2013年高考文科数学福建卷word解析版
- 格式:doc
- 大小:6.70 MB
- 文档页数:11
2013年普通高等学校夏季招生全国统一考试数学文史类(福建卷)第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.答案:C解析:在复平面内,z =-1-2i 对应点的坐标为(-1,-2),故选C.2.答案:A解析:点(2,-1)在直线l :x +y -1=0上,而直线l 上的点的坐标不一定为(2,-1),故“x =2且y =-1”是“点P 在直线l 上”的充分而不必要条件.3.答案:C解析:由题知A ∩B ={1,3},故它的子集个数为22=4.4.答案:B解析:x 2-y 2=1的渐近线方程为y =±x ,顶点坐标为(±1,0),点(±1,0)到y =±x 的距离为2==. 5.答案:A解析:由f (0)=0可知函数图象经过原点.又f (-x )=f (x ),所以函数图象关于y 轴对称,故选A.6.答案:B解析:画出可行域如下图阴影部分所示.画出直线2x +y =0,并向可行域方向移动,当直线经过点(1,0)时,z 取最小值.当直线经过点(2,0)时,z 取最大值.故z max =2³2+0=4,z min =2³1+0=2.7.答案:D解析:∵2x +2y =1≥ ∴212⎛⎫ ⎪⎝⎭≥2x +y ,即2x +y ≤2-2. ∴x +y ≤-2.8.答案:B解析:若n =3,则输出S =7;若n =4,则输出S =15,符合题意.故选B.9.答案:B解析:∵f (x )的图象经过点⎛ ⎝⎭,∴sin θ又∵θ∈ππ,22⎛⎫- ⎪⎝⎭,∴π3θ=. ∴f (x )=πsin 23x ⎛⎫+ ⎪⎝⎭. 由题知g (x )=f (x -φ)=πsin 23x ϕ⎡⎤(-)+⎢⎥⎣⎦,又图象经过点⎛ ⎝⎭,∴g (0)=πsin 23ϕ⎛⎫-+= ⎪⎝⎭. 当5π6ϕ=时满足g (0)B. 10.答案:C解析:∵AC ²BD =-4³1+2³2=0,∴AC ⊥BD .S 四边形ABCD =12|AC ||BD |=152=. 11.答案:C 解析:123456762x +++++==, 021*******y +++++==, 122157n i ii n i i x y nx y b xnx ==-==-∑∑, 13a y bx =-=-,b ′=2021--=2>b ,a ′=-2<a . 12.答案:D解析:由函数极大值的概念知A 错误;因为函数f (x )的图象与f (-x )的图象关于y 轴对称,所以-x 0是f (-x )的极大值点.B 选项错误;因为f (x )的图象与-f (x )的图象关于x 轴对称,所以x 0是-f (x )的极小值点.故C 选项错误;因为f (x )的图象与-f (-x )的图象关于原点成中心对称,所以-x 0是-f (-x )的极小值点.故D 正确.第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在答题卡的相应位置.13.答案:-2解析:∵ππtan 144f ⎛⎫=-=-⎪⎝⎭,π4f f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭=f (-1)=2³(-1)3=-2. 14.答案:13 解析:由3a -1<0,得a <13. ∵0≤a ≤1,∴0≤a <13.根据几何概型知所求概率为11313=. 15.1解析:∵由y x +c )知直线的倾斜角为60°, ∴∠MF 1F 2=60°,∠MF 2F 1=30°.∴∠F 1MF 2=90°.∴MF 1=c ,MF 2.又MF 1+MF 2=2a ,∴c =2a ,即1e ==. 16.答案:①②③解析:①若y =x +1是从A 到B 的一个函数,且x ∈A ,则满足(ⅰ)B ={f (x )|x ∈A }.又f (x )=x +1是单调递增的,所以也满足(ⅱ);②若f (x )=92x -72时,满足(ⅰ)B ={f (x )|x ∈A },又f (x )=92x -72是单调递增的,所以也满足(ⅱ); ③若1tan π2y x ⎡⎤⎛⎫=- ⎪⎢⎥⎝⎭⎣⎦(0<x <1)时,满足(ⅰ)B ={f (x )|x ∈A }.又()1tan π2f x x ⎡⎤⎛⎫=- ⎪⎢⎥⎝⎭⎣⎦在(0,1)上是单调递增的,所以也满足(ⅱ).故填①②③.三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.17.解:(1)因为数列{an }的公差d =1,且1,a 1,a 3成等比数列,所以a 12=1³(a 1+2),即a 12-a 1-2=0,解得a 1=-1或a 1=2.(2)因为数列{a n }的公差d =1,且S 5>a 1a 9,所以5a 1+10>a 12+8a 1,即a 12+3a 1-10<0,解得-5<a 1<2.18.解法一:(1)在梯形ABCD 中,过点C 作CE ⊥AB ,垂足为E ,由已知得,四边形ADCE 为矩形,AE =CD =3,在Rt △BEC 中,由BC =5,CE =4,依勾股定理得BE =3,从而AB =6.又由PD ⊥平面ABCD 得,PD ⊥AD ,从而在Rt △PDA 中,由AD =4,∠PAD =60°,得PD =正视图如图所示:正视图(2)取PB 中点N ,连结MN ,CN .在△PAB 中,∵M 是PA 中点,∴MN ∥AB ,MN =12AB =3. 又CD ∥AB ,CD =3,∴MN ∥CD ,MN =CD .∴四边形MNCD 为平行四边形.∴DM ∥CN .又DM ⊄平面PBC ,CN ⊂平面PBC ,∴DM ∥平面PBC .(3)V D -PBC =V P -DBC =13S △DBC ²PD ,又S △DBC =6,PD =V D -PBC =解法二:(1)同解法一.(2)取AB 的中点E ,连结ME ,DE .在梯形ABCD 中,BE ∥CD ,且BE =CD ,∴四边形BCDE 为平行四边形.∴DE ∥BC .又DE ⊄平面PBC ,BC ⊂平面PBC ,∴DE ∥平面PBC .又在△PAB 中,ME ∥PB ,ME ⊄平面PBC ,PB ⊂平面PBC ,∴ME ∥平面PBC .又DE ∩ME =E ,∴平面DME ∥平面PBC .又DM ⊂平面DME ,∴DM ∥平面PBC .(3)同解法一.19.解:(1)由已知得,样本中有25周岁以上组工人60名,25周岁以下组工人40名.所以,样本中日平均生产件数不足60件的工人中,25周岁以上组工人有60³0.05=3(人),记为A 1,A 2,A 3;25周岁以下组工人有40³0.05=2(人),记为B 1,B 2.从中随机抽取2名工人,所有的可能结果共有10种,它们是:(A 1,A 2),(A 1,A 3),(A 2,A 3),(A 1,B 1),(A 1,B 2),(A 2,B 1),(A 2,B 2),(A 3,B 1),(A 3,B 2),(B 1,B 2).其中,至少有1名“25周岁以下组”工人的可能结果共有7种,它们是:(A 1,B 1),(A 1,B 2),(A 2,B 1),(A 2,B 2),(A 3,B 1),(A 3,B 2),(B 1,B 2).故所求的概率P =710. (2)由频率分布直方图可知,在抽取的100名工人中,“25周岁以上组”中的生产能手60³0.25=15(人),“25所以得K 2=n ad bc a b c d a c bd (-)(+)(+)(+)(+)=1001525154560403070⨯(⨯-⨯)⨯⨯⨯=2514≈1.79. 因为1.79<2.706,所以没有90%的把握认为“生产能手与工人所在的年龄组有关”.20.解:(1)抛物线y 2=4x 的准线l 的方程为x =-1.由点C 的纵坐标为2,得点C 的坐标为(1,2),所以点C 到准线l 的距离d =2,又|CO |所以|MN |== 2.(2)设C 200,4y y ⎛⎫ ⎪⎝⎭,则圆C 的方程为2204y x ⎛⎫- ⎪⎝⎭+(y -y 0)2=4016y +y 02,即x 2-202y x +y 2-2y 0y =0. 由x =-1,得y 2-2y 0y +1+202y =0,设M (-1,y 1),N (-1,y 2),则2220002012441240,21.2y y y y y y ⎧⎛⎫∆=-+=->⎪ ⎪⎪⎝⎭⎨⎪=+⎪⎩ 由|AF |2=|AM |²|AN |,得|y 1y 2|=4, 所以202y +1=4,解得0y =Δ>0. 所以圆心C 的坐标为32⎛ ⎝或3,2⎛ ⎝.从而|CO |2=334,|CO |,即圆C. 21. 解:(1)在△OMP 中,∠OPM =45°,OMOP=由余弦定理得,OM 2=OP 2+MP 2-2³OP ³MP ³cos 45°,得MP 2-4MP +3=0,解得MP =1或MP =3.(2)设∠POM =α,0°≤α≤60°,在△OMP 中,由正弦定理,得sin sin OM OP OPM OMP=∠∠, 所以OM =sin45sin 45OP α︒(︒+). 同理ON =sin45sin 75OP α︒(︒+). 故S △OMN =12³OM ³ON ³sin∠MON =221sin 454sin 45sin 75OP αα︒⨯(︒+)(︒+)=1sin 45sin 4530αα(︒+)(︒++︒)⎣⎦. 因为0°≤α≤60°,30°≤2α+30°≤150°,所以当α=30°时,sin(2α+30°)的最大值为1,此时△OMN 的面积取到最小值,即∠POM =30°时,△OMN的面积的最小值为8-22.解法一:(1)由f (x )=x -1+e x a ,得f ′(x )=1-e xa , 又曲线y =f (x )在点(1,f (1))处的切线平行于x 轴,得f ′(1)=0,即1-e a =0,解得a =e. (2)f ′(x )=1-e xa , ①当a ≤0时,f ′(x )>0,f (x )为(-∞,+∞)上的增函数,所以函数f (x )无极值.②当a >0时,令f ′(x )=0,得e x =a ,x =ln a .x ∈(-∞,ln a ),f ′(x )<0;x ∈(ln a ,+∞),f ′(x )>0,所以f (x )在(-∞,ln a )上单调递减,在(ln a ,+∞)上单调递增,故f (x )在x =ln a 处取得极小值,且极小值为f (ln a )=ln a ,无极大值.综上,当a ≤0时,函数f (x )无极值;当a >0时,f (x )在x =ln a 处取得极小值ln a ,无极大值.(3)当a =1时,f (x )=x -1+1ex . 令g (x )=f (x )-(kx -1)=(1-k )x +1e x , 则直线l :y =kx -1与曲线y =f (x )没有公共点,等价于方程g (x )=0在R 上没有实数解.假设k >1,此时g (0)=1>0,11111<01e k g k -⎛⎫=-+ ⎪-⎝⎭, 又函数g (x )的图象连续不断,由零点存在定理,可知g (x )=0在R 上至少有一解,与“方程g (x )=0在R 上没有实数解”矛盾,故k ≤1.又k =1时,g (x )=1e x>0,知方程g (x )=0在R 上没有实数解. 所以k 的最大值为1.解法二:(1)(2)同解法一.(3)当a =1时,f (x )=x -1+1e x. 直线l :y =kx -1与曲线y =f (x )没有公共点,等价于关于x 的方程kx -1=x -1+1e x 在R 上没有实数解,即关于x 的方程:(k -1)x =1e x(*) 在R 上没有实数解. ①当k =1时,方程(*)可化为10e x=,在R 上没有实数解. ②当k ≠1时,方程(*)化为11k -=x e x . 令g (x )=x e x ,则有g ′(x )=(1+x )e x.令g ′(x )=0,得x当x =-1时,g (x )min =e-,同时当x 趋于+∞时,g (x )趋于+∞, 从而g (x )的取值范围为1,e ⎡⎫-+∞⎪⎢⎣⎭. 所以当11k -∈1,e ⎛⎫-∞- ⎪⎝⎭时,方程(*)无实数解,解得k 的取值范围是(1-e,1). 综上①②,得k 的最大值为1.。
绝密★启用前2013年普通高等学校招生全国统一考试(福建卷)数学试题(文史类)第I 卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数的()12Z i i =--为虚数单位在复平面内对应的点位于模为A .第一象限B .第二象限C .第三象限D .第四象限2.设点(),,21:10P x y x y P l x y ==-+-=则“且”是“点在直线上”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件3.若集合{}{}=1,2,3=1,3,4A B ⋂,,则A B 的子集个数为A .2B .3C .4D .164.双曲线221x y -=的顶点到其渐近线的距离等于 A .12B .22C .1D .25.函数()()2ln 1f x x =+的图像大致是6.若变量,x y 满足约束条件21,20,x y x z x y y +≤⎧⎪≥=+⎨⎪≥⎩则的最大值和最小值分别为 A .43和 B .42和 C .32和 D .20和7.若221,x yx y +=+则的取值范围是A .[]0,2B .[]2,0-C .[]2,-+∞D .[],2-∞-8.阅读如图所示的程序框图,运行相应的程序,如果输入某个正整数n 后,()10,20,S n ∈输出的那么的值为A .3 B.4 C.5 D.69.将函数()()()sin 2122f x x ππθθϕϕ⎛⎫=+-<<> ⎪⎝⎭的图像向右平移个单位长度后得到函数()()()3,,02g x f x g x P ϕ⎛⎫⎪ ⎪⎝⎭的图像若的图像都经过点,,则的值可以是A .53π B .56π C .2π D .6π10.在四边形()()1,2,4,2,ABCD AC BD ==-中,则该四边形的面积为A .5B .25C .5D .1011.已知x y 与之间的几组数据如下表:x 1 2 3 4 5 6 y0 2 1 3 3 4假设根据上表数据所得线性回归直线方程为,y bx a =+若某同学根据上表()()1,02,2中的前两组数据和求得的直线方程为,y b x a '''=+则以下结论正确的是A .,b b a a ''>>B .,b b a a ''><C .,b b a a ''<>D .,b b a a ''<<12.设函数()()()000f x R x x f x ≠的定义域为,是的极大值点,以下结论一定正确的是A .()()0,x R f x f x ∀∈≤B .()0x f x --是的极小值点C .()0x f x -是-的极小值点D .()0x f x --是-的极小值点第II 卷(非选择题 共60分)二、填空题:本大题共4小题,每小题5分.13.已知函数()32,0,4tan ,0,2x x f x f f x x ππ⎧<⎛⎫⎪⎛⎫==⎨ ⎪ ⎪-≤≤⎝⎭⎝⎭⎪⎩则 .14.利用计算机产生01,10a a -<之间的均匀随机数则事件“3?发生的概率为 .15.椭圆2222:1(0)x y r a b a b+=>>的左、右焦点分别为122.F F c 、,焦距为若直线)12212,y x c M MF F MF F =+∠=∠与椭圆r 的一个交点满足则该椭圆的离心率等于 .16.设S ,T 是R 的两个非空子集,如果存在一个从S 到T 的函数()y f x =满足: (i ){}();T f x x S =∈(ii )对任意121212,,()(),x x S x x f x f x ∈<<当时,恒有 那么称这两个集合“保序同构”,现给出以下3对集合: ①,;A N B N *==②{}{}13,810;A x x B x x =-≤≤=-≤≤ ③{}01,.A x x B R =≤≤=其中,“保序同构”的集合对的序号是_______。
绝密★启用前2013年普通高等学校招生全国统一考试(福建卷)数学试题(文史类)第I 卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数的()12Z i i =--为虚数单位在复平面内对应的点位于模为 A .第一象限 B .第二象限 C .第三象限 D .第四象限2.设点(),,21:10P x y x y P l x y ==-+-=则“且”是“点在直线上”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件3.若集合{}{}=1,2,3=1,3,4A B ⋂,,则A B 的子集个数为A .2B .3C .4D .164.双曲线221x y -=的顶点到其渐近线的距离等于 A .12B .22C .1D .2 5.函数()()2ln 1f x x =+的图像大致是 6.若变量,x y 满足约束条件21,20,x y x z x y y +≤⎧⎪≥=+⎨⎪≥⎩则的最大值和最小值分别为 A .43和 B .42和 C .32和 D .20和7.若221,x yx y +=+则的取值范围是 A .[]0,2 B .[]2,0- C .[]2,-+∞ D .[],2-∞-8.阅读如图所示的程序框图,运行相应的程序,如果输入某个正整数n 后,()10,20,S n ∈输出的那么的值为A .3 B.4 C.5 D.69.将函数()()()sin 2122f x x ππθθϕϕ⎛⎫=+-<<> ⎪⎝⎭的图像向右平移个单位长度后得到函数()()()3,,02g x f xg x P ϕ⎛⎫ ⎪ ⎪⎝⎭的图像若的图像都经过点,,则的值可以是A .53πB .56πC .2πD .6π 10.在四边形()()1,2,4,2,ABCD AC BD ==-中,则该四边形的面积为A .5B .25C .5D .1011.已知x y 与之间的几组数据如下表:1 2 3 4 5 6 0 2 1 3 3 4 假设根据上表数据所得线性回归直线方程为,y bx a =+若某同学根据上表()()1,02,2中的前两组数据和求得的直线方程为,y b x a '''=+则以下结论正确的是A .,b b a a ''>>B .,b b a a ''><C .,b b a a ''<>D .,b b a a ''<<12.设函数()()()000f x R x x f x ≠的定义域为,是的极大值点,以下结论一定正确的是A .()()0,x R f x f x ∀∈≤B .()0x f x --是的极小值点C .()0x f x -是-的极小值点D .()0x f x --是-的极小值点第II 卷(非选择题 共60分)二、填空题:本大题共4小题,每小题5分.13.已知函数()32,0,4tan ,0,2x x f x f f x x ππ⎧<⎛⎫⎪⎛⎫==⎨ ⎪ ⎪-≤≤⎝⎭⎝⎭⎪⎩则 . 14.利用计算机产生01,10a a -<之间的均匀随机数则事件“3?发生的概率为 . 15.椭圆2222:1(0)x y r a b a b+=>>的左、右焦点分别为122.F F c 、,焦距为 若直线()122132,y x c M MF F MF F =+∠=∠与椭圆r 的一个交点满足则该椭圆的离心率等于 .16.设S ,T 是R 的两个非空子集,如果存在一个从S 到T 的函数()y f x =满足:(i ){}();T f x x S =∈(ii )对任意121212,,()(),x x S x x f x f x ∈<<当时,恒有那么称这两个集合“保序同构”,现给出以下3对集合:①,;A N B N *==②{}{}13,810;A x x B x x =-≤≤=-≤≤③{}01,.A x x B R =≤≤=其中,“保序同构”的集合对的序号是_______。
2013年福建省高考数学试卷(文科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.2.(5分)(2013•福建)设点P(x,y),则“x=2且y=﹣1”是“点P在直线l:x+y﹣1=0上”22B所以所求的距离为=2B6.(5分)(2013•福建)若变量x,y满足约束条件,则z=2x+y的最大值和最小解:满足约束条件x y,,即8.(5分)(2013•福建)阅读如图所示的程序框图,运行相应的程序,如果输入某个正整数n后,输出的S∈(10,20),那么n的值为()9.(5分)(2013•福建)将函数f(x)=sin(2x+θ)()的图象向右平移φ(φ>1)个单位长度后得到函数g(x)的图象,若f(x),g(x)的图象都经过点P(),则φ的值可以是()B,解:函数,,﹣﹣,所以+,.10.(5分)(2013•福建)在四边形ABCD中,=(1,2),=(﹣4,2),则该四边形B中,,的对角线互相垂直,又该四边形的面积:假设根据上表数据所得线性回归直线方程为=x+中的前两组数据(1,0)和(2,2)求>b′,>a′B>b′,<a′<b′,>a′<b′,<a′,,进而可得,和,进而可得,再由直线方程的求法可得==,=,×××==,=﹣×==2比较可得,12.(5分)(2013•福建)设函数f(x)的定义域为R,x0(x0≠0)是f(x)的极大值点,二、填空题:本大题共4小题,每小题4分.13.(4分)(2013•福建)已知函数f(x)=,则f(f())=﹣2.()的值,然后求解解:因为)=14.(4分)(2013•福建)利用计算机产生0~1之间的均匀随机数a,则事件“3a﹣1>0”发生的概率为.>=故答案为:.15.(4分)(2013•福建)椭圆Γ:=1(a>b>0)的左右焦点分别为F1,F2,焦距为2c,若直线y=与椭圆Γ的一个交点M满足∠MF1F2=2∠MF2F1,则该椭圆的离心率等于.可知斜率为可得进而与斜率有关系,,则,解得故答案为16.(4分)(2013•福建)设S,T是R的两个非空子集,如果存在一个从S到T的函数y=f (x)满足:(i)T={f(x)|x∈S};(ii)对任意x1,x2∈S,当x1<x2时,恒有f(x1)<f(x2),那么称这两个集合“保序同构”,现给出以下3对集合:①A=N,B=N*;②A={x|﹣1≤x≤3},B={x|﹣8≤x≤10};③A={x|0<x<1},B=R.其中,“保序同构”的集合对的序号是①②③.(写出“保序同构”的集合对的序号).中的两个集合,可取函数三、解答题:本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤.17.(12分)(2013•福建)已知等差数列{a n}的公差d=1,前n项和为S n.(Ⅰ)若1,a1,a3成等比数列,求a1;(Ⅱ)若S5>a1a9,求a1的取值范围.18.(12分)(2013•福建)如图,在四棱锥P﹣ABCD中,PD⊥平面ABCD,AB∥DC,AB⊥AD,BC=5,DC=3,AD=4,∠PAD=60°.(Ⅰ)当正视方向与向量的方向相同时,画出四棱锥P﹣ABCD的正视图(要求标出尺寸,并写出演算过程);(Ⅱ)若M为PA的中点,求证:DM∥平面PBC;(Ⅲ)求三棱锥D﹣PBC的体积.=PD==4平行且等于平行且等于S([﹣]=8.19.(12分)(2013•福建)某工厂有25周岁以上(含25周岁)工人300名,25周岁以下工人200名.为研究工人的日平均生产量是否与年龄有关,现采用分层抽样的方法,从中抽取了100名工人,先统计了他们某月的日平均生产件数,然后按工人年龄在“25周岁以上(含25周岁)”和“25周岁以下”分为两组,再将两组工人的日平均生产件数分为5组:[50,60),[60,70),[70,80),[80,90),[90,100)分别加以统计,得到如图所示的频率分布直方(Ⅰ)从样本中日平均生产件数不足60件的工人中随机抽取2人,求至少抽到一名“25周岁以下组”工人的概率;(Ⅱ)规定日平均生产件数不少于80件者为“生产能手”,请你根据已知条件完成列联表,并判断是否有90%的把握认为“生产能手与工人所在的年龄组有关”?附:(注:此公式也可以写成k2=)×=60×名工人所有可能的结果共工人的结果共故所求的概率为:;=20.(12分)(2013•福建)如图,抛物线E:y2=4x的焦点为F,准线l与x轴的交点为A.点C在抛物线E上,以C为圆心,|CO|为半径作圆,设圆C与准线l交于不同的两点M,N.(Ⅰ)若点C的纵坐标为2,求|MN|;(Ⅱ)若|AF|2=|AM|•|AN|,求圆C的半径.(|OC|=|MN|=2(﹣+y y+1+=4,.的半径为21.(12分)(2013•福建)如图,在等腰直角△OPQ中,∠POQ=90°,OP=2,点M在线段PQ上,(Ⅰ)若OM=,求PM的长;(Ⅱ)若点N在线段MQ上,且∠MON=30°,问:当∠POM取何值时,△OMN的面积最小?并求出面积的最小值.OM=OP=2OM=OP=2由正弦定理可得:OM=ON==的面积最小,面积的最小值22.(14分)(2013•福建)已知函数f(x)=x﹣1+(a∈R,e为自然对数的底数).(Ⅰ)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求a的值;(Ⅱ)求函数f(x)的极值;(Ⅲ)当a=1时,若直线l:y=kx﹣1与曲线y=f(x)没有公共点,求k的最大值.,则直线1+﹣=01+x+(。
2013年福建省高考数学试卷(文科)
一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.复数的Z=﹣1﹣2i(i为虚数单位)在复平面内对应的点位于()
A.第一象限B.第二象限C.第三象限D.第四象限
【答案】C
【解析】Z=﹣1﹣2i在复平面内对应的点(﹣1,﹣2)位于第三象限.
故选:C.
2.设点P(x,y),则“x=2且y=﹣1”是“点P在直线l:x+y﹣1=0上”的()A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件
【答案】A
【解析】∵x=2且y=﹣1”可以得到“点P在直线l:x+y﹣1=0上”,
当“点P在直线l:x+y﹣1=0上”时,不一定得到x=2且y=﹣1,
∴“x=2且y=﹣1”是“点P在直线l:x+y﹣1=0上”的充分不必要条件,
故选:A.
3.若集合A={1,2,3},B={1,3,4},则A∩B的子集个数为()
A.2B.3C.4D.16
【答案】C
【解析】∵A={1,2,3},B={1,3,4},∴A∩B={1,3},
则A∩B的子集个数为22=4.故选:C.
4.双曲线x2﹣y2=1的顶点到其渐近线的距离等于()
A.B.C.1D.
【答案】B
【解析】双曲线x2﹣y2=1的顶点坐标(1,0),其渐近线方程为y=±x,
所以所求的距离为=.故选:B.
5.函数f(x)=ln(x2+1)的图象大致是()。
2013年普通高等学校招生全国统一考试(福建卷)数学(文科)第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项符合题目要求. (1)【2013年福建,文1】复数12i z =--(i 为虚数单位)在复平面内对应的点位于( )(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限 【答案】C【解析】在复平面内,12i z =--对应点的坐标为(12)--,,故选C . (2)【2013年福建,文2】设点(,)P x y ,则“2x =且1y =-”是“点P 在直线:10l x y ++=上”的( )(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件 【答案】A【解析】点(2,-1)在直线l :x +y -1=0上,而直线l 上的点的坐标不一定为(2,-1),故“x =2且y =-1”是“点P 在直线l 上”的充分而不必要条件,故选A .(3)【2013年福建,文3】若集合{1,2,3},{1,3,4}A B ==,则A B 的子集个数为( )(A )2 (B )3 (C )4 (D )16【答案】C 【解析】由题知{}1,3AB =,故它的子集个数为224=,故选C .(4)【2013年福建,文4】双曲线221x y -=的顶点到其渐近线的距离等于( )(A )12(B(C )1 (D【答案】B【解析】221x y -=的渐近线方程为y x =±,顶点坐标为()1,0±,点()1,0±到y x =±==, 故选B .(5)【2013年福建,文5】函数2()ln(1)f x x =+的图象大致是( )(A ) (B ) (C ) (D ) 【答案】A【解析】由()00f =可知函数图象经过原点.又()()f x f x -=,所以函数图象关于y 轴对称,故选A . (6)【2013年福建,文6】若变量,x y 满足约束条件210x y x y +≤⎧⎪≥⎨⎪≥⎩,则2z x y =+的最大值和最小值分别为( ) (A )4和3 (B )4和2 (C )3和2 (D )2和0 【答案】B【解析】画出可行域如下图阴影部分所示.画出直线20x y =+,并向可行域方向移动,当直线经过点()1,0时,z 取最小值.当直线经过点()2,0时,z 取最大值.故2204max z =⨯=+,2102min z =⨯=+,故选B .(7)【2013年福建,文7】若221x y +=,则x y +的取值范围是( )(A )[0,2] (B )[2,0]- (C )[2,)-+∞ (D )(,2]-∞- 【答案】D【解析】∵221xy=≥+,∴2221x y ⎛⎫⎪≥⎝⎭+,即222x y -≤+.∴2x y ≤-+,故选D .(8)【2013年福建,文8】阅读如图所示的程序框图,运行相应的程序,如果输入某个正整数n 后,输出的()10,20S ∈,那么n 的值为( )(A )3 (B )4 (C )5 (D )6 【答案】B【解析】若3n =,则输出7S =;若4n =,则输出15S =,符合题意,故选B .(9)【2013年福建,文9】将函数()sin(2)()22f x x ππθθ=+-<<的图象向右平移(0)ϕϕ>个单位长度后得到函数()g x 的图象,若()(),f x g x的图象都经过点P ,则ϕ的值可以是( )(A )53π (B )56π (C )2π (D )6π【答案】B【解析】∵()f x的图象经过点⎛ ⎝⎭,∴sin θππ,22θ⎛⎫- ⎪⎝⎭∈,∴π3θ=.∴()πsin 23f x =x ⎛⎫+ ⎪⎝⎭. 由题知()π()sin 23g x f x x ϕϕ⎡⎤(-)+⎢⎥⎣=-⎦=,又图象经过点⎛ ⎝⎭,∴()π0=sin 23g ϕ⎛⎫-+= ⎪⎝⎭. 当5π6ϕ=时满足()0g =,故选B .(10)【2013年福建,文10】在四边形ABCD 中,(1,2),(4,2)AC BD ==-,则该四边形的面积为( ) (A(B) (C )5 (D )10 【答案】C【解析】∵41220AC BD ⋅=⨯+⨯=·41220BD =-⨯⨯=+,∴AC BD ⊥.12152ABCD S AC BD ===四边形,故选C .(11)【2013年福建,文11】已知x 与y 之间的几组数据如下表:假设根据上表数据所得线性回归直线方程为ˆˆˆybx a =+.若某同学根据上表中前两组数据(1,0)和(2,2)求得的直线方程为y b x a ''=+,则以下结论正确的是( )(A )ˆˆ,bb a a ''>> (B )ˆˆ,b b a a ''>< (C )ˆˆ,b b a a ''<> (D )ˆˆ,b b a a ''<< 【答案】C【解析】123456762x +++++==,0213341366y +++++==,122157ni i i nii x y nxyb xnx ==-==-∑∑,13a y bx =-=-, 20221b b -=>-'=,2a a '=-<,故选C . (12)【2013年福建,文12】设函数()f x 的定义域为R ,00(0)x x ≠是()f x 的极大值点,以下结论一定正确的是( )(A )0,()()x R f x f x ∀∈≤ (B )0x -是()f x -的极小值点 (C )0x -是()f x -的极小值点 (D )0x -是()f x --的极小值点 【答案】D【解析】由函数极大值的概念知A 错误;因为函数()f x 的图象与()f x -的图象关于y 轴对称,所以0x -是()f x -的极大值点.B 选项错误;因为()f x 的图象与()f x -的图象关于x 轴对称,所以0x 是()f x -的极小值点.故C 选项错误;因为()f x 的图象与()f x --的图象关于原点成中心对称,所以0x -是()f x --的极小值点,故选D .第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在答题卡的相应位置. (13)【2013年福建,文13】已知函数32,0()tan ,02x x f x x x π⎧<⎪=⎨-≤<⎪⎩,则(())4f f π= .【答案】2-【解析】∵ππtan 144f ⎛⎫=-=- ⎪⎝⎭,3121π2()()4f f f =-=⨯⎛⎫⎛⎫ ⎪ ⎪⎝⎭-⎭=-⎝.(14)【2013年福建,文14】利用计算机产生0~1之间的均匀随机数a ,则事件“310a -<”发生的概率为 .【答案】13【解析】由310a -<,得13a <.∵01a ≤≤,∴013a ≤<.根据几何概型知所求概率为11313=.(15)【2013年福建,文15】椭圆2222:1(0)x y a b a bΓ+=>>的左、右焦点分别为12,F F ,焦距为2c .若直线l 与椭圆Γ的一个交点M 满足12212MF F MF F ∠=∠,则该椭圆的离心率等于 .1【解析】∵由)y x c =+知直线的倾斜角为60︒,∴1260MF F ∠=︒,2130MF F ∠=︒.∴1290F MF ∠=︒.∴1MF c =,2MF =.又122MF MF a =+,∴2c a =,即1e ==. (16)【2013年福建,文16】设,S T 是R 的两个非空子集,如果存在一个从S 到T 的函数()y f x =满足; (i ){()|}T f x x S =∈;(ii )对任意12,x x S ∈,当12x x <时,恒有12()()f x f x <.那么称这两个集合“保序同构”.现给出以下3对集合: ①*,A N B N ==;②{|13},{|810}A x x B x x =-≤≤=-≤≤; ③{|01},A x x B R =<<=.其中,“保序同构”的集合对的序号是 (写出所有“保序同构”的集合对的序号). 【答案】①②③【解析】①若1y x =+是从A 到B 的一个函数,且x A ∈,则满足(i )(){|}B f x x A =∈.又()1f x x =+是单调递增的,所以也满足(ii );②若()9722f x x =-时,满足(i )(){|}B f x x A =∈,又()9722f x x =-是单调递增的,所以也满足(ii )③若()11tan π02x y x ⎡⎤⎛⎫=- ⎪⎢⎥⎝⎦<⎣<⎭时,满足(i )(){|}B f x x A =∈.又()1tan π2f x x ⎡⎤⎛⎫=- ⎪⎢⎥⎝⎭⎣⎦在()0,1上是单调递增的,所以也满足(ii ).三、解答题:本大题共6题,共74分.解答应写出文字说明,演算步骤或证明过程. (17)【2013年福建,文17】(本小题满分12分)已知等差数列{}n a 的公差1d =,前n 项和为n S .(1)若131,,a a 成等比数列,求1a ; (2)若519S a a >,求1a 的取值范围.解:(1)因为数列{}n a 的公差1d =,且131,,a a 成等比数列,所以2111(2)a a =⨯+,即21120a a --=,解得11a =-或12a =.(2)因为数列{}n a 的公差1d =,且519S a a >,所以21115108a a a +>+;即2113100a a +-<,解得152a -<<.(18)【2013年福建,文18】(本小题满分12分)如图,在四棱锥P ABCD -中,PD ⊥面ABCD ,//AB DC ,AB AD ⊥,5BC =,3DC =,4AD =,60PAD ∠=︒.(1)当正视图方向与向量AD 的方向相同时,画出四棱锥P ABCD -的正视图.(要求标出尺寸,并画出演算过程);(2)若M 为PA 的中点,求证://DM 面PBC ; (3)求三棱锥D PBC -的体积. 解:(1)在梯形ABCD 中,过点C 作CE AB ⊥,垂足为E ,由已知得,四边形ADCE 为矩形,3AE CD ==,在Rt BEC ∆中,由5BC =,4CE =,依勾股定理得:3BE =,从而6AB =,又由PD ⊥平面ABCD 得,PD AD ⊥从而在Rt PDA ∆中,由4AD =,60PAD ∠=︒, 得43PD =,正视图如右图所示: (2)解法一:取PB 中点N ,连结MN ,CN ,在PAB ∆中,M 是PA 中点,∴//MN AB ,132MN AB ==,又//CD AB , 3CD =,∴MN CD ,MN CD =∴四边形MNCD 为平行四边形,∴//DM CN . 又DM ⊄平面PBC , CN ⊂平面PBC ,∴//DM 平面PBC . 解法二:取AB 的中点E ,连结ME ,DE ,在梯形ABCD 中,//BE CD ,且BE CD =,∴四边形BCDE 为平行四边形,∴//DE BC ,又DE ⊄平面PBC ,BC ⊂平面PBC , ∴//DE 平面PBC ,又在PAB ∆中,//ME PB ,ME ⊄平面PBC ,PB ⊂平面PBC , ∴//ME 平面PBC .又DE ME E =,∴平面//DME 平面PBC ,又DM ⊂平面DME , ∴//DM 平面PBC .(3)13D PBC P DBC DBC V V S PD --∆==⋅,又6PBC S ∆=,43PD =,所以83D PBC V -=.(19)【2013年福建,文19】(本小题满分12分)某工厂有25周岁以上(含25周岁)工人300名,25周岁以下工人200名.为研究工人的日平均生产量是否与年龄有关.现采用分层抽样的方法,从中抽取了100名工人,先统计了他们某月的日平均生产件数,然后按工人年龄在“25周岁以上(含25周岁)”和“25周岁以下”分为两组,在将两组工人的日平均生产件数分成5组:[)50,60,[)60,70,[)70,80,[)80,90,[)90,100分别加以统计,得到如图所示的频率分布直方图.25周岁以上组 25周岁以下组(1)从样本中日平均生产件数不足60件的工人中随机抽取2人,求至少抽到一名“25周岁以下组”工人的频率;(2)规定日平均生产件数不少于80件者为“生产能手”,请你根据已知条件完成22⨯的列联表,并判断是否有90%的把握认为“生产能手与工人所在的年龄组有关”? 附:22112212211212n n n n n n n n n χ++++()=解:(1)由已知得,样本中有25周岁以上组工人60名,25周岁以下组工人40名,所以,样本中日平均生产件数不足60件的工人中,25周岁以上组工人有600.053⨯=(人),记为1A ,2A ,3A ;25周岁以下组 工人有400.052⨯=(人),记为1B ,2B ,从中随机抽取2名工人,所有可能的结果共有10种,他们是: 12(,)A A ,13(,)A A ,23(,)A A ,11(,)A B ,12(,)A B ,21(,)A B ,22(,)A B ,31(,)A B ,32(,)A B ,12(,)B B ,其 中,至少有名“25周岁以下组”工人的可能结果共有7种,它们是:11(,)A B ,12(,)A B ,21(,)A B ,22(,)A B ,31(,)A B ,32(,)A B ,12(,)B B .故所求的概率:710P =.P (χ2≥k ) 0.100 0.050 0.010 0.001 k 2.706 3.841 6.635 10.828(2)由频率分布直方图可知,在抽取的100名工人中,“25周岁以上组”中的生产能手600.2515⨯=(人),“25周岁以下组”中的生产能手400.37515⨯=(人),据此可得22⨯列联表如下:生产能手 非生产能手 合计25周岁以上组15 45 60 25周岁以下组15 25 40 合计30 70 100 所以得:222()100(15251545)251.79()()()()6040307014n ad bc K a b c d a c b d -⨯⨯-⨯===≈++++⨯⨯⨯,因为1.79 2.706<,所以没有90%的把握认为“生产能手与工人所在的年龄组有关”.(20)【2013年福建,文20】(本小题满分12分)如图,在抛物线2:4E y x =的焦点为F ,准线l与x 轴的交点为A .点C 在抛物线E 上,以C 为圆心OC 为半径作圆,设圆C 与准线l 的交于不同的两点,M N .(1)若点C 的纵坐标为2,求MN ; (2)若2AF AM AN =⋅,求圆C 的半径.解:(1)抛物线24y x =的准线l 的方程为1x =-,由点C 的纵坐标为2,得点C 的坐标为(1,2)所以点C 到准线l 的距离2d =,又||5CO =.所以22||2||2542MN CO d =-=-=.(2)设200(,)4y C y ,则圆C 的方程为242220000()()416y y x y y y -+-=+,即22200202y x x y y y -+-=. 由1x =-,得22002102y y y y -++=,设1(1,)M y -,2(1,)N y -,则:222000201244(1)240212y y y y y y ⎧∆=-+=->⎪⎪⎨⎪=+⎪⎩, 由2||||||AF AM AN =⋅,得12||4y y =,所以20142y +=,解得06y =±,此时0∆>,所以圆心C 的坐标为3(,6)2或3(,6)2-从而233||4CO =,33||2CO =,即圆C 的半径为332.(21)【2013年福建,文21】(本小题满分12分)如图,在等腰直角三角形OPQ ∆中,90OPQ ∠=,22OP =,点M 在线段PQ 上.(1)若3OM =,求PM 的长;(2)若点N 在线段MQ 上,且30MON ∠=,问:当POM ∠取何值时,OMN ∆的面积最小?并求出面积的最小值.解:(1)在OMP ∆中,45OPM ∠=︒,5OM =,22OP =,由余弦定理得,2222cos45OM OP MP OP MP =+-⨯⨯⨯︒,得2430MP MP -+=,解得1MP =或3MP =.(2)设POM α∠=,060α︒≤≤︒,在OMP ∆中,由正弦定理得sin sin OM OP OPM OMP =∠∠,()sin 45sin 45OP OM α︒∴=︒+, 同理()sin 45sin 75OP ON α︒=︒+,故1sin 2OMN S OM ON MON ∆=⨯⨯⨯∠()()221sin 454sin 45sin 75OP αα︒=⨯︒+︒+()()1sin 45sin 4530αα=︒+︒++︒()()()131sin 45sin 45cos 4522ααα=⎡⎤︒+︒++︒+⎢⎥⎣⎦()()()2131sin 45sin 45cos 4522ααα=︒++︒+︒+()()1311cos 902sin 90244αα=-︒++︒+⎡⎤⎣⎦=因为060α︒≤≤︒,30230150α︒≤+︒≤︒,所以当30α=︒时,()sin 230α+︒的最大值为1,此时OMN ∆的面积取到最小值.即230POM ∠=︒时,OMN ∆的面积的最小值为8-(22)【2013年福建,文22】(本题满分14分)已知函数()1x af x x e=-+(a R ∈,e 为自然对数的底数).(1)若曲线()y f x =在点(1,(1))f 处的切线平行于x 轴,求a 的值; (2)求函数()f x 的极值;(3)当1a =的值时,若直线:1l y kx =-与曲线()y f x =没有公共点,求k 的最大值.解:(1)由()1x a f x x e =-+,得()1x af x e'=-.又曲线()y f x =在点()()1,1f 处的切线平行于x 轴,得()10f '=,即10ae-=,解得a e =.(2)()1x af x e'=-,①当0a ≤时,()0f x '>,()f x 为(),-∞+∞上的增函数,所以函数()f x 无极值.②当0a >时,令()0f x '=,得x e a =,ln x a =.(),ln x a ∈-∞,()0f x '<;()ln ,x a ∈+∞,()0f x '>. 所以()f x 在(),ln a -∞上单调递减,在()ln ,a +∞上单调递增,故()f x 在ln x a =处取得极小值,且极小值为()ln ln f a a =,无极大值.综上,当0a ≤时,函数()f x 无极小值;当0a >,()f x 在ln x a =处取得极小值ln a ,无极大值. (3)解法一:当1a =时,()11x f x x e =-+,令()()()()111xg x f x kx k x e =--=-+,则直线l :1y kx =-与曲线 ()y f x =没有公共点,等价于方程()0g x =在R 上没有实数解.假设1k >,此时()010g =>,1111101k g k e -⎛⎫=-+< ⎪-⎝⎭,又函数()g x 的图象连续不断,由零点存在定理,可知()0g x =在R 上至少有 一解,与“方程()0g x =在R 上没有实数解”矛盾,故1k ≤.又1k =时,()10x g x e=>,知方程()0g x = 在R 上没有实数解.所以k 的最大值为1. 解法二:当1a =时,()11x f x x e=-+.直线l :1y kx =-与曲线()y f x =没有公共点,等价于关于x 的方程111x kx x e -=-+在R 上没有实数解,即关于x 的方程:()11x k x e -=(*) 在R 上没有实数解.①当1k =时,方程(*)可化为10x e =,在R 上没有实数解.②当1k ≠时,方程(*)化为11x xe k =-.令()x g x xe =,则有()()1x g x x e '=+.令()0g x '=,得1x =-, 当x 变化时,()g x '的变化情况如下表:当1x =-时,()min1g x e =-,同时当x 趋于+∞时,()g x 趋于+∞,从而()g x 的取值范围为1,e ⎡⎫-+∞⎪⎢⎣⎭.所以当11,1k e⎛⎫∈-∞-⎪-⎝⎭时,方程(*)无实数解,解得k的取值范围是()1,1e-.综上,得k的最大值为1.。
2013年普通高等学校招生全国统一考试(福建卷)数学试题(文史类)第I 卷(选择题 共60分)一.选择题1.复数12i z =--(i 为虚数单位)在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限 【测量目标】复平面.【考查方式】通过复数对应点的坐标判断其在复平面内的象限位置. 【参考答案】C【试题解析】12i z =--在复平面内对应的点为(1,2)--,它位于第三象限. 2.设点),(y x P ,则“2=x 且1-=y ”是“点P 在直线01:=++y x l 上”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件 【测量目标】充分、必要条件.【考查方式】根据所给点与直线的位置关系条件判断充分条件与必要条件. 【参考答案】A【试题解析】当2x =且1y =-时,满足方程10x y +-=,即点(2,1)P -在直线l 上.(步骤1)点(0,1)P '在直线l 上,但不满足2x =且1y =,(步骤2)∴ “2x =且1y =-”是“点(,)P x y 在直线l 上”的充分而不必要条件.(步骤3) 3.若集合{1,2,3},{1,3,4}A B ==,则A B 的子集个数为( )A .2B .3C .4D .16 【测量目标】集合间的关系.【考查方式】直接给出集合,用列举法求出两集合的交集的子集. 【参考答案】C【试题解析】{}1,3A B = ,其子集有{}{}{},1,3,1,3∅,共4个. 4.双曲线122=-y x 的顶点到其渐近线的距离等于( )A .21B .22C .1D .2【测量目标】双曲线标准方程及其几何性质.【考查方式】根据所给双曲线的标准方程得到双曲线顶点坐标、渐近线的方程,再利用点到直线的距离公式求解.【参考答案】B【试题解析】双曲线221x y -=的顶点坐标为()1,0±,渐近线为y x =±,∴0x y ±=,(步骤1)∴顶点到渐近线的距离为2d ==.(步骤2) 5.函数()2()ln 1f x x =+的图象大致是( )A B C D第5题图 【测量目标】对数函数的图象.【考查方式】给出对数函数和图象,根据图象的特殊点、奇偶性以及对数函数的性质判定. 【参考答案】A【试题解析】2()ln(1)f x x =+,x ∈R ,当0x =时,(0)ln10f ==,即()f x 过点(0,0),排除B,D .(步骤1)∵22()ln ()1ln(1)()f x x x f x ⎡⎤-=-+=+=⎣⎦,∴()f x 是偶函数,其图象关于y 轴对称,故选A .(步骤2)6.若变量y x ,满足约束条件210x y x y +⎧⎪⎨⎪⎩≤≥≥,则y x z +=2的最大值和最小值分别为( )A .4和3B .4和2C .3和2D .2和0 【测量目标】二元线性规划求目标函数最值.【考查方式】给出不等式组,作出其表示的可行域、再通过平移图象求最优解. 【参考答案】B【试题解析】作出可行域,通过目标函数线的平移寻求最优解.作出可行域如图阴影部分.(步骤1)作直线20x y +=,并向右上平移,过点A 时z 取最小值,过点B 时z 取最大值,可求得(1,0),(2,0)A B , 第6题图∴min max 2,4z z ==.(步骤2)7.若122=+yx ,则y x +的取值范围是( )A .]2,0[B .]0,2[-C .),2[+∞-D .]2,(--∞ 【测量目标】基本不等式.【考查方式】考查了指数幂转化不等式,通过均值不等式的求解求取值范围. 【参考答案】D 【试题解析】利用基本不等式转化为关于x y +的不等式,求解不等式即可.∵2221x y x y ++=≥,∴1,∴21224x y+-=≤,∴2x y +-≤,即(](),2x y +∈-∞.8.阅读如图所示的程序框图,运行相应的程序,如果输入某个正整数n 后,输出的)20,10(∈S ,那么n 的值为( )A .3B .4C .5D .6 【测量目标】循环结构的程序框图. 【考查方式】根据所给程序框图读出其循环结构表示的求和功能,再用等比数列的求和公式求解. 第8题图 【参考答案】B【试题解析】先读出框图的计算功能,再结合等比数列求和公式求解.框图功能为求和,即1211222n S -=++++ .(步骤1)由于()()1122110,2012nn S ⨯-==-∈-,∴102120n <-<,∴11221n <<,∴4n =,即求前4项和.∴判断框内的条件为4k >,即4n =.(步骤2)9.将函数ππ()sin(2)22f x x θθ⎛⎫=+-<< ⎪⎝⎭的图象向右平移)0(>ϕϕ个单位长度后得到函数)(x g 的图象,若)(),(x g x f的图象都经过点0,2P ⎛ ⎝⎭,则ϕ的值可以是( )A .5π3 B .5π6 C .π2 D .π6【测量目标】三角函数的图象和性质.【考查方式】给出三角函数,根据所给的点求得函数中的字母,再将点代入平移后得到的函数求ϕ值.【参考答案】B【试题解析】先求出解析式中的字母的取值,再利用代入法确定答案.∵30,2P ⎛⎫⎪⎝⎭在()f x的图象上,∴(0)sin 2f θ==.(步骤1)∵ππ,22θ⎛⎫∈- ⎪⎝⎭,∴π3θ=,∴π()sin 23f x x ⎛⎫=+ ⎪⎝⎭,∴π()sin 2()3g x x ϕ⎡⎤=-+⎢⎥⎣⎦.(步骤2)∵(0)2g =,∴ππ54sin 2sin πsin π3333ϕ⎛⎫⎛⎫⎛⎫-=-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(步骤3) 10.在四边形ABCD 中,(1,2),(4,2)AC BD ==-,则该四边形的面积为( )A .5B .52C .5D .10 【测量目标】平面向量的应用.【考查方式】通过平面向量的坐标运算进行向量的垂直证明进而求解四边形面积. 【参考答案】C【试题解析】先利用向量的数量积证明四边形的对角线垂直,再求面积.∵(1,2)(4,2)440AC BD =-=-+=,∴AC BD ⊥ ,∴11522ABCD S AC BD ===四边形.11.已知x 与y 之间的几组数据如下表:假设根据上表数据所得线性回归直线方程为a x b y ˆˆˆ+=.若某同学根据上表中前两组数据)0,1(和)2,2(求得的直线方程为a x b y '+'=,则以下结论正确的是( )A .a a b b'>'>ˆ,ˆ B .a a b b '<'>ˆ,ˆ C .a a b b '>'<ˆ,ˆ D .a a b b '<'<ˆ,ˆ 【测量目标】线性回归方程.【考查方式】给出x 与y 的几组数据,求出直线方程和y 对x 的线性回归方程,再比较其系数大小.【参考答案】C【试题解析】根据所给数据求出直线方程y b x a ''=+和回归直线方程的系数,并比较系数大小.由(1,0),(2,2)求,b a ''.20221b -'==-,0212a '=-⨯=-.(步骤1) 求 ,b a 时,6104312152458i ii x y ==+++++=∑,133.5,6x y ==,62114916253691ii x ==+++++=∑,∴213586 3.556916 3.57b -⨯⨯==-⨯ ,13513513.567623a =-⨯=-=-,(步骤2)∴ ,b b a a ''<> .(步骤3)12.设函数)(x f 的定义域为R ,)0(00≠x x 是)(x f 的极大值点,以下结论一定正确的是( )A .0,()()x f x f x ∀∈R ≤B .0x -是)(x f -的极小值点C .0x -是)(x f -的极小值点D .0x -是)(x f --的极小值点 【测量目标】利用导数研究函数的极值问题.【考查方式】列出符合题目所给条件函数,通过导数求解函数的极值判定正确的选项. 【参考答案】D【试题解析】不妨取函数3()3f x x x =-,则()3(1)(1)f x x x '=-+,易判断01x =-为()f x 的极大值点,但显然0()f x 不是最大值,故排除A ;(步骤1)因为3()3,()3(1)(1)f x x x f x x x '-=-+-=-+-,易知,01x -=为()f x -的极大值点,故排除B ;(步骤2)又[]3()3,()3(1)(1)f x x x f x x x '-=-+-=-+-,易知,01x -=为()f x -的极大值点,故排除C ;(步骤3)∵()f x --的图象与()f x 的图象关于原点对称,由函数图象的对称性可得0x -应为函数()f x --的极小值点.故D 正确.(步骤4) 二.填空题13.已知函数32,0()πtan ,02x x f x x x ⎧<⎪=⎨-<⎪⎩≤,则π4f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭【测量目标】分段函数求值.【考查方式】分段函数的函数值及正切函数值的求解. 【参考答案】2- 【试题解析】∵ππ0,42⎡⎫∈⎪⎢⎣⎭,∴ππtan 144f ⎛⎫=-=- ⎪⎝⎭,(步骤1) ∴3π(1)2(1)24f f f ⎛⎫⎛⎫=-=⨯-=-⎪ ⎪⎝⎭⎝⎭.(步骤2) 14.利用计算机产生1~0之间的均匀随机数a ,则事件“013<-a ”发生的概率为【测量目标】几何概型.【考查方式】给出不等式,选择区间长度为测度求解几何概型. 【参考答案】31【试题解析】选择区间长度为测度求解几何概型.已知01a ≤≤,事件“310a -<”发生时,103a <<,取区间长度为测度,由几何概型得其概率为13P =. 15.椭圆)0(1:2222>>=+Γb a by a x 的左、右焦点分别为21,F F ,焦距为c 2.若直线)y x c +与椭圆Γ的一个交点M 满足12212F MF F MF ∠=∠,则该椭圆的离心率等于【测量目标】椭圆的简单几何性质,椭圆的离心率.【考查方式】利用几何图形寻求字母之间的关系,进一步求解离心率. 【参考答案】13-【试题解析】已知12(,0),(,0)F c F c -,直线)y x c +过点1F ,1260MF F ∠= .(步骤1)∵21121302MF F MF F ∠=∠= ,∴1290F MF ∠= ,∴12,MF c MF ==(步骤2).由椭圆定义知122MF MF c a +==,∴离心率1c e a ===.(步骤3)16.设,S T 是R 的两个非空子集,如果存在一个从S 到T 的函数)(x f y =满足;(i ){()|}T f x x S =∈;(ii )对任意12,x x S ∈,当21x x <时,恒有)()(21x f x f <.那么称这两个集合“保序同构”.现给出以下3对集合: ①,A B *==N N ;②{|13},{|810}A x x B x x =-=-≤≤≤≤; ③{|01},A x x B =<<=R .其中,“保序同构”的集合对的序号是 (写出所有“保序同构”的集合对的序号)【测量目标】“保序同构”的集合的定义.【考查方式】判断所给集合是否为保序同构的集合. 【参考答案】①②③【试题解析】举例说明有符合条件的函数即可.①取()1f x x =+,符合题意.(步骤1) ②取97()22f x x =-,符合题意.(步骤2) ③取1()tan π2f x x ⎛⎫=- ⎪⎝⎭,符合题意.(步骤3) 三.解答题17.(本小题满分12分)已知等差数列{}n a 的公差1d =,前n 项和为n S . (1)若131,,a a 成等比数列,求1a ; (2)若519S a a >,求1a 的取值范围.【测量目标】等差数列的概念、等比数列的概念及其通项、求和公式. 【考查方式】考查了求解等比数列首项的求解(利用等比中项求解),利用等差数列的通项公式与求和公式将不等式转化为含有首项的不等式求解.【试题解析】解:(1)因为数列{}n a 的公差1d =,且131,,a a 成等比数列, 所以2111(2)a a =⨯+,即21120a a --=,解得11a =-或12a =.(步骤1) (2)因为数列{}n a 的公差1d =,且519S a a >, 所以21115108a a a +>+;(步骤2)即2113100a a +-<,解得152a -<<.(步骤3)18.(本小题满分12分)如图,在四棱锥P ABCD -中,PD ABCD ⊥面,AB DC ,AB AD ⊥,5BC =,3DC =,4AD =,60PAD ∠= .(1)当正视图方向与向量AD的方向相同时,画出四棱锥P ABCD -的正视图.(要求标出尺寸,并画出演算过程);(2)若M 为PA 的中点,求证:DM PBC 面 ;(3)求三棱锥D PBC -的体积.第18题图【测量目标】几何体的正视图、勾股定理、线面平行的判定定理、几何体体积公式.【考查方式】给出了四棱锥及其空间位置关系、三边长度和一个角的角度,从而画出正视图,由侧棱中点,判断线面平行以及几何体体积. 【试题解析】解法一:(Ⅰ)在梯形ABCD 中,过点C 作CE AB ⊥,垂足为E ,由已知得,四边形ADCE 为矩形,3AE CD ==.(步骤1) 在Rt △BEC 中,由5BC =,4CE =,依勾股定理得: 3BE =,从而6AB =.(步骤2)又由PD ⊥平面ABCD 得,PD AD ⊥.(步骤3) 第18题图(1)从而在Rt △PAD 中,由4AD =,60PAD ∠=︒,得PD =.(步骤4)正视图如右图(2)所示:第18题图(2) (步骤5) (Ⅱ)取PB 中点N ,连结MN ,CN在△PAB 中,M 是PA 中点, ∴MN AB ,132MN AB ==,(步骤6) 又CD AB ,3CD =∴MN CD ,MN CD =(步骤7)∴四边形MNCD 为平行四边形,∴DM CN , 第18题图(3) 又DM ⊄平面PBC ,CN ⊂平面PBC ,∴DM 平面PBC (步骤8) (Ⅲ)13D PBC P DBC DBC V V S PD --∆==又6DBC S ∆=,PD =,所以D PBC V -=9)解法二:(Ⅰ)同解法一 第18题图(4) (Ⅱ)取AB 的中点E ,连结ME ,DE (步骤1)在梯形ABCD 中,BE CD ,且BE CD =,∴四边形BCDE 为平行四边形,∴DE BC ,(步骤2)又DE ⊄平面PBC ,BC ⊂平面PBC , ∴DE 平面PBC ,(步骤3) 又在PAB ∆中,ME PB ,ME ⊄平面PBC ,PB ⊂平面PBC ,∴ME 平面PBC .(步骤4)又DE ME E = ,∴平面DME 平面PBC ,(步骤5)又DM⊂平面DME∴DM 平面PBC.(步骤6)(Ⅲ)同解法一19.(本小题满分12分)某工厂有25周岁以上(含25周岁)工人300名,25周岁以下工人200名.为研究工人的日平均生产量是否与年龄有关.现采用分层抽样的方法,从中抽取了100名工人,先统计了他们某月的日平均生产件数,然后按工人年龄在“25周岁以上(含25周岁)”和“25周岁以下”分为两组,在将两组工人的日平均生产件数分成5组:[50,60),[60,70),[70,80),[80,90),[90,100)分别加以统计,得到如图所示的频率分布直方图.(1)从样本中日平均生产件数不足60件的工人中随机抽取2人,求至少抽到一名“25周岁以下组”工人的频率.(2)规定日平均生产件数不少于80件者为“生产能手”,请你根据已知条件完成22⨯的列联表,并判断是否有90%的把握认为“生产能手与工人所在的年龄组有关”?附表:()21112122121212n n n n nXn n n n++++-=【考查方式】考查了用列举法列出基本事件并结合古典概型求概率,独立性检验公式.【试题解析】解:(Ⅰ)由已知得,样本中有25周岁以上组工人60名,25周岁以下组工人40名.所以,样本中日平均生产件数不足60件的工人中,25周岁以上组工人有600.053⨯=(人),记为1A,2A,3A;25周岁以下组工人有400.052⨯=(人),记为1B,2B.(步骤1)从中随机抽取2名工人,所有可能的结果共有10种,他们是:12(,)A A,13(,)A A,23(,)A A,11(,)A B,12(,)A B,21(,)A B,22(,)A B,31(,)A B,32(,)A B,12(,)B B.(步骤2)其中,至少有名“25周岁以下组”工人的可能结果共有7种,它们是:11(,)A B,12(,)A B,21(,)A B ,22(,)A B ,31(,)A B ,32(,)A B ,12(,)B B .故所求的概率:710P =.(步骤3) (Ⅱ)由频率分布直方图可知,在抽取的100名工人中,“25周岁以上组”中的生产能手600.2515⨯=(人),“25周岁以下组”中的生产能手400.37515⨯=(人),据此可得22⨯列所以得:222()100(15251545)251.79()()()()6040307014n ad bc K a b c d a c b d -⨯⨯-⨯===≈++++⨯⨯⨯.(步骤4) 因为1.79 2.706<,所以没有90%的把握认为“生产能手与工人所在的年龄组有关”.(步骤5)20.如图,在抛物线2:4E y x =的焦点为F ,准线l 与x 轴的交点为A .点C 在抛物线E上,以C 为圆心OC 为半径作圆,设圆C 与准线l 的交于不同的两点,M N .(1)若点C 的纵坐标为2,求MN ; (2)若2AFAM AN = ,求圆C 的半径.【测量目标】抛物线的方程、圆的方程与性质、直线与圆的位置关系、根与系数的关系. 【考查方式】根据抛物线的准线结合直角三角形的性质求解,再利用圆心在曲线上设出坐标并建立圆的方程,同时考虑直线与圆的位置关系.【试题解析】解:(Ⅰ)抛物线24y x =的准线l 的方程为1x =-, 由点C 的纵坐标为2,得点C 的坐标为(1,2) 所以点C 到准线l 的距离2d =,又||CO =所以||2MN ===.(步骤1)(Ⅱ)设200,4y C y ⎛⎫ ⎪⎝⎭,则圆C 的方程为224220000()416y y x y y y ⎛⎫-+-=+ ⎪⎝⎭,即22200202y x x y y y -+-=. 由1x =-,得22002102y y y y -++=.(步骤2)设1(1,)M y -,2(1,)N y -,则:2220002012441240212y y y y y y ⎧⎛⎫∆=-+=->⎪ ⎪⎪⎝⎭⎨⎪=+⎪⎩,(步骤3) 由2||||||AF AM AN = ,得12||4y y =, 所以20142y +=,解得0y =,(步骤4) 此时0∆>,所以圆心C的坐标为32⎛ ⎝或3,2⎛ ⎝,(步骤5) 从而233||4CO =,||CO =,即圆C.(步骤6)21.如图,在等腰直角三角形△OPQ 中,90POQ ︒∠=,OP =,点M 在线段PQ 上.(1)若OM =PM 的长;(2)若点N 在线段MQ 上,且30MON ∠= ,问:当POM ∠取何值时,△OMN 的面积最小?并求出面积的最小值.【测量目标】解三角形、同角三角函数的基本关系、两角和与差的三角函数.【考查方式】根据所给条件,由三角函数余弦定理、正弦定理求线段长度以及函数的最值求解并要注意角的取值范围.【试题解析】解:(Ⅰ)在△OMP 中,45OPM ∠=,OM =OP =, 由余弦定理得,2222cos45OM OP MP OP MP =+-⨯⨯⨯ ,(步骤1)得2430MP MP -+=,解得1MP =或3MP =.(步骤2)(Ⅱ)设POM α∠=,060α≤≤,在OMP ∆中,由正弦定理,得sin sin OM OP OPM OMP=∠∠,(步骤3) 所以()sin 45sin 45OP OM α=+,(步骤4) 同理()sin 45sin 75OP ON α=+,(步骤5) 故1sin 2OMN S OM ON MON ∆=⨯⨯⨯∠ ()()221sin 454sin 45sin 75OP αα=⨯++()()1sin 45sin 4530αα=+++=====.(步骤6) 因为060α ≤≤,30230150α+ ≤≤,所以当30α=时,()sin 230α+︒的最大值为1,此时OMN △的面积取到最小值.即230POM ∠=︒时,OMN △的面积的最小值为8-.(步骤7)22.已知函数()1ex a f x x =-+(a ∈R ,e 为自然对数的底数).(1)若曲线()y f x =在点(1,(1))f 处的切线平行于x 轴,求a 的值;(2)求函数()f x 的极值;(3)当1a =的值时,若直线:1l y kx =-与曲线()y f x =没有公共点,求k 的最大值.【测量目标】利用导数求函数的极值、函数的性质.【考查方式】利用导数求切线斜率,讨论字母a 的取值,构造函数再结合函数的零点存在性定理求解.【试题解析】解:(Ⅰ)由()1e x a f x x =-+,得()1ex a f x '=-.(步骤1) 又曲线()y f x =在点()()1,1f 处的切线平行于x 轴, 得()10f '=,即10ea -=,解得e a =.(步骤2) (Ⅱ)()1e x a f x '=-, ①当0a ≤时,()0f x '>,()f x 为(),-∞+∞上的增函数,所以函数()f x 无极值.(步骤3)②当0a >时,令()0f x '=,得e x a =,ln x a =.(步骤4)(),ln x a ∈-∞,()0f x '<;()ln ,x a ∈+∞,()0f x '>.所以()f x 在(),ln a -∞上单调递减,在()ln ,a +∞上单调递增,故()f x 在ln x a =处取得极小值,且极小值为()ln ln f a a =,无极大值,(步骤5) 综上,当0a ≤时,函数()f x 无极小值;当0a >,()f x 在ln x a =处取得极小值ln a ,无极大值.(步骤6)(Ⅲ)当1a =时,()11e xf x x =-+, 令()()()()111e x g x f x kx k x =--=-+,(步骤7) 则直线l :1y kx =-与曲线()y f x =没有公共点,等价于方程()0g x =在R 上没有实数解.(步骤8)假设1k >,此时()010g =>,1111101e k g k -⎛⎫=-+< ⎪-⎝⎭, 又函数()g x 的图象连续不断,由零点存在定理,可知()0g x =在R 上至少有一解,与“方程()0g x =在R 上没有实数解”矛盾,故1k ≤.(步骤9)又1k =时,()10ex g x =>,知方程()0g x =在R 上没有实数解. 所以k 的最大值为1.(步骤10)解法二:(Ⅰ)(Ⅱ)同解法一.(Ⅲ)当1a =时,()11e xf x x =-+.(步骤1) 直线l :1y kx =-与曲线()y f x =没有公共点,等价于关于x 的方程111ex kx x -=-+在R 上没有实数解,即关于x 的方程: ()11ex k x -= *() 在R 上没有实数解.(步骤2)①当1k =时,方程*()可化为10ex =,在R 上没有实数解.(步骤3) ②当1k ≠时,方程*()化为1e 1x x k =-. 令()e x g x x =,则有()()1e xg x x '=+. 令()0g x '=,得1x =-,(步骤4)当x 变化时,()g x '的变化情况如下表:当1x =-时,()min e g x =-,同时当x 趋于+∞时,()g x 趋于+∞,从而()g x 的取值范围为1,e ⎡⎫-+∞⎪⎢⎣⎭.(步骤5) 所以当11,1e k ⎛⎫∈-∞- ⎪-⎝⎭时,方程*()无实数解,(步骤6) 解得k 的取值范围是()1e,1-.综上,得k 的最大值为1.(步骤7)。
2013 年一般高等学校招生全国一致考试(福建卷)数学试题(文史类)第 I 卷(选择题共60分)一、选择题:本大题共12 小题,每题 5 分,共 60 分 .在每题给出的四个选项中,只有一项为哪一项切合题目要求的.1.复数的Z 1 2i i为虚数单位在复平面内对应的点位于模为A .第一象限B.第二象限C.第三象限D.第四象限2.设点P x, y ,则“x 2且y 1”是“点 P在直线 l : x y 1 0上”的A.充足而不用要条件B.必需而不充足条件C.充足必需条件D.既不充足也不用要条件3.若会合A= 1,2,3 ,B= 1,3,4 ,则 A B的子集个数为A .2 B.3 C.4 D.164.双曲线x2y21的极点到其渐近线的距离等于A .1B.2C. 1 D. 2 2 25.函数f x ln x2 1 的图像大概是x y 26.若变量x, y知足拘束条件x 1, 则 z 2x y 的最大值和最小值分别为y 0,A. 4和3 B. 4和2 C. 3和2D. 2和7.若2x2y1,则 x y的取值范围是A. 0,2B.2,0C.2,D., 28.阅读以下图的程序框图,运转相应的程序,假如输入某个正整数n 后,输出的 S10,20 , 那么 n的值为A . 3 B.4 C.5 D.69.将函数 f x sin 2x2的图像向右平移 1 个单位长度后2获得函数 g x 的图像 ,若 f x , g x 的图像都经过点 P 0,3,则的值能够是2A .5B.5C.D.3 uuur 6 uuur 2 610.在四边形则该四边形的面积为中,1,2 , BD 4,2 ,ABCD ACA . 5 B.2 5 C. 5 D.1011.已知x与y之间的几组数据以下表:x 1 2 3 4 5 6 y 0 2 1 3 3 4假定依据上表数据所得线性回归直线方程为& & & 若某同学依据上表y bx a,中的前两组数据1,0 和 2,2 求得的直线方程为y b x a , 则以下结论正确的选项是& & & & & & & &A .b b , a a B.b b ,a a C.b b , a a D.b b , a a 12.设函数f x 的定义域为 R,x0 x0 0 是f x 的极大值点,以下结论必定正确的是A . x R, f x f x0 B. x0是 f x 的极小值点C. x0是- f x 的极小值点D. x0是- f x 的极小值点第 II 卷(非选择题共60分)二、填空题:本大题共 4 小题,每题 5 分 .2x3, x 0,.13.已知函数f x 则f f4tan x,0 x,214.利用计算机产生0 : 1之间的均匀随机数a, 则事件“ 3a 1 0? 发生的概率为.15.椭圆r :x 2y22 21(a b 0)的左、右焦点分别为F1、 F2,焦距为 2c. 若直线a by 3 x c 与椭圆 r 的一个交点 M 知足 MF1F2 2 MF2 F1 , 则该椭圆的离心率等于.16.设 S,T 是 R 的两个非空子集,假如存在一个从S 到 T 的函数y f ( x)知足:( i)T f ( x) x S ; (ii)对随意x1, x2 S,当 x1 x2时,恒有 f ( x1 ) f ( x2 ), 那么称这两个会合“保序同构”,现给出以下 3 对会合:①A N,B N;② A x 1 x 3 , B x8 x 10 ;③ A x 0 x 1 , B R.此中,“保序同构”的会合对的序号是_______。
2013年全国普通高等学校招生统一考试文科(福建卷)数学答案解析1、【答案】C【解析】所对应的点为(-1,-2)位于第三象限.【考点定位】本题只考查了复平面的概念,属于简单题.2、【答案】A【解析】点P(2,-1)满足直线方程,所以在线上,反之不能推出点P的坐标必为(2,-1).故选A【考点定位】考查了点与线的位置关系的判断及条件的判断,属于简单题.3、【答案】C【解析】其子集个数为个.【考点定位】考查集合的运算及子集个数的算法,属于简单题.4、【答案】B【解析】由于对称性,我们不妨取顶点,取渐近线为,所以由点到直线的距离公式可得,亦可根据渐近线倾斜角为450得到.【考点定位】本题考查了双曲线的渐近线及点到直线的距离公式,如果能画图可简化计算,属于简单题.5、【答案】A【解析】由于函数为偶函数又过(0,0)所以直接选A.【考点定位】对图像的考查其实是对性质的考查,注意函数的特征即可,属于简单题.6、【答案】B【解析】如图可行域为的内部,显然分别在点A和点B处取到最小值2和最大值4.【考点定位】简单的线性规划问题,牢记目标函数的几何意义即可.7、【答案】D【解析】故.【考点定位】本题主要考查基本不等式的应用及指数不等式的解法,属于简单题.8、【答案】B【解析】注意到S的值比较小,所以可以考虑依次循环可知n=4的时候S=15满足,亦可通过数列考虑S的表达式.【考点定位】属于程序框图中比较简单的考查方法,只要学生看懂图即可.9、【答案】B【解析】由平移得,两个图像都过点P,有,又,故,验证可得可取. 【考点定位】对于三角函数图像的考察,属于中等题,特别注意平移的量.10、【答案】C【解析】注意到两向量的纵坐标都为2,所以借助坐标系如图,.或者注意到分为四个小直角三角形算面积.【考点定位】本题的处理方法主要是向量的平移,所以向量只要能合理的转化还是属于容易题.11、【答案】C【解析】散点图如右,显然后四个点都不在直线的左上方,所以回归直线斜率应该更小,纵截距更大,故选C.【考点定位】本题主要考查回归直线的概念,通过图像很容易得到正确答案.属于容易题.12、【答案】D【解析】对于A选项函数的极大值不一定是函数的最大值,所以错;对于B中的是将的图像关于Y轴对称,所以是其极大值点;对于C中的是将的图像关X轴对称,所以才是其极小值点;而对于D中的是将的图像关原点对称,故是其极小值点,故正确.【考点定位】本题主要考查学生对于函数极值与最值关系及函数图像的变换,牢记几种常见变换.属于难度较大的题目.13、【答案】-2【解析】,【考点定位】对于分段函数的考查属容易题.14、【答案】【解析】知,由几何概型知【考点定位】简单的几何概型的考查.15、【答案】【解析】注意到直线过点即为左焦点,又斜率为,所以倾斜角为,即.又故,那么.,,.【考点定位】考查离心率的算法,要求学生要有敏锐的观察力,比如直线的特征.属于难题.16、【答案】①②③【解析】条件(i)说明S到T是一个一一映射,条件(ii)说明函数单调增.对于1可拟合函数满足上述两个条件,故是保序同构;对于2可拟合函数满足上述两个条件,故是保序同构;对于3可考虑经过平移压缩的正切函数也满足上述两个条件,故都是保序同构.【考点定位】本题考查学生对新概念的理解,转化和应用,属于难题.17、【答案】(I) (II)【解析】(1)因为数列的公差,且成等比数列,所以,即,解得或.(2)因为数列的公差,且,所以;即,解得此数列的考查个人认为太过简单,只需要懂得等差等比数列的公式即可,所以只要注意计算就可以轻松拿到12分.【考点定位】本小题主要考查等差数列、等比数列、不等式等基础知识,考查运算求解能力,考查函数与方程思想、化归与转化思想.属于容易题.18、【答案】(1)见解析(2)见解析(3)【解析】(1)在梯形中,过点作,垂足为,由已知得,四边形为矩形,在中,由,,依勾股定理得:,从而又由平面得,从而在中,由,,得正视图如图所示:(2)取中点,连结,在中,是中点,∴,,又,∴,∴四边形为平行四边形,∴又平面,平面∴平面(3)又,,所以解法二:(1)同解法一(2)取的中点,连结,在梯形中,,且∴四边形为平行四边形∴,又平面,平面∴平面,又在中,平面,平面∴平面.又,∴平面平面,又平面∴平面(3)同解法一对于立体几何的考查所有关系的决断往往基于对公理定理推论掌握的比较熟练,又要善于做出一线辅助线加以证明,再者就是体积和表面积的计算公式要熟悉.【考点定位】本题主要考查直线与直线、直线与平面的位置关系及几何体的三视图和体积等基础知识,考查空间想象能力、推理论证能力、运算求解能力,考查数形结合思想、化归与转化思想.属容易题19、【答案】(I)(II)没有把握【解析】(Ⅰ)由已知得,样本中有周岁以上组工人名,周岁以下组工人名所以,样本中日平均生产件数不足件的工人中,周岁以上组工人有(人),记为,,;周岁以下组工人有(人),记为,从中随机抽取名工人,所有可能的结果共有种,他们是:,,,,,,,,,其中,至少有名“周岁以下组”工人的可能结果共有种,它们是:,,,,,,.故所求的概率:(Ⅱ)由频率分布直方图可知,在抽取的名工人中,“周岁以上组”中的生产能手(人),“周岁以下组”中的生产能手(人),据此可得列联表如下:生产能手非生产能手合计周岁以上组周岁以下组合计所以得:因为,所以没有的把握认为“生产能手与工人所在的年龄组有关”对于独立性检验的考查要求学生会用公式,并且懂得算法过程并懂得结论的给出,应该算容易题,可往往学生会被这么长的题目所吓倒,再加上统计与概率的结合就会变为难点.此题比较容易出现计算和结论上的失误,而造成不必要的失分.【考点定位】本题主要考查古典概型、抽样方法、独立性检验等基础知识,考查运算求解能力、应用意识,考查必然与或然思想、化归与转化思想等.属于中等难度.20、【答案】(I)(II)【解析】(Ⅰ)抛物线的准线的方程为,由点的纵坐标为,得点的坐标为所以点到准线的距离,又.所以.(Ⅱ)设,则圆的方程为,即.由,得设,,则:由,得所以,解得,此时所以圆心的坐标为或从而,,即圆的半径为此题以圆为背景考查了解析几何中的常用方法(如设而不求)及圆锥曲线的性质.平时只要注意计算此题问题就不会太大.【考点定位】本题考查抛物线的方程、圆的方程与性质、直线与圆的位置关系等基础知识,考查运算求解能力、推理论证能力,考查函数与方程思想、数形结合思想、化归与转化思想.属于中等难度.21、【答案】(Ⅰ) 或(Ⅱ)当时,的最大值为,此时的面积取到最小值.即2时,的面积的最小值为【解析】(Ⅰ)在中,,,,由余弦定理得,,得,解得或.(Ⅱ)设,,在中,由正弦定理,得,所以,同理故因为,,所以当时,的最大值为,此时的面积取到最小值.即2时,的面积的最小值为.此题通过正余弦定理巧妙的将面积最值问题通过三角函数呈现,而三角函数的化简过程又比较复杂,但还是有规律可循的,比如差异分析.这就要在平时注意积累,而且计算基本功要硬.【考点定位】本题主要考查解三角形、同角三角函数的基本关系、两角和与差的三角函数等基础知识,考查推理论证能力、抽象概括能力、运算求解能力,考查函数与方程思想、数形结合思想、化归与转化思.计算难度比较大,属于难题.22、【答案】(Ⅰ)(Ⅱ)当时,函数无极小值;当,在处取得极小值,无极大值(Ⅲ)的最大值为【解析】(Ⅰ)由,得.又曲线在点处的切线平行于轴,得,即,解得.(Ⅱ),①当时,,为上的增函数,所以函数无极值.②当时,令,得,.,;,.所以在上单调递减,在上单调递增,故在处取得极小值,且极小值为,无极大值.综上,当时,函数无极小值;当,在处取得极小值,无极大值.(Ⅲ)当时,令,则直线:与曲线没有公共点,等价于方程在上没有实数解.假设,此时,,又函数的图象连续不断,由零点存在定理,可知在上至少有一解,与“方程在上没有实数解”矛盾,故.又时,,知方程在上没有实数解.所以的最大值为.解法二:(Ⅰ)(Ⅱ)同解法一.(Ⅲ)当时,.直线:与曲线没有公共点,等价于关于的方程在上没有实数解,即关于的方程:(*)在上没有实数解.①当时,方程(*)可化为,在上没有实数解.②当时,方程(*)化为.令,则有.令,得,当变化时,的变化情况如下表:当时,,同时当趋于时,趋于,从而的取值范围为.所以当时,方程(*)无实数解,解得的取值范围是.综上,得的最大值为.此题的一二问考查的是最基本的函数切线问题及对极值含参情况的讨论,所以导数公式必需牢记,对于参数的讨论找到一个合理的分类标准做到不重不漏即可,可这往往又是学生最容易出现问题的地方.而第三问对于曲线是否无交点要懂得转化成函数零点或方程根的个数问题处理,这也是常规处理含参就比较麻烦,平时要多加练习.【考点定位】本小题主要考查函数与导数,两数的单调性、极值、零点等基础知识,考查推理论证能力、运算求解能力,考查函数与方程思想、数形结合思想、分类与整合思想、化归与转化思想.属综合要求比较高的难题.。
2013年普通高等学校夏季招生全国统一考试数学文史类(福建卷)第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2013福建,文1)复数z=-1-2i(i为虚数单位)在复平面内对应的点位于().A.第一象限B.第二象限C.第三象限D.第四象限答案:C解析:在复平面内,z=-1-2i对应点的坐标为(-1,-2),故选C.2.(2013福建,文2)设点P(x,y),则“x=2且y=-1”是“点P在直线l:x+y-1=0上”的().A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件答案:A解析:点(2,-1)在直线l:x+y-1=0上,而直线l上的点的坐标不一定为(2,-1),故“x=2且y=-1”是“点P在直线l上”的充分而不必要条件.3.(2013福建,文3)若集合A={1,2,3},B={1,3,4},则A∩B的子集个数为().A.2 B.3 C.4 D.16答案:C解析:由题知A∩B={1,3},故它的子集个数为22=4.4.(2013福建,文4)双曲线x2-y2=1的顶点到其渐近线的距离等于().A.12B.2C.1 D答案:B解析:x2-y2=1的渐近线方程为y=±x,顶点坐标为(±1,0),点(±1,0)到y=±x的距离为2==.5.(2013福建,文5)函数f(x)=ln(x2+1)的图象大致是().答案:A解析:由f(0)=0可知函数图象经过原点.又f(-x)=f(x),所以函数图象关于y轴对称,故选A.6.(2013福建,文6)若变量x,y满足约束条件2,1,0,x yxy+≤⎧⎪≥⎨⎪≥⎩则z=2x+y的最大值和最小值分别为().A.4和3 B.4和2C.3和2 D.2和0答案:B解析:画出可行域如下图阴影部分所示.画出直线2x +y =0,并向可行域方向移动,当直线经过点(1,0)时,z 取最小值.当直线经过点(2,0)时,z 取最大值.故z max =2×2+0=4,z min =2×1+0=2.7.(2013福建,文7)若2x +2y =1,则x +y 的取值范围是( ).A .[0,2]B .[-2,0]C .[-2,+∞)D .(-∞,-2] 答案:D解析:∵2x +2y =1≥∴212⎛⎫⎪⎝⎭≥2x +y ,即2x +y ≤2-2. ∴x +y ≤-2.8.(2013福建,文8)阅读如图所示的程序框图,运行相应的程序.如果输入某个正整数n 后,输出的S ∈(10,20),那么n 的值为( ).A .3B .4C .5D .6 答案:B解析:若n =3,则输出S =7;若n =4,则输出S =15,符合题意.故选B. 9.(2013福建,文9)将函数f (x )=sin(2x +θ)ππ22θ⎛⎫-<< ⎪⎝⎭的图象向右平移φ(φ>0)个单位长度后得到函数g (x )的图象,若f (x ),g (x )的图象都经过点P 0,2⎛⎫⎪ ⎪⎝⎭,则φ的值可以是( ). A .5π3 B .5π6 C .π2 D .π6答案:B解析:∵f (x )的图象经过点0,2⎛⎝⎭,∴sin θ=2. 又∵θ∈ππ,22⎛⎫- ⎪⎝⎭,∴π3θ=.∴f (x )=πsin 23x ⎛⎫+ ⎪⎝⎭.由题知g (x )=f (x -φ)=πsin 23x ϕ⎡⎤(-)+⎢⎥⎣⎦,又图象经过点0,2⎛⎝⎭,∴g (0)=πsin 23ϕ⎛⎫-+= ⎪⎝⎭.当5π6ϕ=时满足g (0)=2,故选B.10.(2013福建,文10)在四边形ABCD 中,AC =(1,2),BD =(-4,2),则该四边形的面积为( ).A B . C .5 D .10答案:C解析:∵AC ·BD =-4×1+2×2=0, ∴AC ⊥BD .S 四边形ABCD =12|AC ||BD |=152=. 11.(2013福建,文11)已知x 与1 33假设根据上表数据所得线性回归直线方程为y bx a =+.若某同学根据上表中的前两组数据(1,0)和(2,2)求得的直线方程为y =b ′x +a ′,则以下结论正确的是( ).A .b >b ′,a >a ′B .b >b ′,a <a ′C .b <b ′,a >a ′D .b <b ′,a <a ′ 答案:C 解析:123456762x +++++==,021*******y +++++==,122157ni ii nii x y nx yb xnx ==-==-∑∑, 13a y bx =-=-,b ′=2021--=2>b ,a ′=-2<a .12.(2013福建,文12)设函数f (x )的定义域为R ,x 0(x 0≠0)是f (x )的极大值点,以下结论一定正确的是( ).A .∀x ∈R ,f (x )≤f (x 0)B .-x 0是f (-x )的极小值点C .-x 0是-f (x )的极小值点D .-x 0是-f (-x )的极小值点 答案:D解析:由函数极大值的概念知A 错误;因为函数f(x)的图象与f(-x)的图象关于y 轴对称,所以-x0是f(-x)的极大值点.B 选项错误;因为f(x)的图象与-f(x)的图象关于x 轴对称,所以x0是-f(x)的极小值点.故C 选项错误;因为f(x)的图象与-f(-x)的图象关于原点成中心对称,所以-x0是-f(-x)的极小值点.故D 正确.第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在答题卡的相应位置.13.(2013福建,文13)已知函数f (x )=32,0,πtan ,0,2x x x x ⎧<⎪⎨-≤<⎪⎩则π4f f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭=__________. 答案:-2 解析:∵ππtan 144f ⎛⎫=-=-⎪⎝⎭,π4f f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭=f (-1)=2×(-1)3=-2. 14.(2013福建,文14)利用计算机产生0~1之间的均匀随机数a ,则事件“3a -1<0”发生的概率为__________.答案:13解析:由3a -1<0,得a <13. ∵0≤a ≤1,∴0≤a <13. 根据几何概型知所求概率为11313=.15.(2013福建,文15)椭圆Γ:22221x y ab+=(a >b >0)的左、右焦点分别为F 1,F 2,焦距为2c .若直线y x+c )与椭圆Γ的一个交点M 满足∠MF 1F 2=2∠MF 2F 1,则该椭圆的离心率等于__________.1解析:∵由y x +c )知直线的倾斜角为60°, ∴∠MF 1F 2=60°,∠MF 2F 1=30°. ∴∠F 1MF 2=90°.∴MF 1=c ,MF 2. 又MF 1+MF 2=2a , ∴cc =2a,即1e ==. 16.(2013福建,文16)设S ,T 是R 的两个非空子集,如果存在一个从S 到T 的函数y =f (x )满足:(ⅰ)T ={f (x )|x ∈S };(ⅱ)对任意x 1,x 2∈S ,当x 1<x 2时,恒有f (x 1)<f (x 2), 那么称这两个集合“保序同构”.现给出以下3对集合: ①A =N ,B =N *;②A ={x |-1≤x ≤3},B ={x |-8≤x ≤10}; ③A ={x |0<x <1},B =R .其中,“保序同构”的集合对的序号是__________.(写出所有“保序同构”的集合对的序号) 答案:①②③解析:①若y =x +1是从A 到B 的一个函数,且x ∈A ,则满足(ⅰ)B ={f(x)|x ∈A}.又f(x)=x +1是单调递增的,所以也满足(ⅱ);②若f(x)=92x -72时,满足(ⅰ)B ={f(x)|x ∈A},又f(x)=92x -72是单调递增的,所以也满足(ⅱ);③若1tan π2y x ⎡⎤⎛⎫=- ⎪⎢⎥⎝⎭⎣⎦(0<x <1)时,满足(ⅰ)B ={f(x)|x ∈A}.又()1tan π2f x x ⎡⎤⎛⎫=- ⎪⎢⎥⎝⎭⎣⎦在(0,1)上是单调递增的,所以也满足(ⅱ).故填①②③.三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.17.(2013福建,文17)(本小题满分12分)已知等差数列{a n }的公差d =1,前n 项和为S n .(1)若1,a 1,a 3成等比数列,求a 1; (2)若S 5>a 1a 9,求a 1的取值范围.解:(1)因为数列{a n }的公差d =1,且1,a 1,a 3成等比数列, 所以a 12=1×(a 1+2),即a 12-a 1-2=0,解得a 1=-1或a 1=2. (2)因为数列{a n }的公差d =1,且S 5>a 1a 9,所以5a 1+10>a 12+8a 1,即a 12+3a 1-10<0,解得-5<a 1<2.18.(2013福建,文18)(本小题满分12分)如图,在四棱锥P -ABCD 中,PD ⊥平面ABCD ,AB ∥DC ,AB ⊥AD ,BC =5,DC =3,AD =4,∠P AD =60°.(1)当正视方向与向量AD 的方向相同时,画出四棱锥P -ABCD 的正视图(要求标出尺寸,并写出演算过程);(2)若M 为P A 的中点,求证:DM ∥平面PBC ; (3)求三棱锥D -PBC 的体积.解法一:(1)在梯形ABCD 中,过点C 作CE ⊥AB ,垂足为E ,由已知得,四边形ADCE 为矩形,AE =CD =3,在Rt △BEC 中,由BC =5,CE =4,依勾股定理得BE =3, 从而AB =6.又由PD ⊥平面ABCD 得,PD ⊥AD ,从而在Rt △PDA 中,由AD =4,∠P AD =60°,得PD =正视图如图所示:正视图(2)取PB 中点N ,连结MN ,CN .在△P AB 中,∵M 是P A 中点, ∴MN ∥AB ,MN =12AB =3. 又CD ∥AB ,CD =3, ∴MN ∥CD ,MN =CD .∴四边形MNCD 为平行四边形. ∴DM ∥CN .又DM ⊄平面PBC ,CN ⊂平面PBC , ∴DM ∥平面PBC . (3)V D -PBC =V P -DBC =13S △DBC ·PD ,又S△DBC=6,PD=V D-PBC=解法二:(1)同解法一.(2)取AB的中点E,连结ME,DE.在梯形ABCD中,BE∥CD,且BE=CD,∴四边形BCDE为平行四边形.∴DE∥BC.又DE⊄平面PBC,BC⊂平面PBC,∴DE∥平面PBC.又在△P AB中,ME∥PB,ME⊄平面PBC,PB⊂平面PBC,∴ME∥平面PBC.又DE∩ME=E,∴平面DME∥平面PBC.又DM⊂平面DME,∴DM∥平面PBC.(3)同解法一.19.(2013福建,文19)(本小题满分12分)某工厂有25周岁以上(含25周岁)工人300名,25周岁以下工人200名.为研究工人的日平均生产量是否与年龄有关,现采用分层抽样的方法,从中抽取了100名工人,先统计了他们某月的日平均生产件数,然后按工人年龄在“25周岁以上(含25周岁)”和“25周岁以下”分为两组,再将两组工人的日平均生产件数分成5组:[50,60),[60,70),[70,80),[80,90),[90,100]分别加以统计,得到如图所示的频率分布直方图.25周岁以上组25周岁以下组(1)从样本中日平均生产件数不足60件的工人中随机抽取2人,求至少抽到一名“25周岁以下组”工人的概率;(2)规定日平均生产件数不少于80件者为“生产能手”,请你根据已知条件完成2×2列联表,并判断是否有90%的把握认为“生产能手与工人所在的年龄组有关”?附:221122122112n n n n n n n n n χ++()=(注:此公式也可以写成2()()()()()n ad bc K a b c d a c b d -=++++)解:(1)由已知得,样本中有25周岁以上组工人60名,25周岁以下组工人40名. 所以,样本中日平均生产件数不足60件的工人中,25周岁以上组工人有60×0.05=3(人),记为A1,A2,A3;25周岁以下组工人有40×0.05=2(人),记为B1,B2.从中随机抽取2名工人,所有的可能结果共有10种,它们是:(A1,A2),(A1,A3),(A2,A3),(A1,B1),(A1,B2),(A2,B1),(A2,B2),(A3,B1),(A3,B2),(B1,B2).其中,至少有1名“25周岁以下组”工人的可能结果共有7种,它们是:(A1,B1),(A1,B2),(A2,B1),(A2,B2),(A3,B1),(A3,B2),(B1,B2).故所求的概率P =710.(2)由频率分布直方图可知,在抽取的100名工人中,“25周岁以上组”中的生产能手60×0.25=15(人),“25周岁以下组”所以得K2=n ad bc a b c d a c b d (-)(+)(+)(+)(+)=21001525154560403070⨯(⨯-⨯)⨯⨯⨯=2514≈1.79.因为1.79<2.706,所以没有90%的把握认为“生产能手与工人所在的年龄组有关”.20.(2013福建,文20)(本小题满分12分)如图,抛物线E :y 2=4x 的焦点为F ,准线l 与x 轴的交点为A .点C 在抛物线E 上,以C 为圆心,|CO |为半径作圆,设圆C 与准线l 交于不同的两点M ,N .(1)若点C 的纵坐标为2,求|MN |; (2)若|AF |2=|AM |·|AN |,求圆C 的半径. 解:(1)抛物线y 2=4x 的准线l 的方程为x =-1. 由点C 的纵坐标为2,得点C 的坐标为(1,2), 所以点C 到准线l 的距离d =2, 又|CO |所以|MN |===2.(2)设C 200,4y y ⎛⎫ ⎪⎝⎭,则圆C 的方程为2204y x ⎛⎫- ⎪⎝⎭+(y -y 0)2=4016y +y 02,即x 2-202y x +y 2-2y 0y =0. 由x =-1,得y 2-2y 0y +1+202y=0,设M (-1,y 1),N (-1,y 2),则2220002012441240,21.2y y y y y y ⎧⎛⎫∆=-+=->⎪ ⎪⎪⎝⎭⎨⎪=+⎪⎩由|AF |2=|AM |·|AN |,得|y 1y 2|=4,所以202y +1=4,解得0y =Δ>0.所以圆心C的坐标为32⎛ ⎝或3,2⎛ ⎝.从而|CO |2=334,|CO |=2,即圆C的半径为2.21.(2013福建,文21)(本小题满分12分)如图,在等腰直角△OPQ 中,∠POQ =90°,OP=M在线段PQ 上.(1)若OMPM 的长;(2)若点N 在线段MQ 上,且∠MON =30°,问:当∠POM 取何值时,△OMN 的面积最小?并求出面积的最小值.解:(1)在△OMP 中,∠OPM =45°,OMOP= 由余弦定理得,OM2=OP2+MP2-2×OP×MP×cos 45°,得MP2-4MP +3=0,解得MP =1或MP =3.(2)设∠POM =α,0°≤α≤60°, 在△OMP 中,由正弦定理,得sin sin OM OPOPM OMP =∠∠,所以OM =sin45sin 45OP α︒(︒+).同理ON =sin45sin 75OP α︒(︒+).故S △OMN =12×OM×ON×sin ∠MON=221sin 454sin 45sin 75OP αα︒⨯(︒+)(︒+) =1sin 45sin 4530αα(︒+)(︒++︒)=22⎣⎦=22===.因为0°≤α≤60°,30°≤2α+30°≤150°,所以当α=30°时,sin(2α+30°)的最大值为1,此时△OMN 的面积取到最小值,即∠POM =30°时,△OMN的面积的最小值为8-22.(2013福建,文22)(本小题满分14分)已知函数f (x )=x -1+ex a(a ∈R ,e 为自然对数的底数). (1)若曲线y =f (x )在点(1,f (1))处的切线平行于x 轴,求a 的值; (2)求函数f (x )的极值;(3)当a =1时,若直线l :y =kx -1与曲线y =f (x )没有公共点,求k 的最大值.2013 福建文科数学 第11页 共12页 解法一:(1)由f (x )=x -1+e x a ,得f ′(x )=1-e xa , 又曲线y =f (x )在点(1,f (1))处的切线平行于x 轴,得f ′(1)=0,即1-e a =0,解得a =e. (2)f ′(x )=1-ex a , ①当a ≤0时,f ′(x )>0,f (x )为(-∞,+∞)上的增函数,所以函数f (x )无极值.②当a >0时,令f ′(x )=0,得e x =a ,x =ln a .x ∈(-∞,ln a ),f ′(x )<0;x ∈(ln a ,+∞),f ′(x )>0,所以f (x )在(-∞,ln a )上单调递减,在(ln a ,+∞)上单调递增,故f (x )在x =ln a 处取得极小值,且极小值为f (ln a )=ln a ,无极大值.综上,当a ≤0时,函数f (x )无极值;当a >0时,f (x )在x =ln a 处取得极小值ln a ,无极大值.(3)当a =1时,f (x )=x -1+1ex . 令g (x )=f (x )-(kx -1)=(1-k )x +1e x, 则直线l :y =kx -1与曲线y =f (x )没有公共点,等价于方程g (x )=0在R 上没有实数解.假设k >1,此时g (0)=1>0,11111<01e k g k -⎛⎫=-+ ⎪-⎝⎭, 又函数g(x)的图象连续不断,由零点存在定理,可知g(x)=0在R 上至少有一解,与“方程g(x)=0在R 上没有实数解”矛盾,故k≤1.又k =1时,g (x )=1e x>0,知方程g (x )=0在R 上没有实数解. 所以k 的最大值为1.解法二:(1)(2)同解法一.(3)当a =1时,f (x )=x -1+1e x. 直线l :y =kx -1与曲线y =f (x )没有公共点,等价于关于x 的方程kx -1=x -1+1e x 在R 上没有实数解,即关于x 的方程:(k -1)x =1e x(*) 在R 上没有实数解. ①当k =1时,方程(*)可化为10ex =,在R 上没有实数解. ②当k ≠1时,方程(*)化为11k -=x e x . 令g (x )=x e x ,则有g ′(x )=(1+x )e x .令g ′(x )=0,得x当x =-1时,g (x )min =e-,同时当x 趋于+∞时,g (x )趋于+∞,。