金属材料的制备与加工
- 格式:doc
- 大小:41.50 KB
- 文档页数:3
成绩:批阅人:批阅日期:材料制备与加工实验金属部分实验报告学号:姓名:班级:2021实验一 奥氏体晶粒度的测定 一、实验目的 1、熟悉奥氏体晶粒的显示和晶粒度的测定方法。
2、测定钢的实际晶粒度。
3、验证加热温度、保温时间对奥氏体晶粒长大的影响规律。
二、实验结果与分析1、测定奥氏体晶粒度的目的:(1)由于奥氏体晶粒的大小直接影响钢冷却后所得到的组织和性能。
因此通过对奥氏体 晶粒度的测定,可以对钢的有关性能做出评估。
(2)本质晶粒的测定。
其实质是测定钢加热及保温时晶粒长大的 ,为确定热处理的加热温度和保温时间提供依据。
以保证获得细小的奥氏体晶粒。
2、奥氏体晶粒大小对组织和性能有什么影响?列举显示奥氏体晶粒的方法。
3、写出奥氏体晶粒显示方法、显微组织并评级 (100×)。
(1)45钢860℃空冷,正火法 晶粒度级别 ;黑块为 ;白网为(2)40Cr 淬火+高温回火 热蚀法 晶粒度级别 ;黑网为 ;基体组织为(3)45钢850℃油淬,一端淬火法 晶粒度级别 ;黑网为 ;基体组织为4、将相关照片放在本部分,并依据国标判定晶粒度级别。
(题目4提交电子版报告)100× 100× 100×实验二碳钢及合金钢热处理组织的观察与分析一、实验目的1、观察分析片状、球状珠光体的形态,了解不同含碳量及不同温度处理时珠光体的形态特征。
2、观察并分析钢的贝氏体组织形态。
3、观察各类型马氏体的组织形态。
了解钢化学成分对马氏体形态与性能的影响。
熟悉回火对淬火钢组织及性能的影响。
二、实验结果与分析1、判断下列照片中的材料标识是否正确(括号中填是或否),如不正确,请填写正确的钢号(备注:均为退火态,4%硝酸酒精溶液浸蚀)。
08钢()若否,为钢20钢()若否,为钢45钢()若否,为钢65钢()若否,为钢2、依据下图碳钢退火态组织形貌,确定此碳钢的碳含量。
3、贝氏体是钢经奥氏体化后,过冷到中温区转变的产物,就其组织组成而言,仍然是与的混合物,但其金相形态与珠光体不同。
材料制备与加工工艺对于材料的制备与加工工艺的研究,是现代科学技术领域的一项重要工作。
材料的选择、制备和加工工艺直接影响了产品的质量、性能和使用寿命。
本文将介绍一些常见的材料制备与加工工艺,并探讨其在不同领域中的应用。
一、金属材料制备与加工工艺金属材料是最常见的材料之一,广泛应用于机械、建筑、航空等各个领域。
金属材料的制备与加工工艺主要包括熔炼、铸造、锻造、热处理等。
熔炼是将金属原料加热至熔点,使其液化后借助重力或电磁力等方法进行分离和纯化的过程。
铸造是将液态金属倒入模具中,经过冷却凝固得到所需形状的工艺。
锻造是通过将金属材料置于锻机上,借助外力作用使其发生塑性变形得到所需形状。
热处理则是通过对金属材料进行加热、保温和冷却等过程,改变其结构和性能。
二、陶瓷材料制备与加工工艺陶瓷材料具有优异的耐高温、耐腐蚀和绝缘性能,广泛应用于电子、化工、建筑等领域。
陶瓷材料的制备与加工工艺主要包括研磨、成型、烧结等步骤。
研磨是将原料进行细磨,使其粒度均匀。
成型是将研磨后的陶瓷原料进行压制或注塑等工艺,得到所需形状。
烧结是将成型后的陶瓷材料进行高温加热,使其颗粒间发生结合,形成致密的材料。
三、聚合物材料制备与加工工艺聚合物材料具有很好的可塑性和耐磨性,广泛应用于塑料、纺织、医药等领域。
聚合物材料的制备与加工工艺主要包括聚合、挤出、注塑、模压等。
聚合是将单体分子进行化学反应,形成高分子链的过程。
挤出则是将聚合物料塑化后通过模具挤出成型。
注塑是将塑化的聚合物料注入到模具中,通过冷却凝固得到所需形状。
模压则是将聚合物加热塑化后放入模具中压制,形成所需形状。
四、复合材料制备与加工工艺复合材料是由两种或多种不同材料组合而成的新材料,具有优异的特性和广泛的应用前景。
复合材料的制备与加工工艺主要包括预浸法、层叠法、注射法等。
预浸法是将纤维材料与树脂浸渍后固化,形成复合材料。
层叠法是将纤维和树脂分层叠加,经过压制和热处理形成复合材料。
金属材料制备与加工技术金属材料是工业生产中最广泛应用的材料之一,其特点是强度高、重量轻、导电性好、延展性强等。
金属材料的制备与加工技术是工业生产中不可或缺的重要环节。
本文将从金属原料的提取、金属材料的制备、金属材料的特性及加工技术等角度,展开论述金属材料制备与加工技术的相关知识。
一、金属原料的提取金属原料来自于矿石,矿石是地球上自然产生的含有金属元素的矿物石。
几乎所有矿石都需要经过熔炼、冶炼等一系列加工过程,才能将金属元素提取出来。
不同的金属矿石有不同的提取方法,如铁矿石通常采用高炉冶炼技术,铜、铅、锌等常见的有色金属,则采用闪速炉或氧气活性炉等技术。
二、金属材料的制备金属材料的制备通常包含提纯、合金化、制备成型三个主要步骤。
提纯是指通过各种方法,去除杂质,提高金属材料的纯度。
在高纯度金属制备过程中,物理化学方法是常用的手段。
合金是指在金属中加入一定的其他金属元素,以改变原有金属的性能、强度和其它特性。
合金化处理通常采用电解沉积、熔锅法、原位反应等多种方法。
制备成型是将经过提纯和合金化处理后的金属材料,通过成型处理,达到特定形状和尺寸的目的。
制备成型通常分为加热塑性成型和非加热塑性成型两种方法,加热塑性成型包括锻造、轧制、挤压、拉伸、深冲等;非加热塑性成型包括压铸、砂型铸造、金属模铸造等。
三、金属材料的特性金属材料的特性有很多,其中包括密度、热膨胀系数、导热系数、热传导率、电导率、热稳定性等。
不同的金属材料在这些特性方面的表现是不同的,而在材料的物理性质、化学性质等方面也有很大的不同。
钢铁是三维有序排列的铁原子和碳原子的合金,具有高强度和韧性,可以制成各种机械零件,用途广泛;铝和铜等有色金属,密度轻、延展性强,广泛应用于航空航天、电子、建筑等领域;而铂、金等贵金属具有良好的耐腐蚀性,广泛用于化工、电子领域等。
四、金属材料的加工技术金属材料的加工技术是将金属材料变成成品的重要环节。
金属材料的加工技术种类繁多,依据不同的材料、产品、加工要求等,可以进行精密加工、焊接、切削加工、热处理等多种不同的加工方法。
制备金属材料的技术和应用金属材料是现代工业的基础材料之一,广泛应用于各种制造和加工过程中。
金属材料的制备技术不断发展,各种新型材料不断涌现,这些材料的应用范围也越来越广泛。
一、传统金属材料的制备技术1. 熔铸法熔铸法是最传统的金属材料制备技术之一,也是应用最广泛的方法。
熔铸法适用于制备各种合金和纯金属材料。
熔铸法的基本原理是将金属或金属合金加热到熔点,在熔化状态下通过特定的操作方式,将其倒入模具中或在特定的工艺条件下制成棒材、板材等形状。
2. 粉末冶金法粉末冶金法是一种金属材料制备的重要技术,它采用微米尺度的金属粉末作为原料,并通过压制、烧结或热等方法将其加工成材料。
粉末冶金法可以制备复杂的形状和结构,还可以制备高强度、高硬度、高耐磨等特殊性能的材料。
3. 拉伸法拉伸法是一种金属材料制备的传统方式。
拉伸法的原理是将金属材料加热到一定温度,然后通过拉伸外力将其变形,使其达到一定的形状和尺寸。
二、新型金属材料的制备技术1. 3D打印技术3D打印技术是目前最为热门的金属材料制备技术之一。
利用3D打印技术,可以在计算机辅助下将金属材料精细地制成各种三维形状。
这种技术不仅可以制备各种形状的金属制品,还可以制备各种复杂的内部结构和空洞结构。
2. 等离子喷涂技术等离子喷涂技术是一种新型的金属材料制备技术,利用等离子体技术将金属粉末制成涂层。
这种技术具有制作高性能、高应力、耐热、耐化学腐蚀的薄膜等特点,适用于高温、高压、腐蚀性环境下的应用。
3. 碳化物浸渍技术碳化物浸渍技术是一种新型的金属材料制备技术,利用气相物理或化学方法将碳化物材料浸渍到金属基底中。
这种技术具有制备高性能的复合材料、高强度、耐磨、耐腐蚀等特点,可以广泛应用于工业生产中。
三、金属材料的应用金属材料应用范围广泛,涉及到各个领域和行业。
以下是几个典型的应用领域:1. 机械制造金属材料在机械制造领域中发挥着重要的作用,可以制造车辆、机器人、船舶等各种机械装备。
金属工程材料加工工艺一、金属熔炼金属熔炼是指将金属材料加热至熔点,使其成为液态,然后进行搅拌、熔化、澄清、浇铸等操作,以制备出所需形状和性能的金属材料。
金属熔炼是金属材料加工工艺中的重要环节之一,其质量直接影响到金属材料的性能和使用寿命。
二、金属成型金属成型是指将金属材料加工成所需形状的过程,包括锻造、铸造、冲压、轧制等工艺。
金属成型是金属材料加工中最基本的工艺之一,其质量直接影响到金属材料的使用性能和外观质量。
三、金属连接金属连接是指将金属材料通过焊接、铆接、螺栓连接等方式连接在一起的过程。
金属连接是金属材料加工中必不可少的环节之一,其质量直接影响到金属结构的强度和稳定性。
四、金属表面处理金属表面处理是指通过化学或物理方法对金属表面进行处理,以提高其耐腐蚀性、美观度和使用性能的过程。
金属表面处理包括镀层、涂层、氧化处理等工艺。
五、金属热处理金属热处理是指将金属材料加热至一定温度,并在此温度下保持一段时间,以改变其内部结构,从而达到改变其力学性能和耐腐蚀性能等目的的过程。
金属热处理包括淬火、回火、退火等工艺。
六、金属加工金属加工是指通过切削、磨削、钻孔等方式将金属材料加工成所需形状和尺寸的过程。
金属加工是金属材料加工中重要的环节之一,其质量直接影响到金属制品的质量和使用性能。
七、金属检测金属检测是指通过各种检测手段对金属材料的质量、性能和成分进行检测和评估的过程。
金属检测是保证金属材料加工质量和安全性的重要环节之一,包括无损检测、物理检测等方法。
八、金属包装金属包装是指对加工好的金属制品进行包装的过程,以保护其在使用和运输过程中不受损坏和污染。
金属包装应具有防震、防潮、防锈等功能,同时也要考虑到包装的外观美观度和成本等因素。
金属材料的加工与制造技术一、引言金属是自然界中的一种重要物质,具有良好的导电、导热、机械强度等优良性能,在现代社会中广泛应用于机械、汽车、航空航天、电子、建筑等众多领域。
然而,金属材料的制造过程及其加工技术对于材料的性能和质量具有极大的影响。
因此,精细的金属制造和加工技术才能满足各行各业对于金属材料性能和量的不断提高的需求。
二、金属材料的制造金属材料的制造方法大致可分为化学方法、物理方法和机械方法三种。
1. 化学方法其中最常见的化学制备方法是纯化法、电解法和还原法。
纯化法指的是通过一系列物理化学过程,从矿物中提取出纯金属材料。
电解法是指在电解质中将金属阳离子还原成金属沉积在电极上的方法。
还原法是指将金属矿物质通过还原反应制得金属。
2. 物理方法金属材料的物理制备方法主要有准单晶生长法、沉积法等。
准单晶生长法是通过在单晶种子上沉积原子或离子,制备出具有完整晶格的单晶。
沉积法是指通过某些物理化学方法,将金属薄膜沉积在衬底上的过程。
3. 机械方法金属材料的机械制备方法主要有压力加工和热处理等。
压力加工是将金属材料置于特定的压力下进行拉伸、压缩、弯曲等加工过程。
热处理是指对金属材料进行加热处理或冷却处理,以改善其力学性能、物理性能和化学性能等。
三、金属材料的加工技术金属材料的加工技术主要包括以下几种加工方法:1. 切削切削加工是指将金属材料置于切削工具下,通过不断切削去掉材料表面的方式来达到加工目的。
该方法采用的加工工具有车刀、铣刀、钻头、刨刀等,并可根据材料硬度的不同而选择不同的加工工具。
2. 压缩压缩加工是指将金属材料放置于两个平行的模具中,通过模具相对移动,施加压力将材料加工成所需形状。
常见的压缩加工有铸造、锻造、压铸、等离子熔覆等。
3. 生成型生成型加工是指通过在金属材料表面创造出所需形状的表面处理,从而达到加工效果。
如打孔、喷丸、电镀等。
4. 焊接焊接是指通过热源将金属材料熔化,加入金属或合金材料,将两个或多个材料接合在一起。
现代金属材料的制备与成型技术一、金属材料的制备技术:1.熔炼法:熔炼法是制备金属材料最常用的方法之一、它通过将金属原料加热至熔化状态,然后通过冷却凝固形成所需形状的材料。
熔炼法可分为电熔法、真空熔炼法、坩埚熔炼法等。
2.粉末冶金法:粉末冶金是一种将金属粉末通过成形与烧结来制备金属材料的方法。
该方法不需要熔化金属,可直接使用金属粉末,在高压下成型成所需形状,然后通过烧结得到金属材料。
3.化学法:化学法是一种利用化学反应来制备金属材料的方法。
常见的化学法包括电解法、沉积法和溶液法等。
这些方法通过将溶解金属离子的溶液与适当的反应剂反应,使金属离子还原成金属固体。
4.气相沉积法:气相沉积法是一种利用高温高压条件下,使金属原料气化后沉积在衬底上的方法。
这种方法可以制备薄膜、纤维等金属材料。
二、金属材料的成型技术:1.锻造成型:锻造是一种将金属材料加热至一定温度后施以一定的力使金属发生塑性变形,从而得到所需形状的方法。
锻造可分为自由锻造、模锻造和挤压锻造等。
2.压力成型:压力成型是一种利用压力来使金属材料发生塑性变形,从而得到所需形状的方法。
常见的压力成型包括挤压、拉伸、连续模锻等。
3.粉末冶金成型:粉末冶金成型技术是指利用金属粉末进行成型的方法。
通过将金属粉末与适当的粘结剂混合,然后在高压下成形。
最后通过烧结将金属粉末与粘结剂固化在一起,得到所需形状的金属成品。
4.焊接与连接:焊接是一种将两个或多个金属材料通过加热、溶解或者高压连接在一起的方法。
常见的焊接方法有电弧焊接、气焊、激光焊接等。
除了焊接外,还有螺纹连接、铆接和胶粘连接等方法。
三、现代金属材料的设备与工具:1.熔炉:熔炉是用于将金属原料熔化的设备,它可以提供高温条件,使金属原料达到熔点,进行熔炼制备。
2.成型机床:成型机床是用于金属材料成型的机床设备,如锻压机、冲床、拉伸机等。
它们通过施加力或者压力,使金属发生塑性变形,得到所需形状。
3.烧结炉:烧结炉是用于粉末冶金制备的设备,它可以将金属粉末在高温条件下烧结成一体。
金属材料制备工艺一、引言金属材料是工业生产中应用广泛的材料之一,其制备工艺对材料的性能和质量具有重要影响。
本文将介绍金属材料制备的一般工艺流程及常见的制备方法。
二、金属材料制备工艺流程金属材料的制备工艺一般包括原料准备、熔炼、铸造、加热处理和成形等环节。
1. 原料准备金属材料的原料通常是金属矿石或金属化合物。
在原料准备环节,需要对原料进行选矿、破碎、粉碎等处理,以获得具备一定纯度和颗粒度的原料。
2. 熔炼熔炼是将金属原料加热至熔点并使其熔化的过程。
常用的熔炼方法包括电弧炉熔炼、电感炉熔炼、氩弧熔炼等。
通过熔炼,可以得到液态金属。
3. 铸造铸造是将熔融金属倒入预先准备好的铸型中,并使其冷却凝固,获得所需形状的金属制品。
铸造方法主要包括砂型铸造、金属型铸造、压铸等。
铸造工艺的选择与所需制品的形状、尺寸和性能要求密切相关。
4. 加热处理加热处理是指对铸件或其他金属制品进行加热和冷却处理,以改变其组织结构和性能。
常用的加热处理方法有退火、淬火、正火等。
加热处理可以提高金属制品的硬度、强度、耐磨性等性能。
5. 成形成形是通过机械加工或其他方法将金属材料加工成所需形状和尺寸的工艺。
常见的成形方法有锻造、轧制、拉伸、冲压等。
成形工艺可以进一步改善金属材料的性能,并满足不同应用的需求。
三、常见的金属材料制备方法除了一般的工艺流程外,金属材料的制备还有一些特殊的方法和技术。
1. 粉末冶金粉末冶金是指利用金属粉末作为原料,通过混合、压制和烧结等工艺制备金属制品的方法。
粉末冶金可以制备出具有特殊形状和复杂结构的金属制品,并具有较高的密度和机械性能。
2. 电化学方法电化学方法是利用电解池中的电流和电解质溶液对金属进行电解、沉积或溶解的方法。
通过电化学方法可以制备出具有高纯度、均匀性好的金属材料。
3. 薄膜制备薄膜制备是一种制备薄膜材料的方法,常用于制备金属薄膜、合金薄膜等。
常见的薄膜制备方法有物理气相沉积、化学气相沉积、溅射沉积等。
材料制备与加工工艺材料制备与加工工艺在现代工业生产中扮演着至关重要的角色。
随着科技的进步和工业化的发展,人们对材料的需求也越来越高。
本文将就材料制备与加工工艺进行探讨,分析其在各个领域的应用和发展趋势。
一、材料制备1. 金属材料制备金属材料是工业生产中最基础的材料之一,其制备过程包括矿石的选矿、冶炼、铸造等多个环节。
随着冶金技术的不断进步,金属材料的品质和性能也在不断提高。
例如,现代高纯度金属材料的制备技术已经非常成熟,广泛应用于半导体产业和航空航天领域。
2. 塑料材料制备塑料是一种合成高分子材料,其制备过程主要包括聚合反应、加工成型等环节。
塑料材料逐渐取代传统材料,在包装、建筑、家具等领域得到广泛应用。
随着环保意识的提高,生物降解塑料等新型塑料材料也逐渐兴起。
3. 复合材料制备复合材料是由两种或两种以上不同性质的材料组合而成,具有优异的综合性能。
其制备过程包括基体、增强材料的选择、预处理、成型等环节。
复合材料在汽车、航空航天、体育器材等领域有着广泛的应用前景。
二、加工工艺1. 金属加工工艺金属加工是将金属材料进行成型、切削、焊接等加工过程,以满足不同形状和尺寸的要求。
常见的金属加工工艺包括冷拔、热轧、冷冲、焊接等。
现代数控加工技术的发展,使得金属加工更加精确高效。
2. 塑料加工工艺塑料加工是将塑料材料进行挤压、注塑、吹塑等加工过程,制备成各种形状的制品。
塑料加工工艺简单易行,适用于大规模生产。
注塑成型技术被广泛应用于电子、家电、汽车等行业。
3. 复合材料加工工艺复合材料加工是将复合材料进行成型、固化、表面处理等加工过程,以获得具有特定性能的制品。
常见的复合材料加工工艺包括手工层叠、自动化复合、热压成型等。
随着复合材料应用领域的不断拓展,其加工工艺也在不断创新和完善。
结语材料制备与加工工艺是现代工业发展的重要支撑,其发展水平直接影响着产品的质量和性能。
随着科技的不断进步和需求的不断变化,材料制备与加工工艺也在不断创新和发展。
有色金属材料的制备与应用有色金属材料是指除了铁、钢和铸铁之外的金属材料,包括铜、铜合金、铝、铝合金、镁、锌等。
这些材料具有密度低、导电性、导热性和抗腐蚀性能好等优点,在各个领域都有着广泛的应用。
一、有色金属材料的制备1.铜及铜合金的制备铜是最早被人类利用的金属之一,其开采和冶炼历史已有5000多年。
铜的制备方法主要包括火法、湿法和电解法等。
其中,电解法在现代铜冶炼中被广泛应用,其效率高、质量好、消耗小,被称为铜冶炼的未来趋势。
与铜相比,铜合金使用更为广泛。
铜合金通常由铜和其他金属(如锌、铝、锡等)合成,具有优异的物理力学性能和良好的耐蚀性能,广泛应用于汽车、电子、航空航天等领域。
2.铝及铝合金的制备与铜不同的是,铝的历史相对较短,其在19世纪末才被工业界广泛认识和应用。
铝的制备方法主要包括电解法、半连续法等,其中电解法是最常用的一种方法,也是制备高纯铝和铝合金的主要方法。
铝合金具有密度低、耐腐蚀、强度高、韧性好等优点,在航空航天、高速列车、汽车等领域被广泛应用。
铝合金的制备较铜合金难度大,需要进行复杂的热处理和加工工艺。
3.镁及镁合金的制备镁是密度最低的金属之一,具有较好的机械性能和抗腐蚀性能。
由于其密度较低,与其他金属相比,镁合金的强度和刚度较低,但是具有很好的成形性和焊接性能。
镁及镁合金的制备方法包括熔炼法、电解法、气相沉积法等。
其中熔炼法和电解法是较为常用的方法。
二、有色金属材料的应用有色金属材料在工业生产和民用领域都有着广泛的应用。
以下是几个典型的应用领域:1.电子领域有色金属材料在电子领域有着重要的应用,如铜箔、铝箔、锌锰干电池等。
其中,铜箔是制作聚酰亚胺电路板的重要材料,具有良好的导电性能和成型性能。
2.汽车制造有色金属材料在汽车制造领域有着广泛的应用,如铝合金、镁合金、铜合金等。
铝合金因其密度低、强度高而被广泛应用于汽车轮毂、车身结构等部件的制造。
而镁合金具有优异的成形性和强度,被广泛应用于汽车座椅结构等部件的制造。
金属材料的制备与加工技术研究金属材料是人类历史中非常重要的材料之一,它广泛应用于航天、军工、汽车、建筑等各个领域。
金属材料的发展离不开材料制备与加工技术的创新。
本文将介绍金属材料的制备与加工技术的研究现状以及未来的发展趋势。
一、金属材料的制备技术1.传统制备技术传统制备技术主要包括冶炼、铸造、锻造、轧制、拉拔等工艺。
这些工艺由于具有大批量、低成本的特点,一直是金属材料制备的主要手段。
然而,这些制备技术存在一些缺点,例如难以控制材料结构、成分不均等问题。
2.先进制备技术近年来,随着科技的发展,金属材料的制备技术也得到了很大的改进。
先进制备技术包括:粉末冶金、快速凝固、表面化学合成等。
这些制备技术能够制备出具有优异性能的新型金属材料,例如高性能合金、纳米材料等。
3.塑性加工技术在金属材料制备技术中,塑性加工技术一直都是不可或缺的一环。
塑性加工技术包括冷、热加工,其中热加工具有显著的节能效果。
例如,采用等温锻造技术可以大大降低锻造能耗,提高材料的成形性。
二、金属材料的加工技术1.机加工机加工是将加工件固定在机床上,在加工器具的驱动和控制下削去加工件的材料,以达到加工工件的目的。
机加工技术是金属加工中最主要的一种加工方法,使用范围广泛。
2.焊接焊接是将两个或多个工件加热至一定温度,在受热部位形成熔融或半熔状态的同时主要依靠力、表面张力及熔池的浮力,使它们彼此连接而成的一种加工方式。
焊接技术在各个行业有着广泛的应用,例如汽车制造、造船、航空工业等。
3.切割切割是指通过切割工具对金属材料进行切割、剪切、孔加工等操作。
切割技术主要有火焰切割、等离子切割、激光切割等。
切割技术在金属加工领域中也是非常重要的一种技术。
三、未来的发展趋势1.数字化制造数字化制造是一种借助数字技术实现产品设计、制造的方法。
它可以通过数字化仿真、人工智能等技术来实现生产数字化化、信息化、智能化。
数字化制造已经越来越被广泛应用,尤其是在金属材料制备与加工领域中。
金属材料及制备加工工艺金属材料是一种常见的工程材料,被广泛应用于建筑、汽车、航空航天等领域。
它具有优异的力学性能、导电性能和热传导性能,同时也可以通过不同的加工工艺进行制备和加工。
本文将介绍金属材料的基本概念、常见的金属制备工艺以及加工工艺,并探讨其对材料性能的影响。
一、金属材料的基本概念金属是一类化学元素,具有典型的金属特性,如良好的导电性、热导性、延展性和可塑性。
金属材料由纯金属和合金两类组成。
纯金属指的是仅由一种金属元素组成的材料,如铜、铁、铝等。
而合金是由两个或多个金属元素以及非金属元素组成的材料,如不锈钢、合金钢等。
二、金属材料的制备工艺金属材料的制备主要分为两大类:冶金法和物理法。
1. 冶金法冶金法是指利用冶金工艺将金属矿石等进行熔炼、抽取、精炼等过程,制得纯金属或合金的方法。
常见的冶金法包括高炉法、电解法和氧化铝电解法等。
高炉法适用于铁矿石的冶炼,通过高温熔炼将矿石中的杂质去除,得到纯净的铁原料。
电解法适用于锌、铝等金属的冶炼,利用电解原理将金属从其盐类中析出。
氧化铝电解法则用于铝的冶炼,通过电解熔融的氧化铝制得纯铝。
2. 物理法物理法是指通过物理手段改变金属材料的晶体结构和形态,从而改善其性能。
常见的物理法包括挤压、轧制、拉伸和锻造等。
挤压是将金属材料置于挤压机中,利用压力将其挤压成所需的形状。
轧制则是通过辊轧将金属材料加工成板、带、条等形状。
拉伸是将金属材料置于拉伸机中,利用拉力使其产生塑性变形,从而改变其形状和性能。
锻造是将金属材料加热至一定温度后,利用冲击或挤压力将其塑性变形成所需形状。
三、金属材料的加工工艺金属材料经过制备后需要进行进一步的加工才能满足实际需求。
常见的金属加工工艺包括切割、焊接、冲压和铸造等。
1. 切割切割是指将金属材料切割成所需尺寸和形状的工艺。
常见的切割方法有机械切割、火焰切割和激光切割等。
机械切割适用于较薄的金属材料,通过切割机械进行锯切、剪切等。
火焰切割则是利用高温火焰将金属材料局部加热至熔化,并利用氧气吹切割缝隙,实现切割目的。
金属材料的制备工艺和技术一、金属材料的分类1.金属元素:铁、铜、铝、锡、铅等2.合金:由两种或两种以上的金属与非金属经一定方法合成二、金属材料的制备工艺a.火法冶炼:如高炉炼铁、反射炉炼铜等b.湿法冶炼:如硫酸化法炼铜、氰化法炼金等2.铸造:将熔化的金属倒入模具中,冷却凝固成一定形状3.锻造:在高温下对金属进行拉伸、压缩等力的作用,使其产生塑性变形4.热处理:通过加热、保温和冷却,改变金属的组织结构和性能5.焊接:将两个金属部件熔接在一起,形成牢固的连接三、金属材料的制备技术1.粉末冶金:将金属粉末和/或金属粉末与非金属粉末混合,经过成型和烧结,制造金属材料2.3D打印:利用计算机控制技术,按构件形状逐层打印金属粉末,制造复杂形状的金属部件3.电镀:通过电流传递,在金属或非金属表面镀上一层金属4.热喷涂:将金属或金属陶瓷粉末加热至熔点以上,喷射到基体表面,形成涂层5.阳极氧化:在电解质溶液中,金属表面产生氧化层,提高耐腐蚀性和外观效果四、金属材料的性能与应用1.机械性能:强度、韧性、硬度、耐磨性等2.物理性能:导电性、导热性、磁性等3.化学性能:耐腐蚀性、抗氧化性等4.应用:建筑、航空、汽车、电子、珠宝等行业五、金属材料制备过程中的质量控制1.原材料的选择:确保原材料的纯度和性能符合要求2.工艺参数控制:严格控制冶炼、铸造、锻造等过程中的温度、压力等参数3.产品质量检测:对制备的金属材料进行机械性能、物理性能、化学性能等检测4.环境与安全:加强冶炼、加工等过程中的环境保护和劳动保护六、我国金属材料产业的发展现状与趋势1.发展现状:我国金属材料产量居世界第一,但产品结构有待优化2.发展趋势:绿色制造、智能制造、高性能金属材料研发等七、金属材料制备相关的科研机构与上市公司1.科研机构:中国科学院金属研究所、北京科技大学等2.上市公司:宝钢股份、中国铝业、江西铜业等以上内容仅供参考,具体知识点以教材和课本为准。
纳米金属材料的制备与加工方法纳米材料是一种具有特殊性质和应用潜力的材料,其具有较大比表面积和尺寸效应,能够展现出与宏观金属材料不同的独特性能。
制备纳米金属材料是纳米科学和纳米技术的重要研究内容之一,本文将探讨纳米金属材料的制备和加工方法。
1. 物理方法物理方法是制备纳米金属材料的常用手段之一。
其中,溅射和蒸发是常见的物理方法。
溅射是一种将金属材料沉积在基底上的方法。
通过在真空条件下将金属材料置于靶上,然后用高能粒子轰击靶材,从而将金属原子抛射到基底上形成纳米金属材料。
蒸发是通过将金属材料加热至蒸发温度,然后使其在真空条件下沉积到基底上形成纳米金属材料。
该方法适用于制备单一纯金属纳米材料。
2. 化学方法化学方法是制备纳米金属材料的另一种重要手段。
最常见的化学方法包括溶胶-凝胶法、水热合成法和沉积-析出法。
溶胶-凝胶法是通过将金属的溶胶转变为凝胶,然后经过干燥和热处理,最终得到纳米金属材料。
该方法可以获得较高纯度和较大比表面积的纳米金属材料。
水热合成法是利用水热反应合成纳米金属材料的方法。
通过在高温高压的环境中,将金属盐溶液和适当的还原剂进行反应,形成纳米金属材料。
该方法适用于制备多种金属的纳米材料。
沉积-析出法是将金属盐溶液中的金属沉积到基底上,然后经过适当的处理,使其析出形成纳米金属材料。
该方法相对简单易行,适用于大规模制备。
3. 机械方法机械方法是在已有金属材料的基础上,通过机械加工手段制备纳米金属材料。
常见的机械方法包括球磨法和机械合金化法。
球磨法是将金属粉末和球磨介质放入球磨罐中,在高速旋转的球磨罐内进行球磨,使金属粉末逐渐减小为纳米尺寸。
该方法适用于制备多种金属纳米材料。
机械合金化法是通过高能球磨设备对多种金属材料进行合金化,并形成纳米晶结构。
通过机械合金化,可以制备出具有优异力学性能的纳米金属材料。
4. 生物和生物合成方法生物和生物合成方法利用生物体和生物分子对金属离子进行还原和沉淀,从而制备纳米金属材料。
金属材料的制备与应用技术研究一、引言金属材料是目前工业生产中使用最广泛的一类材料,其优异的力学性能、导电性能、导热性能等特性使得其在航空、汽车、电子、建筑等领域都有着广泛的应用。
本文将重点介绍金属材料的制备与应用技术研究,给读者带来全面的了解。
二、金属材料制备技术研究1. 粉末冶金技术粉末冶金是指将金属及其化合物制成粉末,再通过压制、烧结等工艺将其加工成所需材料的技术。
其优点在于可制备出较为复杂的形状,如管材、型材等,且精度高,均匀性好。
在制备高温合金、金属陶瓷等特殊材料方面有着重要的应用。
2. 熔铸技术熔铸技术是指将金属材料的原材料熔化后浇铸成型,其优点在于可制备出大型、块状的材料,适用于制备大型构件、重型设备等。
3. 金属材料表面处理技术金属材料的表面处理技术是指对其表面进行一系列加工处理,如表面喷涂、电镀、镀膜等,使其表面具有更好的耐腐蚀性、抗磨损性、耐高温性等特性。
广泛应用于航空、汽车、机械制造、电子等领域。
三、金属材料应用技术研究1. 金属材料在航空制造中的应用航空工业是金属材料应用最广泛的领域之一,低合金钢、高强度钢、铝合金等材料在飞机制造中有着广泛的应用。
此外,金属材料表面处理技术也在航空中广泛应用,如喷涂航空涂料、电镀防腐处理等。
2. 金属材料在汽车制造中的应用汽车工业也是金属材料应用广泛的领域之一。
不锈钢、铝合金、镁合金等材料在汽车制造中有着广泛的应用。
其中,铝合金车身重量轻、强度高,成为汽车轻量化的重要途径。
金属材料表面处理技术也在汽车制造中得到了广泛的应用,如汽车漆、电镀、喷涂防腐处理等。
3. 金属材料在电子产品制造中的应用电子产品制造中也应用了大量的金属材料。
例如,铜、铝等金属材料在线路板制造中有着广泛的应用;钎焊、电弧焊等技术也广泛应用于电子产品制造中。
此外,金属材料表面处理技术也在电子产品制造中得到了广泛的应用,如电镀、喷涂、阳极氧化等。
四、结语金属材料制备与应用技术是现代工业发展的重要基石,具有广泛的应用前景和发展潜力。
金属材料的制备与加工作业
班级:Y090301 学号:s2******* 姓名:韩保杰1.镁合金压力铸造,触变铸造过程中材料的制备及加工工艺的特点与区别。
答:固态压铸和触变注射成形是较新的金属制品生产技术:
1压力铸造:该方法是将熔化的镁合金液,高速高压注入精密的金属型腔内,使其快速成形。
根据把镁液送入金属型腔的方式,压铸机可分为热室压铸机和冷室压铸机两种。
1)热室压铸机。
其压室直接浸在坩埚内镁液中,长期处于被加热状态,压射部件装在坩埚上方。
这样压铸每循环一次时,不必特意给压室供给镁液,所以生产能快速、连续,易实现自动化。
热室压铸机的优点是生产工序简单,效率高;金属消耗量少,工艺稳定;压入型腔的镁液较干净,铸件质量较好;镁液压人型腔时流动性好,适于压薄壁件。
但压室、压铸冲头及坩埚长期浸在镁液中,影响使用寿命,对这些热作件材料要求较高。
镁合金热室压铸机更适合生产一些薄壁而外观要求较高的零件,如手机和掌上电脑外壳等。
镁合金热室压铸机特点:具有生产效率高、浇注温度低、铸型寿命长、易实现熔体保护等特点;缺点是设备成本高、维修复杂且费用较高。
由于镁合金热室压铸机是针对镁合金的物化特性和压铸工艺特点而设计的压铸机,因此在镁合金压铸生产中应用最广。
2)冷室压铸机。
每次压射时,先由手工或通过自动定量给料机把镁液注入压射套筒内,因而铸造周期比热室压铸机要长些。
冷室压铸机的特点是:压射压力高,压射速度快,所以可以生产薄壁件,也可以是厚壁件,适应范围宽;压铸机可大型化,且合金种类更换容易,也可与铝合金并用;压铸机的消耗品比热室压铸机的便宜。
多数情况下,对大型、厚壁、受力和有特殊要求的压铸件采用冷室压铸机生产。
在大多数情况下,大型、厚壁、受力和有特殊要求的压铸件采用冷室压铸机生产。
镁合金冷室压铸机的特点是:(1)快压射速度提高到8-12m/s;(2)减少了增压过程的建压时间;(3)提高了压射速度和压射力;(4)采用电磁自动定量给料装置给料,以避免镁合金浇注时氧化;(5)如果采用特种压铸工艺时(如真空)设备必需配套等镁合金压铸时,由于压射速度高,当镁液充填到模具型腔时,不可避免会有金属液紊流及卷气现象发生,造成工件内部和表面产生孔洞缺陷,因此对于要求高的铸件,如何提高其成品率是镁合金压铸所面临的主要问题之一。
镁合金压力铸造的优点有-高的生产率;高精度;好的表面质量;精细的铸件晶粒;可压铸薄壁和复杂结构的产品。
镁合金压铸和铝合金压铸相比-生产率高50%;可使用钢模,延长服务寿命;更低的潜热,节省能量;好的机加工性;模具成本节省50%;熔体具有更高的流动性。
镁合金压力铸造的缺点例如-由于极高的液体填充速度和凝固速度,易产生卷入性气孔;铸件不能太厚,壁厚只能局限于一定的尺寸;便宜的压铸合金,有限的机械性能;有限的可使用压铸合金种类;由于铸件晶粒尺寸细小,抗蠕变能力较差;抗蠕变的Mg-Al-RE镁合金的铸造性较差,而且昂贵;不能进行热处理;不适合焊接。
2.触变铸造:触变铸造是将制备的非枝晶组织的棒料定量切割后重新加热至液固两相区(固相体积分数为50%—80%),然后再采用压铸或模锻工艺半固态成形,触变铸造不使用熔化设备,锭料重新加热后便于输送和加热,易于实现自动化。
除镁合金和镁基复合材料外,铝合金、锌合金以及其复合材料均可采用此种生产工艺。
采用这种工艺生产的零件除具备半固态成形的一般特点外(例如零件内部致密、凝固收缩小和近终形成形),与普通压铸相比还有操作简单和安全、效率高、切屑或碎片经碾研后回收率近100%(可免除二次精炼过程)以及更加有利于环保等特点。
因此,触变注射成形技术具有巨大的应用潜力,成为21世纪的新一代金属成形技术。
特点:加热至部分熔化状态下,传统合金在液固两相区的初生 相以发达枝晶形式存在,
这种半固态合金具有很的很大的粘度,不能够正常充型。
若对这种半固态合金施加剪切,可以得到球状初生α晶,称之为触变结构。
在一定温度下,具有触变结构的半固态合金在压力作用下粘度大幅度降低,极易充填铸型。
触变注射成形以半固态合金的触变行为为出发点,具有触变结构的半固态合金可以象热塑性材料一样流动,从而可以借助注塑原理成形。
触变注射成形的温度、压力以及涡杆转速远远高于注塑设备,但成形原理极为相似。
成形的加热系统采用了电阻和感应加热的复合工艺,将合金加热至582±2℃,固相体积分数高达60%,同时通入氩气进行保护。
触变注射成形的铸造压力高,能促进金属模具和镁合金料浆间的热传递,导致表面附近的晶粒微细化,对成形产品赋予了高耐蚀性和机械强度。
这个铸造压力还能提高产品对金属模的复制性,加强筋和凸起部的成形容易。
料浆的温度与普通压铸方法相比,低50-100℃,因而能控制产品由於热收缩而引起的尺寸变化,并提高模具的使用寿命。
此外,触变注射成形的零件可以热处理,而且不需要配备熔化炉、不使用SF6防燃气体、不产生浮渣和淤渣等,兼顾了安全性和环保要求(SF6破坏大气臭氧层)。
因此,触变注射成形技术是今後实用的成形方法。
区别:
1.首先普通压力铸造的材料必须熔炼至镁合金液,而触变铸造加热至部分熔化状态下,传统合金在液固两相区的初生α相以发达枝晶形式存在,这种半固态合金具有很的很大的粘度,不能够正常充型。
2.镁合金热室压铸机是采用冲头直接将镁合金液经过封闭的鹅颈和喷嘴压人金属模型腔,因此压射时增压压力较小,一般不适用于汽车、航天航空等大型、壁厚、载荷大的零件。
这点不如触变铸造,而冷室压铸机压射压力高,压射速度快,所以可以生产薄壁件,也可以是厚壁件,适应范围宽,但是由于极高的液体填充速度和凝固速度,易产生卷入性气孔;铸件不能太厚,壁厚只能局限于一定的尺寸。
3.可使用压铸合金种类是有限的,而触变成形可用的合金种类又比压铸的多些;
4.压铸件不能进行热处理,不适合焊接,而触变注射成形的零件可以热处理。
5.与普通压铸相比触变铸造不使用熔化设备,锭料重新加热后便于输送和加热,易于实现自动化。
6.与普通压铸相比还有操作简单和安全、效率高、切屑或碎片经碾研后回收率近100%(可免除二次精炼过程)以及更加有利于环保等特点。
因此,触变注射成形技术具有巨大的应用潜力,成为21世纪的新一代金属成形技术。
触变铸造不使用SF6防燃气体、不产生浮渣和淤渣等,兼顾了安全性和环保要求(SF6破坏大气臭氧层)。
7.触变铸造料浆的温度与普通压铸方法相比,低50-100℃,因而能控制产品由於热收缩而引起的尺寸变化,并提高模具的使用寿命。
8.在应用中:利用触变注射成形技术可以制备手机、笔记本电脑、数码照相机、摄像相机、液晶投影仪等可移动通讯器材的壳体。
座椅、方向盘等汽车零部件的成形应用也在研究开发中,但是,制备预制坯料需要巨大的投资,而且关键技术为国外少数几家公司所垄断,导致其成本居高不下,仅适于制造需高强度的关键零件。
相比之下压力铸造还是较之常用的技术。
2.挤压铸造的工艺及优缺点。
答:挤压铸造(squeeze casting),也称液态模锻(liquid metal forging)。
挤压铸造将液态和固态金属成形原理有机结合起来,使液态金属以低速充型,在高压(50~100MPa)下凝固,最终获得致密的可以热处理的铸件。
特点:1)优点:1.挤压铸造作为一种先进的加工工艺,它兼有铸造工艺简单、成本低,又有锻造产品性能好,质量可靠等优点;挤压铸造设备提供低流速(0.05—1.50m/s)、大流量填充铸型的能力,以便使金属液平稳的填充铸型和将铸型内气体赶出,而且要求在铸型被充
满后挤压活塞能急速增压(50—150ms 内),使充满铸型的金属液在较高压力(>50Mpa)下结晶;2.它可以通过挤压活塞对铸件肥厚部分进行补缩,而压铸件一般不能补缩,因此挤压铸造可以铸造n×10mm 厚度,壁厚不均的铸件;3.挤压铸造与压铸一样只用脱模剂,所以挤压铸造凝固冷却速度与压铸一样可以达到金属型重力铸造冷却速度的3—5 倍(约300—400℃/s),因此挤压铸件的力学性能,特别是延伸率高于其他铸造方法1—2 倍;3.挤压铸造由于只用脱模剂,不用保温涂料,铸件冷却速度快,且在高比压下结晶,液态金属紧贴铸型,故铸件尺寸精度(CT3-4 级)、表面粗糙度(<Ra6.5)等级都非常高,对于150mm 以下尺寸挤压件,在铸型上几乎可以不留缩尺,挤压铸造铸件可以与金属型重力铸造铸件一样,进行固溶及时效热处理,以大幅提高合金机械性能。
4.挤压铸造适宜于一些形状复杂、且性能上又有一定要求的产品
2)缺点:1.挤压铸造的内浇口一般开在铸件最肥厚部位,而且尺寸较大,其目的是让挤压活塞提供的压力有效的传递到铸型各部,使得金属液在高压下结晶,因此挤压铸件内浇口一般用机械加工的方法去除,不能像压铸件那样轻易敲断、去除;2.模具需预热,若不预热,导致合金熔体浇入型腔后来不及加压就已经凝固,因此,模具预热温度过低,铸件的质量难以得到保障,易于产生诸如冷隔和表面裂纹等缺陷,但预热温度也不能过高,否则会延长保压时间,降低生产率,同时也不利于喷涂润滑剂,容易发生粘模,使脱模困难,降低模具使用寿命。
3.挤压铸造工件的壁厚不能太薄,否则在结晶和成形方面都会带来一些问题,甚至产生废品。
4.室温塑性模锻件的指标比挤压铸造件要好,所以承受动载荷的能力没有模锻件为好。