EFGH 所成角的正弦值.(1)证明 连接AC ,由AE 綊CG 可知四边形AEGC 为平行四边形, 所以EG ∥AC ,而AC ⊥BD ,AC ⊥BF , 所以EG ⊥BD ,EG ⊥BF ,因为BD ∩BF =B ,BD ,BF 平面BDHF , 所以EG ⊥平面BDHF ,又DF 平面BDHF ,所以EG ⊥DF . (2)解 设AC ∩BD =O ,EG ∩HF =P , 由已知可得,平面ADHE ∥平面BCGF , 所以EH ∥FG ,同理可得:EF ∥HG , 所以四边形EFGH 为平行四边形, 所以P 为EG 的中点,O 为AC 的中点, 所以OP 綊AE ,从而OP ⊥平面ABCD ,又OA ⊥OB , 所以OA ,OB ,OP 两两垂直,由平面几何知识,得BF =2.分别以OA →,OB →,OP →的方向为x 轴,y 轴,z 轴的正方向,建立空间直角坐标系O -xyz ,则B (0,2,0),E (23,0,3),F (0,2,2),P (0,0,3),所以BE →=(23,-2,3),PE →=(23,0,0),PF →=(0,2,-1). 设平面EFGH 的法向量为n =(x ,y ,z ), 由⎩⎪⎨⎪⎧PE →·n =0,PF →·n =0可得⎩⎪⎨⎪⎧x =0,2y -z =0,令y =1,则z =2.所以n =(0,1,2)为平面EFGH 的一个法向量. 设BE 与平面EFGH 所成角为θ, 则sin θ=|BE →·n ||BE →|·|n |=4525.所以BE 与平面EFGH 所成角的正弦值为4525.考点三 用空间向量求二面角(多维探究) 命题角度1 计算二面角的大小【例3-1】 (2017·全国Ⅰ卷)如图,在四棱锥P -ABCD 中,AB ∥CD ,且∠BAP =∠CDP =90°. (1)证明:平面PAB ⊥平面PAD ;(2)若PA =PD =AB =DC ,∠APD =90°,求二面角A -PB -C 的余弦值. (1)证明 ∵∠BAP =∠CDP =90°,∴PA ⊥AB ,PD ⊥CD , 又∵AB ∥CD ,∴PD ⊥AB ,又∵PD ∩PA =P ,PD ,PA 平面PAD , ∴AB ⊥平面PAD ,又AB 平面PAB , ∴平面PAB ⊥平面PAD .(2)解 取AD 中点O ,BC 中点E ,连接PO ,OE , ∵AB 綊CD ,∴四边形ABCD 为平行四边形, ∴OE 綊AB .由(1)知,AB ⊥平面PAD , ∴OE ⊥平面PAD , 又PO ,AD 平面PAD , ∴OE ⊥PO ,OE ⊥AD , 又∵PA =PD ,∴PO ⊥AD , ∴PO ,OE ,AD 两两垂直,∴以O 为坐标原点,建立如图所示的空间直角坐标系O -xyz . 设PA =2,∴D (-2,0,0),B (2,2,0),P (0,0,2),C (-2,2,0).∴PD →=(-2,0,-2),PB →=(2,2,-2),BC →=(-22,0,0), 设n =(x ,y ,z )为平面PBC 的法向量, 由⎩⎪⎨⎪⎧n ·PB →=0,n ·BC →=0得⎩⎨⎧2x +2y -2z =0,-22x =0.令y =1,则z =2,x =0,得平面PBC 的一个法向量n =(0,1,2), ∵∠APD =90°,∴PD ⊥PA , 又知AB ⊥平面PAD ,PD 平面PAD , ∴PD ⊥AB ,又PA ∩AB =A ,PA ,AB 平面PAB , ∴PD ⊥平面PAB ,故PD →是平面PAB 的一个法向量,PD →=(-2,0,-2),∴cos 〈PD →,n 〉=PD →·n |PD →|·|n |=-223=-33,由图知二面角A -PB -C 为钝角, 所以它的余弦值为-33. 命题角度2 已知二面角的大小求值【例3-2】 (2018·宝鸡二模)在如图所示的几何体中,平面ADNM ⊥平面ABCD ,四边形ABCD 是菱形,ADNM 是矩形,∠DAB =π3,AB =2,AM=1,E 是AB 的中点.(1)求证:平面DEM ⊥平面ABM ;(2)在线段AM 上是否存在点P ,使二面角P -EC -D 的大小为π4?若存在,求出AP 的长;若不存在,请说明理由.(1)证明 连接BD ,由于四边形ABCD 是菱形,∠DAB =π3,E 是AB 的中点,所以DE ⊥AB ,因为四边形ADNM 是矩形,MA ⊥AD ,平面ADNM ⊥平面ABCD 且交线为AD , 所以MA ⊥平面ABCD ,又DE 平面ABCD ,所以DE ⊥AM . 又AM ∩AB =A ,AM ,AB 平面ABM , 所以DE ⊥平面ABM ,又DE 平面DEM ,所以平面DEM ⊥平面ABM . (2)解 在线段AM 存在点P ,理由如下: 由DE ⊥AB ,AB ∥CD ,得DE ⊥CD ,因为四边形ADNM 是矩形,平面ADNM ⊥平面ABCD 且交线为AD ,所以ND ⊥平面ABCD .以D 为原点,DE ,DC ,DN 所在直线分别为x 轴、y 轴、z 轴建立如图所示的坐标系.则D (0,0,0),E (3,0,0),C (0,2,0),N (0,0,1), EC →=(-3,2,0),设P (3,-1,m )(0≤m ≤1),则EP →=(0,-1,m ), 易知平面ECD 的一个法向量为DN →=(0,0,1). 设平面PEC 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·EC →=0,n ·EP →=0,即⎩⎨⎧-3x +2y =0,-y +mz =0,取z =1,则n =⎝ ⎛⎭⎪⎫2m 3,m ,1,假设在线段AM 上存在点P ,使二面角P -EC -D 的大小为π4,则cos π4=⎪⎪⎪⎪⎪⎪⎪⎪n ·DN →|n ||DN →|=14m 23+m 2+1⇒m =217, 所以符合题意的点P 存在,此时AP =217. 规律方法 1.利用空间向量计算二面角大小的常用方法:(1)找法向量:分别求出二面角的两个半平面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角的大小.(2)找与棱垂直的方向向量:分别在二面角的两个半平面内找到与棱垂直且以垂足为起点的两个向量,则这两个向量的夹角的大小就是二面角的大小. 2.利用向量法求二面角大小的注意点(1)建立空间直角坐标系时,若垂直关系不明确,应先给出证明;(2)对于某些平面的法向量,要结合题目条件和图形多观察,判断该法向量是否已经隐含着,不用单独求.(3)注意判断二面角的平面角是锐角还是钝角,可结合图形进行,以防结论失误.【训练3】 (2017·山东卷)如图,几何体是圆柱的一部分,它是由矩形ABCD (及其内部)以AB 边所在直线为旋转轴旋转120°得到的,G 是DF ︵的中点.(1)设P 是CE ︵上的一点,且AP ⊥BE ,求∠CBP 的大小;(2)(一题多解)当AB =3,AD =2时,求二面角E -AG -C 的大小. 解 (1)因为AP ⊥BE ,AB ⊥BE ,AB ,AP 平面ABP ,AB ∩AP =A ,所以BE ⊥平面ABP ,图1又BP 平面ABP ,所以BE ⊥BP ,又∠EBC =120°,因此∠CBP =30°. (2)法一 如图1,取EC ︵的中点H ,连接EH ,GH ,CH . 因为∠EBC =120°, 所以四边形BEHC 为菱形, 所以AE =GE =AC =GC =32+22=13.取AG 中点M ,连接EM ,CM ,EC , 则EM ⊥AG ,CM ⊥AG ,所以,∠EMC 为所求二面角的平面角. 又AM =1,所以EM =CM =13-1=2 3. 在△BEC 中,由于∠EBC =120°,由余弦定理得EC 2=22+22-2×2×2×cos 120°=12, 所以EC =23,因此△EMC 为等边三角形, 故所求的角为60°. 法二图2以B 为坐标原点,分别以BE ,BP ,BA 所在的直线为x ,y ,z 轴,建立如图2所示的空间直角坐标系.由题意得A (0,0,3),E (2,0,0),G (1,3,3),C (-1,3,0), 故AE →=(2,0,-3),AG →=(1,3,0),CG →=(2,0,3). 设m =(x 1,y 1,z 1)是平面AEG 的法向量. 由⎩⎪⎨⎪⎧m · AE →=0,m ·AG →=0,可得⎩⎨⎧2x 1-3z 1=0,x 1+3y 1=0.取z 1=2,可得平面AEG 的一个法向量m =(3,-3,2). 设n =(x 2,y 2,z 2)是平面ACG 的法向量. 由⎩⎪⎨⎪⎧n ·AG →=0,n ·CG →=0,可得⎩⎨⎧x 2+3y 2=0,2x 2+3z 2=0.取z 2=-2,可得平面ACG 的一个法向量n =(3,-3,-2).所以cos 〈m ,n 〉=m ·n |m |·|n |=12. 因此所求的角为60°.基础巩固题组 (建议用时:40分钟)一、选择题1.若直线l 的方向向量与平面α的法向量的夹角等于120°,则直线l 与平面α所成的角等于( ) A.120°B.60°C.30°D.60°或30°解析 设直线l 与平面α所成的角为β,直线l 与平面α的法向量的夹角为γ. 则sin β=|cos γ|=|cos 120°|=12.又0°≤β≤90°,∴β=30°. 答案 C2.在正方体A 1B 1C 1D 1-ABCD 中,AC 与B 1D 所成角大小为( ) A.π6B.π4C.π3D.π2解析 建立如图所示的空间直角坐标系,设正方体边长为1,则A (0,0,0),C (1,1,0),B 1(1,0,1),D (0,1,0).∴AC →=(1,1,0),B 1D →=(-1,1,-1), ∵AC →·B 1D →=1×(-1)+1×1+0×(-1)=0, ∴AC →⊥B 1D →,∴AC 与B 1D 所成的角为π2.答案 D3.(2018·郑州调研)在正方体ABCD -A 1B 1C 1D 1中,BB 1与平面ACD 1所成角的正弦值为( ) A.32B.33C.35D.25解析 设正方体的棱长为1,以D 为坐标原点,DA ,DC ,DD1所在直线分别为x 轴、y 轴、z 轴,建立空间直角坐标系,如图所示.则B (1,1,0),B 1(1,1,1),A (1,0,0),C (0,1,0),D 1(0,0,1),所以BB 1→=(0,0,1),AC →=(-1,1,0),AD 1→=(-1,0,1).令平面ACD 1的法向量为n =(x ,y ,z ),则n ·AC →=-x +y =0,n ·AD 1→=-x +z =0,令x =1,可得n =(1,1,1), 所以sin θ=|cos 〈n ,BB 1→〉|=13×1=33. 答案 B4.在正方体ABCD -A 1B 1C 1D 1中,点E 为BB 1的中点,则平面A 1ED 与平面ABCD 所成的锐二面角的余弦值为( ) A.12B.23C.33D.22解析 以A 为原点建立如图所示的空间直角坐标系A -xyz ,设棱长为1,则A 1(0,0,1),E ⎝⎛⎭⎪⎫1,0,12,D (0,1,0),∴A 1D →=(0,1,-1),A 1E →=⎝⎛⎭⎪⎫1,0,-12,设平面A 1ED 的一个法向量为n 1=(1,y ,z ),所以有⎩⎪⎨⎪⎧A 1D →·n 1=0,A 1E →·n 1=0,即⎩⎪⎨⎪⎧y -z =0,1-12z =0,解得⎩⎪⎨⎪⎧y =2,z =2.∴n 1=(1,2,2).∵平面ABCD 的一个法向量为n 2=(0,0,1), ∴ cos 〈n 1,n 2〉=23×1=23. 即所成的锐二面角的余弦值为23.答案 B5.设正方体ABCD -A 1B 1C 1D 1的棱长为2,则点D 1到平面A 1BD 的距离是( ) A.32B.22C.223D.233解析 如图建立坐标系.则D 1(0,0,2),A 1(2,0,2),B (2,2,0),D 1A 1→=(2,0,0),DB →=(2,2,0), DA 1→=(2,0,2).设平面A 1BD 的法向量为 n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·DA 1→=0,n ·DB →=0,∴⎩⎪⎨⎪⎧2x +2z =0,2x +2y =0,令z =1,得n =(-1,1,1). ∴D 1到平面A 1BD 的距离d =|D 1A 1→·n ||n |=23=233.答案 D 二、填空题6.(2018·咸阳月考)如图所示,在三棱柱ABC -A 1B 1C 1中,AA 1⊥底面ABC ,AB =BC =AA 1,∠ABC =90°,点E ,F 分别是棱AB ,BB 1的中点,则直线EF和BC 1所成的角是__________.解析 以BC 为x 轴,BA 为y 轴,BB 1为z 轴,建立空间直角坐标系.设AB =BC =AA 1=2,则C1(2,0,2),E (0,1,0),F (0,0,1), 则EF →=(0,-1,1),BC 1→=(2,0,2), ∴EF →·BC 1→=2, ∴cos 〈EF →,BC 1→〉=22×22=12,∴EF 和BC 1所成的角为60°. 答案 60°7.在正四棱柱ABCD -A1B 1C 1D 1中,AA 1=2AB ,则CD 与平面BDC 1所成角的正弦值等于__________.解析 以D 为坐标原点,建立空间直角坐标系,如图,设AA 1=2AB =2,则D (0,0,0),C (0,1,0),B (1,1,0),C 1(0,1,2),则DC →=(0,1,0),DB →=(1,1,0),DC 1→=(0,1,2).设平面BDC 1的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·DB →=0,n ·DC 1→=0,所以有⎩⎪⎨⎪⎧x +y =0,y +2z =0,令y =-2,得平面BDC 1的一个法向量n = (2,-2,1). 设CD 与平面BDC 1所成的角为θ,则 sin θ=|cos 〈n ,DC →〉|=⎪⎪⎪⎪⎪⎪⎪⎪n ·DC→|n ||DC →|=23. 答案 238.已知点E ,F 分别在正方体ABCD -A 1B 1C 1D 1的棱BB 1,CC 1上,且B 1E =2EB ,CF =2FC 1,则平面AEF 与平面ABC 所成的二面角的正切值等于________.解析 延长FE ,CB 相交于点G ,连接AG ,如图所示.设正方体的棱长为3,则GB =BC =3,作BH ⊥AG 于点H ,连接EH ,则∠EHB 为所求二面角的平面角. ∵BH =322,EB =1,∴tan ∠EHB =EB BH =23. 答案23三、解答题9.如图,在四棱锥P -ABCD 中,PA ⊥平面ABCD ,底面ABCD 为菱形,AB =2,∠BAD =60°. (1)求证:BD ⊥平面PAC ;(2)若PA =AB ,求PB 与AC 所成角的余弦值. (1)证明 因为四边形ABCD 是菱形,所以AC ⊥BD . 因为PA ⊥平面ABCD ,BD 平面ABCD ,所以PA ⊥BD . 又因为AC ∩PA =A ,AC ,PA 平面PAC ,所以BD ⊥平面PAC .(2)解 设AC ∩BD =O ,因为∠BAD =60°,PA =AB =2, 所以BO =1,AO =CO = 3.如图,以O 为坐标原点,建立空间直角坐标系O -xyz .则P (0,-3,2),A (0,-3,0),B (1,0,0),C (0,3,0). 所以PB →=(1,3,-2),AC →=(0,23,0).设PB 与AC 所成角为θ,则cos θ=⎪⎪⎪⎪⎪⎪⎪⎪PB →·AC →|PB →||AC →|=622×23=64,故PB 与AC 所成角的余弦值为64. 10.(2017·北京卷)如图,在四棱锥P -ABCD 中,底面ABCD 为正方形,平面PAD ⊥平面ABCD ,点M 在线段PB 上,PD ∥平面MAC ,PA =PD =6,AB =4.(1)求证:M 为PB 的中点; (2)求二面角B -PD -A 的大小;(3)求直线MC 与平面BDP 所成角的正弦值. (1)证明 设AC ∩BD =O ,连接OM .∵PD ∥平面MAC 且平面PBD ∩平面MAC =MO , ∴PD ∥MO .∵四边形ABCD 是正方形, ∴O 为BD 中点,所以M 为PB 中点. (2)解 取AD 中点E ,连接PE . ∵PA =PD ,∴PE ⊥AD ,又∵平面PAD ⊥平面ABCD 且平面PAD ∩平面ABCD =AD ,PE 平面PAD , ∴PE ⊥平面ABCD ,∵OE 平面ABCD ,∴PE ⊥OE , ∵四边形ABCD 是正方形,所以OE ⊥AD .建立如图所示空间直角坐标系,则B (-2,4,0),P (0,0,2),D (2,0,0), 易知平面PDA 的一个法向量m =(0,1,0). 设平面BPD 的法向量n =(x 0,y 0,z 0),则⎩⎪⎨⎪⎧n ·DP →=(x 0,y 0,z 0)·(-2,0,2)=-2x 0+2z 0=0,n ·DB →=(x 0,y 0,z 0)·(-4,4,0)=-4x 0+4y 0=0, 令x =1,则y =1,z = 2. 可取n =(1,1,2).设二面角B -PD -A 的平面角为θ(易知为锐角), 则cos θ=|cos 〈m ,n 〉|=⎪⎪⎪⎪⎪⎪m·n |m ||n |=11·12+12+(2)2=12, ∴θ=π3,故二面角B -PD -A 的大小为π3.(3)解 由(2)可知M ⎝ ⎛⎭⎪⎫-1,2,22,C (2,4,0), MC →=⎝ ⎛⎭⎪⎫3,2,-22. 设直线MC 与平面BDP 所成的角为α,则有sin α=|cos 〈MC →,n 〉|=⎪⎪⎪⎪⎪⎪⎪⎪MC →·n |MC →|·|n | =|3+2-1|1+1+(2)2·32+22+⎝ ⎛⎭⎪⎫-222=269.∴直线MC 与平面BDP 所成角的正弦值为269.能力提升题组 (建议用时:20分钟)11.(2018·济南质检)如图所示,在空间直角坐标系中有直三棱柱ABC -A 1B 1C 1,CA =CC 1=2CB ,则直线BC 1与直线AB 1夹角的余弦值为( ) A.55B.53C.255D.35解析 不妨令CB =1,则CA =CC 1=2,可得O (0,0,0),B (0,0,1),C 1(0,2,0),A (2,0,0),B 1(0,2,1),∴BC 1→=(0,2,-1),AB 1→=(-2,2,1), ∴cos 〈BC 1→,AB 1→〉=BC 1→·AB 1→|BC 1→||AB 1→|=4-15×9=15=55>0. ∴BC 1→与AB 1→的夹角即为直线BC 1与直线AB 1的夹角, ∴直线BC 1与直线AB 1夹角的余弦值为55. 答案 A12.如图所示,二面角的棱上有A ,B 两点,直线AC ,BD 分别在这个二面角的两个半平面内,且都垂直于AB .已知AB =4,AC =6,BD =8,CD =217,则该二面角的大小为__________. 解析 ∵CD →=CA →+AB →+BD →,∴CA →·BD →=|CA →|·|BD →|· cos 〈CA →,BD →〉=-24. ∴ cos 〈CA →,BD →〉=-12.又所求二面角与〈CA →,BD →〉互补, ∴所求的二面角为60°. 答案 60°13.(2018·合肥质检)如图,四棱锥P -ABCD 中,PA ⊥底面ABCD ,底面ABCD 是直角梯形,∠ADC =90°,AD ∥BC ,AB ⊥AC ,AB =AC =2,点E 在AD 上,且AE =2ED .(1)已知点F 在BC 上,且CF =2FB ,求证:平面PEF ⊥平面PAC ;(2)当二面角A -PB -E 的余弦值为多少时,直线PC 与平面PAB 所成的角为45°? (1)证明 ∵AB ⊥AC ,AB =AC , ∴∠ACB =45°,∵底面ABCD 是直角梯形,∠ADC =90°,AD ∥BC , ∴∠ACD =45°,即AD =CD , 又AB ⊥AC , ∴BC =2AC =2AD ,∵AE =2ED ,CF =2FB ,∴AE =BF =23AD ,∴四边形ABFE 是平行四边形,∴AB ∥EF , ∴AC ⊥EF ,∵PA ⊥底面ABCD ,∴PA ⊥EF , ∵PA ∩AC =A ,PA ,AC 平面PAC , ∴EF ⊥平面PAC ,21 ∵EF 平面PEF ,∴平面PEF ⊥平面PAC .(2)解 ∵PA ⊥AC ,AC ⊥AB ,PA ∩AB =A ,PA ,AB 平面PAB ,∴AC ⊥平面PAB ,则∠APC 为PC 与平面PAB 所成的角,若PC 与平面PAB 所成的角为45°,则tan ∠APC =AC PA=1,即PA =AC =2,取BC 的中点为G ,连接AG ,则AG ⊥BC ,以A 为坐标原点,建立如图所示的空间直角坐标系A -xyz.则A (0,0,0),B (1,-1,0),C (1,1,0),E ⎝ ⎛⎭⎪⎫0,23,0,P (0,0,2), ∴EB →=⎝ ⎛⎭⎪⎫1,-53,0,EP →=⎝ ⎛⎭⎪⎫0,-23,2, 设平面PBE 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·EB →=0,n ·EP →=0,即⎩⎪⎨⎪⎧x -53y =0,-23y +2z =0, 令y =3,则x =5,z =2,∴n =(5,3,2),∵AC →=(1,1,0)是平面PAB 的一个法向量,cos 〈n ,AC →〉=5+32×6=223, 故结合图形可知当二面角A -PB -E 的余弦值为223时,直线PC 与平面PAB 所成的角为45°.。
2019-2020年高三数学大一轮复习 8.8立体几何中的向量方法(Ⅱ)求空间角、距离教案 理 新人教A 版xx 高考会这样考 1.考查用向量方法求空间角的大小;2.考查简单的空间距离的计算(点面距是重点).复习备考要这样做 1.掌握空间角的定义、范围,掌握求空间角的向量方法;2.会利用向量方法对距离进行转化.1. 空间向量与空间角的关系(1)设异面直线l 1,l 2的方向向量分别为m 1,m 2,则l 1与l 2所成的角θ满足cos θ=|cos 〈m 1,m 2〉|.(2)设直线l 的方向向量和平面α的法向量分别为m ,n ,则直线l 与平面α所成角θ满足sin θ=|cos 〈m ,n 〉|. (3)求二面角的大小1°如图①,AB 、CD 是二面角α—l —β的两个面内与棱l 垂直的直线,则二面角的大小θ=〈AB →,CD →〉.2°如图②③,n 1,n 2分别是二面角α—l —β的两个半平面α,β的法向量,则二面角的大小θ满足cos θ=cos 〈n 1,n 2〉或-cos 〈n 1,n 2〉.2. 点面距的求法如图,设AB 为平面α的一条斜线段,n 为平面α的法向量,则B 到平面α的距离d =|AB →·n ||n |.[难点正本 疑点清源]1. 向量法通过空间坐标系把空间图形的性质代数化,避免了寻找平面角和垂线段等诸多麻烦,使空间点线面的位置关系的判定和计算程序化、简单化.主要是建系、设点、计算向量的坐标、利用数量积的夹角公式计算.2. 利用平面的法向量求二面角的大小时,当求出两半平面α、β的向量n 1,n 2时,要根据向量坐标在图形中观察法向量的方向,从而确定二面角与向量n 1,n 2的夹角是相等,还是互补.3. 求点到平面距离的方法:①垂面法:借助面面垂直的性质来作垂线,其中过已知点确定已知面的垂面是关键;②等体积法,转化为求三棱锥的高;③等价转移法;④法向量法.1. 若平面α的一个法向量为n =(4,1,1),直线l 的一个方向向量为a =(-2,-3,3),则l 与α所成角的正弦值为___________. 答案41133解析 ∵n·a =-8-3+3=-8,|n |=16+1+1=32, |a |=4+9+9=22,∴cos〈n ,a 〉=n·a |n|·|a |=-832×22=-41133.又l 与α所成角记为θ,即sin θ=|cos 〈n ,a 〉|=41133.2. 若直线l 的方向向量与平面α的法向量的夹角等于120°,则直线l 与平面α所成的角为________. 答案 30°解析 由题意得直线l 与平面α的法向量所在直线的夹角为60°,∴直线l 与平面α所成的角为90°-60°=30°.3. 从空间一点P 向二面角α—l —β的两个面α,β分别作垂线PE ,PF ,垂足分别为E ,F ,若二面角α—l —β的大小为60°,则∠EPF 的大小为__________.答案 60°或120°4. 如图所示,在空间直角坐标系中,有一棱长为a 的正方体ABCO —A ′B ′C ′D ′,A ′C 的中点E 与AB 的中点F 的距离为________. 答案22a 解析 由图易知A (a,0,0),B (a ,a,0),C (0,a,0),A ′(a,0,a ).∴F ⎝ ⎛⎭⎪⎫a ,a 2,0,E ⎝ ⎛⎭⎪⎫a 2,a 2,a2. ∴EF =⎝ ⎛⎭⎪⎫a -a 22+⎝ ⎛⎭⎪⎫a 2-a 22+⎝ ⎛⎭⎪⎫0-a 22 =a 24+a 24=22a .5. 在棱长为2的正方体ABCD —A 1B 1C 1D 1中,O 是底面ABCD 的中点,E ,F 分别是CC 1,AD 的中点,那么异面直线OE 和FD 1所成的角的余弦值等于________. 答案155解析 以D 为原点,分别以DA 、DC 、DD 1为x 轴、y 轴、z 轴建立空间直角坐标系,∴F (1,0,0),D 1(0,0,2),O (1,1,0),E (0,2,1), ∴FD 1→=(-1,0,2),OE →=(-1,1,1), ∴cos〈FD 1→,OE →〉=1+25·3=155.题型一 求异面直线所成的角例1 如图,已知正方体ABCD —A 1B 1C 1D 1的棱长为2,点E 是正方形BCC 1B 1的中心,点F 、G 分别是棱C 1D 1、AA 1的中点,设点E 1、G 1分别是点E 、G 在平面DCC 1D 1内的正投影. (1)证明:直线FG 1⊥平面FEE 1;(2)求异面直线E 1G 1与EA 所成角的正弦值.思维启迪:本题可方便地建立空间直角坐标系,通过点的坐标得到向量坐标,然后求解.(1)证明 以D 为原点,DD 1→、DC →、DA →分别为z 轴、y 轴、x 轴的正向,12|DD 1→|为1个单位长度建立空间直角坐标系.由题设知点E 、F 、G 1、E 1的坐标分别为(1,2,1),(0,1,2),(0,0,1),(0,2,1),∴FE 1→=(0,1,-1),FG 1→=(0,-1,-1),EE 1→=(-1,0,0), ∴FG 1→·EE 1→=0,FG 1→·FE 1→=0⇒FG 1→⊥EE 1→,FG 1→⊥FE 1→, 又∵EE 1∩FE 1=E 1.∴FG 1⊥平面FEE 1. (2)解 由题意知点A 的坐标为(2,0,0),又由(1)可知EA →=(1,-2,-1),E 1G 1→=(0,-2,0), ∴cos〈EA →,E 1G 1→〉=EA →·E 1G 1→|EA →|·|E 1G 1→|=63,∴sin〈EA →,E 1G 1→〉=1-cos 2〈EA →,E 1G 1→〉=33.探究提高 用向量方法求两条异面直线所成的角,是通过两条直线的方向向量的夹角来求解,而两异面直线所成角的范围是θ∈⎝⎛⎦⎥⎤0,π2,两向量的夹角α的范围是[0,π],所以要注意二者的区别与联系,应有cos θ=|cos α|.如图所示,在长方体ABCD —A 1B 1C 1D 1中,已知AB =4,AD =3,AA 1=2.E 、F 分别是线段AB 、BC 上的点,且EB =BF =1.求直线EC 1与FD 1所成的角的余弦值.解 以A 为原点,AB →、AD →、AA 1→分别为x 轴、y 轴、z 轴的正向建立空间直角坐标系,则有D 1(0,3,2),E (3,0,0),F (4,1,0),C 1(4,3,2),于是EC 1→=(1,3,2),FD 1→=(-4,2,2),设EC 1与FD 1所成的角为β,则: cos β=|EC 1→·FD 1→||EC 1→|·|FD 1→|=-+3×2+2×212+32+22×-2+22+22=2114, ∴直线EC 1与FD 1所成的角的余弦值为2114. 题型二 求直线与平面所成的角例2 如图,已知四棱锥P —ABCD 的底面为等腰梯形,AB ∥CD ,AC ⊥BD ,垂足为H ,PH 是四棱锥的高,E 为AD 的中点. (1)证明:PE ⊥BC ;(2)若∠APB =∠ADB =60°,求直线PA 与平面PEH 所成角的正弦值.思维启迪:平面的法向量是利用向量方法解决位置关系或夹角的关键,本题可通过建立坐标系,利用待定系数法求出平面PEH 的法向量.(1)证明 以H 为原点,HA ,HB ,HP 所在直线分别为x ,y ,z 轴,线段HA 的长为单位长度,建立空间直角坐标系(如图), 则A (1,0,0),B (0,1,0).设C (m,0,0),P (0,0,n ) (m <0,n >0),则D (0,m,0),E ⎝ ⎛⎭⎪⎫12,m 2,0.可得PE →=⎝ ⎛⎭⎪⎫12,m 2,-n ,BC →=(m ,-1,0).因为PE →·BC →=m 2-m2+0=0,所以PE ⊥BC .(2)解 由已知条件可得m =-33,n =1, 故C ⎝ ⎛⎭⎪⎫-33,0,0,D ⎝ ⎛⎭⎪⎫0,-33,0,E ⎝ ⎛⎭⎪⎫12,-36,0, P (0,0,1).设n =(x ,y ,z )为平面PEH 的法向量, 则⎩⎪⎨⎪⎧n ·HE →=0,n ·HP →=0,即⎩⎪⎨⎪⎧12x -36y =0,z =0.因此可以取n =(1,3,0).又PA →=(1,0,-1), 所以|cos 〈PA →,n 〉|=24.所以直线PA 与平面PEH 所成角的正弦值为24. 探究提高 利用向量法求线面角的方法:(1)分别求出斜线和它在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角);(2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角,取其余角就是斜线和平面所成的角.已知三棱锥P -ABC 中,PA ⊥平面ABC ,AB ⊥AC ,PA =AC =12AB ,N为AB 上一点,且AB =4AN ,M ,S 分别为PB ,BC 的中点. (1)证明:CM ⊥SN ;(2)求SN 与平面CMN 所成角的大小.(1)证明 设PA =1,以A 为原点,AB ,AC ,AP 所在直线分别为x ,y ,z 轴的正方向建立空间直角坐标系如图所示,则P (0,0,1),C (0,1,0),B (2,0,0),M (1,0,12),N (12,0,0),S (1,12,0).所以CM →=(1,-1,12),SN →=(-12,-12,0).因为CM →·SN →=-12+12+0=0,所以CM ⊥SN .(2)解 设平面CMN 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·CM →=x -y +12z =0n ·CN →=x ,y ,z ⎝ ⎛⎭⎪⎫12,-1,0=12x -y =0.∴y =12x ,z =-x ,取x =2,则n =(2,1,-2)为平面CMN 的一个法向量. ∴cos〈n ·SN →〉=n ·SN →|n |·|SN →|=,1,-⎝ ⎛⎭⎪⎫-12,-12,022+1+-2·⎝ ⎛⎭⎪⎫-122+⎝ ⎛⎭⎪⎫-122+02=-22.∴〈n ·SN →〉=135°,故SN 与平面CMN 所成角的大小为45°. 题型三 求二面角例3 (xx·广东)如图所示,在四棱锥P -ABCD 中,底面ABCD 为矩形,PA ⊥平面ABCD ,点E 在线段PC 上,PC ⊥平面BDE . (1)证明:BD ⊥平面PAC ;(2)若PA =1,AD =2,求二面角B -PC -A 的正切值.思维启迪:利用图中的PA ⊥平面ABCD 、ABCD 为矩形的条件建立空间直角坐标系,转化为向量问题.(1)证明 ∵PA ⊥平面ABCD ,BD ⊂平面ABCD , ∴PA ⊥BD .同理由PC ⊥平面BDE 可证得PC ⊥BD . 又PA ∩PC =P ,∴BD ⊥平面PAC . (2)解 如图,分别以射线AB ,AD ,AP 为x 轴,y 轴,z 轴的正半轴建立空间直角坐标系. 由(1)知BD ⊥平面PAC , 又AC ⊂平面PAC , ∴BD ⊥AC .故矩形ABCD 为正方形,∴AB =BC =CD =AD =2.∴A (0,0,0),B (2,0,0),C (2,2,0),D (0,2,0),P (0,0,1). ∴PB →=(2,0,-1),BC →=(0,2,0),BD →=(-2,2,0). 设平面PBC 的一个法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·PB →=0,n ·BC →=0,即⎩⎪⎨⎪⎧2·x +0·y -z =0,0·x +2·y +0·z =0,∴⎩⎪⎨⎪⎧z =2x ,y =0,取x =1得n =(1,0,2).∵BD ⊥平面PAC ,∴BD →=(-2,2,0)为平面PAC 的一个法向量. cos 〈n ,BD →〉=n ·BD →|n |·|BD →|=-1010.设二面角B -PC -A 的平面角为α,由图知0<α<π2,∴cos α=1010,sin α=1-cos 2α=31010. ∴tan α=sin αcos α=3,即二面角B -PC -A 的正切值为3.探究提高 求二面角最常用的方法就是分别求出二面角的两个面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角是锐角还是钝角.(xx·辽宁)如图,四边形ABCD 为正方形,PD ⊥平面ABCD ,PD ∥QA ,QA =AB =12PD .(1)证明:平面PQC ⊥平面DCQ ;(2)求二面角Q —BP —C 的余弦值.(1)证明 如图,以D 为坐标原点,线段DA 的长为单位长,以DA 、DP 、DC 所在直线为x 轴、y 轴、z 轴建立空间直角坐标系Dxyz .依题意有Q (1,1,0),C (0,0,1),P (0,2,0),则DQ →=(1,1,0),DC →=(0,0,1), PQ →=(1,-1,0).所以PQ →·DQ →=0,PQ →·DC →=0, 即PQ ⊥DQ ,PQ ⊥DC .又DQ ∩DC =D ,所以PQ ⊥平面DCQ . 又PQ ⊂平面PQC ,所以平面PQC ⊥平面DCQ .(2)解 依题意有B (1,0,1),CB →=(1,0,0),BP →=(-1,2,-1). 设n =(x ,y ,z )是平面PBC 的法向量, 则⎩⎪⎨⎪⎧n ·CB →=0,n ·BP →=0,即⎩⎪⎨⎪⎧x =0,-x +2y -z =0.因此可取n =(0,-1,-2).同理,设m 是平面PBQ 的法向量,则⎩⎪⎨⎪⎧m ·BP →=0,m ·PQ →=0,可取m =(1,1,1).所以cos 〈m ,n 〉=-155. 故二面角Q —BP —C 的余弦值为-155. 题型四 求空间距离例4 在三棱锥S —ABC 中,△ABC 是边长为4的正三角形,平面SAC ⊥平面ABC ,SA =SC =23,M 、N 分别为AB 、SB 的中点,如图所示. 求点B 到平面CMN 的距离.思维启迪:由平面SAC ⊥平面ABC ,SA =SC ,BA =BC ,可知本题可以取AC 中点O 为坐标原点,分别以OA ,OB ,OS 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系,用向量法求解.解 取AC 的中点O ,连接OS 、OB .∵SA =SC ,AB =BC , ∴AC ⊥SO ,AC ⊥BO .∵平面SAC ⊥平面ABC , 平面SAC ∩平面ABC =AC , ∴SO ⊥平面ABC ,又∵BO ⊂平面ABC ,∴SO ⊥BO .如图所示,分别以OA ,OB ,OS 所在直线为x 轴,y 轴,z 轴,建立空间直角坐标系Oxyz , 则B (0,23,0),C (-2,0,0),S (0,0,22),M (1,3,0),N (0,3,2).∴CM →=(3,3,0),MN →=(-1,0,2),MB →=(-1,3,0). 设n =(x ,y ,z )为平面CMN 的一个法向量, 则⎩⎪⎨⎪⎧CM →·n =3x +3y =0MN →·n =-x +2z =0,取z =1,则x =2,y =-6,∴n =(2,-6,1). ∴点B 到平面CMN 的距离d =|n ·MB →||n |=423.探究提高 点到平面的距离,利用向量法求解比较简单,它的理论基础仍出于几何法.如本题,事实上,作BH ⊥平面CMN 于H .由BH →=BM →+MH →及BH →·n =n ·BM →, ∴|BH →·n |=|n ·BM →|=|BH →|·|n |, ∴|BH →|=|n ·BM →||n |,即d =|n ·BM →||n |.(xx·大纲全国)已知正四棱柱ABCD -A 1B 1C 1D 1中,AB =2,CC 1=22,E 为CC 1的中点,则直线AC 1与平面BED 的距离为( ) A .2B. 3C. 2D .1答案 D解析 以D 为原点,DA 、DC 、DD 1所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系(如图),则D (0,0,0),A (2,0,0),B (2,2,0),C (0,2,0),C 1(0,2,22),E (0,2,2),易知AC 1∥平面BDE .设n =(x ,y ,z )是平面BDE 的法向量. 则⎩⎪⎨⎪⎧n ·BD →=2x +2y =0n ·DE →=2y +2z =0.取y =1,则n =(-1,1,-2)为平面BDE 的一个法向量. 又DA →=(2,0,0),∴点A 到平面BDE 的距离是 d =|n ·DA →||n |=|-1×2+0+0|-2+12+-22=1.故直线AC 1到平面BED 的距离为1.利用空间向量求角典例:(12分)如图,已知在长方体ABCD —A 1B 1C 1D 1中,AB =2,AA 1=1,直线BD 与平面AA 1B 1B 所成的角为30°,AE 垂直BD于点E ,F 为A 1B 1的中点.(1)求异面直线AE 与BF 所成角的余弦值;(2)求平面BDF 与平面AA 1B 所成二面角(锐角)的余弦值. 审题视角 (1)研究的几何体为长方体,AB =2,AA 1=1. (2)所求的是异面直线所成的角和二面角. (3)可考虑用空间向量法求解. 规范解答解 (1)以A 为坐标原点,以AB ,AD ,AA 1所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系(如图所示).[2分]由于AB =2,BD 与平面AA 1B 1B 所成角为30°, 即∠ABD =30°,∴AD =233,[3分]∴A (0,0,0),B (2,0,0),D ⎝ ⎛⎭⎪⎫0,233,0,F (1,0,1).又AE ⊥BD ,故由平面几何知识得AE =1, 从而E ⎝ ⎛⎭⎪⎫12,32,0,[4分]因为AE →=⎝ ⎛⎭⎪⎫12,32,0,BF →=(-1,0,1),∴AE →·BF →=⎝ ⎛⎭⎪⎫12,32,0·(-1,0,1)=-12,|AE →|=1,|BF →|=2,[6分] 设AE 与BF 所成角为θ1,则cos θ1=|AE →·BF →||AE →||BF →|=⎪⎪⎪⎪⎪⎪-121×2=24.[8分]故异面直线AE 与BF 所成角的余弦值为24. (2)设平面BDF 的法向量为n =(x ,y ,z ), 由⎩⎪⎨⎪⎧n ·BF →=0n ·BD →=0,得⎩⎪⎨⎪⎧-x +z =0-2x +233y =0,∴z =x ,y =3x ,取x =1,得n =(1,3,1).[10分] 求得平面AA 1B 的一个法向量为m =AD →=⎝ ⎛⎭⎪⎫0,233,0. 设平面BDF 与平面AA 1B 所成二面角的大小为θ2. 则cos θ2=|cos 〈m ,n 〉|=|m·n||m||n |=|0+2+0|233×5=155.[12分]答题模板利用向量求空间角的步骤 第一步:建立空间直角坐标系. 第二步:确定点的坐标.第三步:求向量(直线的方向向量、平面的法向量)坐标. 第四步:计算向量的夹角(或函数值). 第五步:将向量夹角转化为所求的空间角.第六步:反思回顾.查看关键点、易错点和答题规范.温馨提醒 (1)利用向量求角是高考的热点,几乎每年必考,主要是突出向量的工具性作用.(2)本题易错点是在建立坐标系时不能明确指出坐标原点和坐标轴,导致建系不规范. (3)将向量的夹角转化成空间角时,要注意根据角的概念和图形特征进行转化,否则易错.方法与技巧1. 若利用向量求角,各类角都可以转化为向量的夹角来运算.(1)求两异面直线a 、b 的夹角θ,须求出它们的方向向量a ,b 的夹角,则cos θ=|cos 〈a ,b 〉|.(2)求直线l 与平面α所成的角θ可先求出平面α的法向量n 与直线l 的方向向量a 的夹角.则sin θ=|cos 〈n ,a 〉|.(3)求二面角α—l —β的大小θ,可先求出两个平面的法向量n 1,n 2所成的角,则θ=〈n 1,n 2〉或π-〈n 1,n 2〉.2. 求点到平面的距离,若用向量知识,则离不开以该点为端点的平面的斜线段. 失误与防范1. 利用向量求角,一定要注意将向量夹角转化为各空间角.因为向量夹角与各空间角的定义、范围不同.2. 求点到平面的距离,有时利用等积法求解可能更方便. 3. 求二面角要根据图形确定所求角是锐角还是钝角.A 组 专项基础训练 (时间:35分钟,满分:57分)一、选择题(每小题5分,共20分)1. 已知正方体ABCD —A 1B 1C 1D 1如图所示,则直线B 1D 和CD 1所成的角为( )A .60°B .45°C .30°D .90°答案 D解析 以A 为原点,AB 、AD 、AA 1所在直线分别为x ,y ,z 轴建立空间直角坐标系,设正方体边长为1,则射线CD 1、B 1D 的方向向量分别是CD 1→=(-1,0,1),B 1D →=(-1,1,-1),cos 〈CD 1→,B 1D →〉=1+0-12×3=0,∴两直线所成的角为90°.2. 在空间直角坐标系Oxyz 中,平面OAB 的一个法向量为n =(2,-2,1),已知点P (-1,3,2),则点P 到平面OAB 的距离d 等于( )A .4B .2C .3D .1答案 B解析 P 点到平面OAB 的距离为 d =|OP →·n||n |=|-2-6+2|9=2,故选B.3. 如图所示,已知正方体ABCD —A 1B 1C 1D 1,E 、F 分别是正方形A 1B 1C 1D 1和ADD 1A 1的中心,则EF 和CD 所成的角是( )A .60°B .45°C .30°D .90°答案 B解析 以D 为原点,分别以射线DA 、DC 、DD 1为x 轴、y 轴、z 轴的非负半轴建立空间直角坐标系Dxyz ,设正方体的棱长为1,则D (0,0,0),C (0,1,0),E ⎝ ⎛⎭⎪⎫12,12,1,F ⎝ ⎛⎭⎪⎫12,0,12,EF →=⎝⎛⎭⎪⎫0,-12,-12,DC →=(0,1,0),∴cos〈EF →,DC →〉=EF →·DC →|EF →||DC →|=-22,∴〈EF →,DC →〉=135°,∴异面直线EF 和CD 所成的角是45°.提醒 两异面直线的方向向量的夹角与异面直线所成的角相等或互补.4. 在正方体ABCD —A 1B 1C 1D 1中,点E 为BB 1的中点,则平面A 1ED 与平面ABCD 所成的锐二面角的余弦值为( )A.12B.23C.33D.22答案 B解析 以A 为原点建立如图所示的空间直角坐标系Axyz ,设棱长为1, 则A 1(0,0,1),E ⎝ ⎛⎭⎪⎫1,0,12,D (0,1,0),∴A 1D →=(0,1,-1),A 1E →=⎝ ⎛⎭⎪⎫1,0,-12,设平面A 1ED 的一个法向量为n 1=(1,y ,z ),则⎩⎪⎨⎪⎧y -z =0,1-12z =0, ∴⎩⎪⎨⎪⎧y =2,z =2.∴n 1=(1,2,2).∵平面ABCD 的一个法向量为n 2=(0,0,1),∴cos〈n 1,n 2〉=23×1=23.即所成的锐二面角的余弦值为23.二、填空题(每小题5分,共15分)5. 如图所示,在三棱柱ABC —A 1B 1C 1中,AA 1⊥底面ABC ,AB =BC =AA 1,∠ABC =90°,点E 、F 分别是棱AB 、BB 1的中点,则直线EF 和BC 1 所成的角是________. 答案 60°解析 以BC 为x 轴,BA 为y 轴,BB 1为z 轴,建立空间直角坐标系.设AB =BC =AA 1=2,则C 1(2,0,2),E (0,1,0),F (0,0,1), 则EF →=(0,-1,1),BC 1→=(2,0,2), ∴EF →·BC 1→=2, ∴cos〈EF →,BC 1→〉=22×22=12,∴EF 和BC 1所成的角为60°.6. 长方体ABCD —A 1B 1C 1D 1中,AB =AA 1=2,AD =1,E 为CC 1的中点,则异面直线BC 1与AE 所成角的余弦值为____________. 答案3010解析 建立坐标系如图, 则A (1,0,0),E (0,2,1),B (1,2,0),C 1(0,2,2),∴BC 1→=(-1,0,2),AE →=(-1,2,1),∴cos〈BC 1→,AE →〉=BC 1→·AE →|BC 1→||AE →|=3010. 7. 设正方体ABCD —A 1B 1C 1D 1的棱长为2,则点D 1到平面A 1BD 的距离是________.答案233解析 如图建立空间直角坐标系, 则D 1(0,0,2),A 1(2,0,2),D (0,0,0),B (2,2,0),∴D 1A 1→=(2,0,0),DA 1→=(2,0,2),DB →=(2,2,0),设平面A 1BD 的一个法向量n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·DA 1→=2x +2z =0n ·DB →=2x +2y =0.令x =1,则n =(1,-1,-1),∴点D 1到平面A 1BD 的距离d =|D 1A 1→·n ||n |=23=233.三、解答题(共22分)8. (10分)如图,四棱锥P —ABCD 中,PD ⊥平面ABCD ,PA 与平面ABD所成的角为60°,在四边形ABCD 中,∠ADC =∠DAB =90°,AB = 4,CD =1,AD =2.(1)建立适当的坐标系,并写出点B ,P 的坐标; (2)求异面直线PA 与BC 所成的角的余弦值.解 (1)建立如图空间直角坐标系,∵∠ADC =∠DAB =90°,AB =4,CD =1,AD =2, ∴A (2,0,0),C (0,1,0),B (2,4,0).由PD ⊥平面ABCD ,得∠PAD 为PA 与平面ABCD 所成的角, ∴∠PAD =60°.在Rt△PAD 中,由AD =2,得PD =23,∴P (0,0,23). (2)∵PA →=(2,0,-23),BC →=(-2,-3,0), ∴cos〈PA →,BC →〉 =-+-+-23413=-1313, ∴PA 与BC 所成的角的余弦值为1313.9. (12分)如图,在底面为直角梯形的四棱锥P —ABCD 中,AD ∥BC ,∠ABC =90°,PA ⊥平面ABCD ,PA =3,AD =2,AB =23,BC =6. (1)求证:BD ⊥平面PAC ; (2)求二面角P —BD —A 的大小.(1)证明 如图,建立空间直角坐标系,则A (0,0,0),B (23,0,0),C (23,6,0),D (0,2,0),P (0,0,3),∴AP →=(0,0,3),AC →=(23,6,0),BD →=(-23,2,0). ∴BD →·AP →=0,BD →·AC →=0.∴BD ⊥AP ,BD ⊥AC . 又∵PA ∩AC =A ,∴BD ⊥面PAC .(2)解 设平面ABD 的法向量为m =(0,0,1), 设平面PBD 的法向量为n =(x ,y ,z ), 则n ·BD →=0,n ·BP →=0.∵BP →=(-23,0,3),∴⎩⎨⎧-23x +2y =0,-23x +3z =0解得⎩⎪⎨⎪⎧y =3x ,z =233x .令x =3,则n =(3,3,2),∴cos〈m ,n 〉=m·n |m||n |=12.∴二面角P —BD —A 的大小为60°.B 组 专项能力提升 (时间:25分钟,满分:43分)一、选择题(每小题5分,共15分)1. 在正方体ABCD —A 1B 1C 1D 1中,M ,N 分别为棱AA 1和BB 1的中点,则sin 〈CM →,D 1N →〉的值为( )A.19 B.49 5 C.295D.23答案 B解析 设正方体的棱长为2,以D 为坐标原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴建立空间直角坐标系,可知CM →=(2,-2,1),D 1N →=(2,2,-1),cos 〈CM →,D 1N →〉=-19,sin 〈CM →,D 1N →〉=459.2. 在正三棱柱ABC —A 1B 1C 1中,AB =AA 1,则AC 1与平面BB 1C 1C 所成角的正弦值为( )A.22B.155C.64D.63答案 C 解析建立如图所示的空间直角坐标系,设AB =2,则C 1(3,1,0)、A (0,0,2),AC 1→=(3,1,-2),平面BB 1C 1C 的一个法向量为n =(1,0,0),所以AC 1与平面BB 1C 1C 所成角的正弦值为|AC 1→·n ||AC 1→||n |=38=64.故选C.3. 如图,设动点P 在棱长为1的正方体ABCD —A 1B 1C 1D 1的对角线BD 1上,记D 1PD 1B=λ.当∠APC 为钝角时,则λ的取值范围是( )A.⎝ ⎛⎭⎪⎫0,13 B.⎝ ⎛⎭⎪⎫0,12 C.⎝ ⎛⎭⎪⎫12,1D.⎝ ⎛⎭⎪⎫13,1 答案 D解析 由题设可知,以DA →、DC →、DD 1→为单位正交基底,建立如图所示的空间直角坐标系Dxyz ,则有A (1,0,0),B (1,1,0),C (0,1,0),D 1(0,0,1).由D 1B →=(1,1,-1)得D 1P →=λD 1B →=(λ,λ,-λ),所以PA →=PD 1→+D 1A →=(-λ,-λ,λ)+(1,0,-1)=(1-λ,-λ,λ-1), PC →=PD 1→+D 1C →=(-λ,-λ,λ)+(0,1,-1)=(-λ,1-λ,λ-1).显然∠APC 不是平角,所以∠APC 为钝角等价于 cos∠APC =cos 〈PA →,PC →〉=PA →·PC →|PA →||PC →|<0,这等价于PA →·PC →<0,即(1-λ)(-λ)+(-λ)(1-λ)+(λ-1)2=(λ-1)(3λ-1)<0,得13<λ<1.因此,λ的取值范围为⎝ ⎛⎭⎪⎫13,1. 二、填空题(每小题5分,共15分)4. (xx·陕西)如图所示,在空间直角坐标系中有直三棱柱ABC -A 1B 1C 1,CA =CC 1=2CB ,则直线BC 1与直线AB 1夹角的余弦值为________. 答案55解析 利用向量法求解. 不妨令CB =1,则CA =CC 1=2.可得O (0,0,0),B (0,0,1),C 1(0,2,0),A (2,0,0),B 1(0,2,1), ∴BC →1=(0,2,-1),AB →1=(-2,2,1),∴cos〈BC →1,AB →1〉=BC →1·AB →1|BC →1||AB →1|=4-15×9=15=55>0.∴BC →1与AB →1的夹角即为直线BC 1与直线AB 1的夹角, ∴直线BC 1与直线AB 1夹角的余弦值为55. 5. (xx·大纲全国)三棱柱ABC -A 1B 1C 1中,底面边长和侧棱长都相等,∠BAA 1=∠CAA 1=60°,则异面直线AB 1与BC 1所成角的余弦值为________. 答案66解析 连接A 1B 交AB 1于点O ,取A 1C 1的中点D ,连接B 1D 、DO . ∵O 、D 分别为A 1B 、A 1C 1的中点,∴OD ∥BC 1,∴∠DOB 1或其补角即为异面直线AB 1与BC 1所成的角. 设各棱长为a ,则DB 1=32a .∵∠A 1AB =60°,∴OB 1=AO =32a . 又∵BC 1→=BB 1→+BC →=AA 1→+AC →-AB →, ∴BC 1→2=(AA 1→+AC →-AB →)2=AA 1→2+2AA 1→·AC →+AC →2-2AA 1→·AB →-2AC →·AB →+AB →2 =a 2+2a 2cos 60°+a 2-2a 2cos 60°-2a 2cos 60°+a 2=2a 2, ∴|BC 1→|=2a . ∴OD =12BC 1=22a .在△DOB 1中,由余弦定理得cos∠DOB 1=⎝ ⎛⎭⎪⎫32a 2+⎝ ⎛⎭⎪⎫22a 2-⎝ ⎛⎭⎪⎫32a 22·32a ·22a =66, ∴AB 1与BC 1所成角的余弦值为66. 6. 在四面体P -ABC 中,PA ,PB ,PC 两两垂直,设PA =PB =PC =a ,则点P 到平面ABC 的距离为________. 答案33a解析 根据题意,可建立如图所示的空间直角坐标系Pxyz ,则P (0,0,0),A (a,0,0),B (0,a,0),C (0,0,a ).过点P 作PH ⊥平面ABC ,交平面ABC 于点H ,则PH 的长即为点P 到平面ABC 的距离.∵PA =PB =PC ,∴H 为△ABC 的外心. 又∵△ABC 为正三角形,∴H 为△ABC 的重心,可得H 点的坐标为⎝ ⎛⎭⎪⎫a 3,a 3,a3. ∴PH =⎝ ⎛⎭⎪⎫a 3-02+⎝ ⎛⎭⎪⎫a 3-02+⎝ ⎛⎭⎪⎫a 3-02=33a . ∴点P 到平面ABC 的距离为33a . 三、解答题7. (13分)(xx·北京)如图(1),在Rt△ABC 中,∠C =90°,BC =3,AC =6.D ,E 分别是AC ,AB 上的点,且DE ∥BC ,DE =2,将△ADE 沿DE 折起到△A 1DE 的位置,使A 1C ⊥CD ,如图(2).(1)求证:A 1C ⊥平面BCDE ;(2)若M 是A 1D 的中点,求CM 与平面A 1BE 所成角的大小; (3)线段BC 上是否存在点P ,使平面A 1DP 与平面A 1BE 垂直?说明理由.(1)证明 ∵AC ⊥BC ,DE ∥BC ,∴DE ⊥AC .∴DE ⊥A 1D ,DE ⊥CD ,∴DE ⊥平面A 1DC ,又A 1C ⊂平面A 1DC ,∴DE ⊥A 1C .又∵A 1C ⊥CD ,∴A 1C ⊥平面BCDE .(2)解 如图所示,以C 为坐标原点,建立空间直角坐标系C -xyz 则A 1(0,0,23),D (0,2,0),M (0,1,3),B (3,0,0),E (2,2,0).设平面A 1BE 的法向量为n =(x ,y ,z ),则n ·A 1B →=0,n ·BE →=0.又A 1B →=(3,0,-23),BE →=(-1,2,0), ∴⎩⎨⎧ 3x -23z =0,-x +2y =0.令y =1,则x =2,z =3,∴n =(2,1,3).设CM 与平面A 1BE 所成的角为θ.∵CM →=(0,1,3),∴sin θ=|cos 〈n ,CM →〉|=⎪⎪⎪⎪⎪⎪⎪⎪n ·CM →|n |·|CM →|=48×4=22. ∴CM 与平面A 1BE 所成角的大小为π4. (3)解 线段BC 上不存在点P ,使平面A 1DP 与平面A 1BE 垂直.理由如下: 假设这样的点P 存在,设其坐标为(p,0,0),其中p ∈[0,3].设平面A 1DP 的法向量为m =(x ′,y ′,z ′),则m ·A 1D →=0,m ·DP →=0.又A 1D →=(0,2,-23),DP →=(p ,-2,0), ∴⎩⎨⎧ 2y ′-23z ′=0,px ′-2y ′=0.令x ′=2,则y ′=p ,z ′=p 3, ∴m =⎝⎛⎭⎪⎫2,p ,p 3. 平面A 1DP ⊥平面A 1BE ,当且仅当m ·n =0, 即4+p +p =0.解得p =-2,与p ∈[0,3]矛盾. ∴线段BC 上不存在点P ,使平面A 1DP 与平面A 1BE 垂直.。