华为NBIOT白皮书英文版
- 格式:pdf
- 大小:2.47 MB
- 文档页数:23
5G-Advanced网络技术演进白皮书(2021)——面向万物智联新时代从产业发展驱动角度看,键,全球的主要经济体均明确要求将5G作为长期产业发展的重要一环。
从业务上5G将要进入千行百业,从技术上5G需要进一步融合DOICT等技术。
因此本白皮书提出需要对5G 网络的后续演进—5G-Advanced进行持续研究, 并充分考虑架构演进及功能增强。
本白皮书首先分析了5G-Advanced的网络演进架构方向,包括云原生、边缘网络和网络即服务,同时阐述了5G-Advanced的技术发展方向包括智慧、融合与使能三个特征。
其中智慧代表网络智能化,包括充分利用机器学习、数字孪生、认知网络与意图网络等关键技术提升网络的智能运维运营能力,打造内生智能网络;融合包括行业网络融合、家庭网络融合、天地一体化网络融合等,实现5G与行业网协同组网、融合发展;使能则包括对5G交互式通信和确定性通信能力的增强,以及网络切片、定位等现有技术的增强,更好赋能行业数智化转型。
,华为,爱立信(中国),上海诺基亚贝尔,中兴,中国信科,三星,亚信,vivo,联想,IPLOOK,紫光展锐,OPPO,腾讯,小米(排名不分先后)1 产业进展概述 (01)1.1 5G产业发展现状 (01)1.2 5G网络演进驱动力 (01)1.2.1 产业发展驱动力 (01)1.2.2 网络技术驱动力 (02)2 5G-Advanced网络演进架构趋势和技术方向 (04)3 5G-Advanced关键技术 (06)3.1 网络智能化 (06)3.1.1 网络智能化关键技术 (06)3.1.2 智能网络应用场景 (08)3.2 行业网融合 (08)3.3 家庭网络融合 (09)3.4 天地一体化网络融合 (10)3.5 交互式通信能力增强 (11)3.6 确定性通信能力增强 (11)3.7 用户面演进 (12)3.8 网络切片增强 (12)3.9 定位测距与感知增强 (13)3.10 组播广播增强 (13)3.11 策略控制增强 (13)4 总结和展望 (14)5G网络的全球商用部署如火如荼。
NB-IoT物理层设计研究蒙文川【摘要】NB-IoT(窄带物联网)是3GPP R13中引入的蜂窝物联网技术,具有广覆盖、低成本、大容量、低功耗的系统特性.基于空中接口和物理层基本过程的角度,通过研究NB-IoT上下行物理信道主要的结构、配置和功能,阐述了已完成标准化的NB-IoT物理层基本设计方案,从而更好地了解NB-IoT物理层是如何匹配系统设计目标的,有助于进一步研究把握NB-IoT技术的发展方向.%NB-IoT (Narrow Band-Internet of Things) is a cellular-based IoT technology introduced in 3GPP Release 13, characterized by its wide signal coverage, low terminal cost, large capacity and low power consumption. Based on the air interface and basic process of physical layer,the standardized basic design of NB-IoT physical layer is discussed via the study of the structure, configuration and function of DL/UL physical channel in NB-IoT, thus to make a better understanding of how the NB-IoT physical layer to match design objectives of the system, and this would be of help for further study and grasp the development direction of NB-IoT technology.【期刊名称】《通信技术》【年(卷),期】2017(050)012【总页数】5页(P2745-2749)【关键词】物联网;NB-IoT;物理信道;LTE【作者】蒙文川【作者单位】中国移动通信集团广西有限公司贵港分公司,广西贵港 537100【正文语种】中文【中图分类】TN929近年来,互联需求高速增长,NB-IoT应运而生。
Edge OTN 解决方案技术白皮书文档版本 V1.1 发布日期2021-03-20华为技术有限公司版权所有© 华为技术有限公司2021。
保留一切权利。
非经本公司书面许可,任何单位和个人不得擅自摘抄、复制本文档内容的部分或全部,并不得以任何形式传播。
商标声明和其他华为商标均为华为技术有限公司的商标。
本文档提及的其他所有商标或注册商标,由各自的所有人拥有。
注意您购买的产品、服务或特性等应受华为公司商业合同和条款的约束,本文档中描述的全部或部分产品、服务或特性可能不在您的购买或使用范围之内。
除非合同另有约定,华为公司对本文档内容不做任何明示或默示的声明或保证。
由于产品版本升级或其他原因,本文档内容会不定期进行更新。
除非另有约定,本文档仅作为使用指导,本文档中的所有陈述、信息和建议不构成任何明示或暗示的担保。
华为技术有限公司地址:深圳市龙岗区坂田华为总部办公楼邮编:518129网址:https://客户服务邮箱:******************客户服务电话:4008302118文档版本V1.1 (2021-03-20) 版权所有© 华为技术有限公司第 2 共29目录1 FMEC网络融合的趋势与挑战 (4)1.1 品质业务需求快速增长 (4)1.2 融合业务成为趋势 (6)1.3 FMEC网络建设面临的挑战 (7)1.4 总结 (8)2 Edge OTN方案是FMEC融合建网的最佳选择 (9)2.1 Edge OTN架构 (9)2.2 基于价值区域的精准布局建网方式 (10)2.3 总结 (12)3 Edge OTN关键技术 (13)3.1 环境适应性增强技术 (13)3.2 灰光彩光混合传输 (13)3.3 Liquid OTN技术 (14)3.4 高精度时间同步 (15)4 华为Edge OTN解决方案 (16)4.1 精准规划工具 (16)4.2 全场景部署能力 (17)4.3 光层电层创新方案 (19)4.3.1 极简光层 (19)4.3.2 X+Y分布式电层 (20)4.3.3 创新线路速率 (22)4.3.4 平滑演进典型方案 (22)4.4 智慧运维 (23)4.4.1 NCE智能管控 (23)4.4.2 光层自动调测 (24)4.4.3 智能光纤管理 (24)4.4.4 智慧光性能管理 (24)5 总结 (26)A 缩略语 (27)1 FMEC网络融合的趋势与挑战1.1 品质业务需求快速增长宽带成为人们生产、生活必需的基础资源。
华为终端云服务(HMS )安全技术白皮书文档版本V1.0 发布日期 2020-05-19华为终端云服务(HMS),安全,值得信赖华为终端有限公司地址:广东省东莞市松山湖园区新城路2号网址:https:///cn/PSIRT邮箱:****************客户服务传真:*************目录1简介 (1)网络安全和隐私保护是华为的最高纲领 (2)2基于芯片的硬件和操作系统安全 (4)麒麟处理器集成安全芯片 (4)敏感个人数据在安全加密区处理 (5)EMUI安全加固及安全强制管理 (6)3安全业务访问 (7)密码复杂度 (7)图形验证码 (7)帐号保护和多因子认证 (8)风险操作通知 (8)启发式安全认证 (8)儿童帐号 (8)帐号反欺诈 (8)保护帐号的隐私 (9)4加密和数据保护 (10)EMUI数据安全 (10)加密密钥管理和分发 (11)认证和数字签名 (12)可信身份认证和完整性保护 (13)信任环TCIS (13)5网络安全 (14)安全传输通道 (14)云网络边界防护 (14)安全细粒度VPN保护 (15)主机和虚拟化容器保护 (16)多层入侵防护 (16)零信任架构 (17)漏洞管理 (17)运营审计 (18)6业务安全 (19)云空间 (19)天际通 (20)查找我的手机 (21)浏览器 (21)钱包/支付 (22)业务反欺诈 (24)7应用市场和应用安全 (25)应用市场和应用安全概述 (25)开发者实名认证 (26)四重恶意应用检测系统 (26)下载安装保障 (27)运行防护机制 (28)应用分级 (29)快应用安全 (29)软件绿色联盟 (30)定期发布安全报告 (30)开放安全云测试 (30)8 HMS Core(开发者工具包) (32)HMS Core框架 (32)认证凭据 (33)业务容灾 (34)华为帐号服务(Account kit) (34)授权开发者登录 (34)反欺诈 (34)通知服务(Push Kit) (34)身份认证 (35)Push消息保护 (35)Push消息安全传输 (36)应用内支付服务(In-App Purchases) (36)商户和交易服务认证 (36)防截屏录屏 (36)防悬浮窗监听 (36)禁止口令密码输入控件提供拷出功能 (36)广告服务(Ads Kit) (37)高质量的广告选择 (37)反作弊系统 (37)数据安全 (37)云空间服务(Drive Kit) (38)认证授权 (38)数据完整性 (38)数据安全 (38)业务双活与数据容灾 (38)游戏服务(Game Kit) (39)数据保护 (39)用户授权 (39)用户身份服务(Identity Kit) (39)钱包服务(Wallet kit) (40)系统环境安全识别能力 (40)卡券数据安全(仅中国支持) (40)运动健康服务(Health Kit) (41)用户数据访问控制 (41)数据加密存储 (41)线上快速身份认证服务(FIDO) (41)本地认证(BioAuthn) (42)外部设备认证 (42)数字版权服务(DRM Kit) (43)硬件级安全运行环境 (43)安全视频路径 (43)安全时钟 (44)DRM证书认证 (44)安全传输 (44)机器学习服务(ML Kit) (44)ML算法包APK安全 (45)数据处理 (45)近距离通信服务(Nearby Service) (45)定位服务(Location Kit) (46)用户授权 (46)数据存储 (47)位置服务(Site Kit) (47)地图服务(Map Kit) (47)情景感知服务(Awareness Kit) (48)分析服务(Analytics Kit) (48)服务端防仿冒 (48)数据安全传输 (48)服务器数据隔离 (49)动态标签管理器服务(Dynamic Tag Manager) (49)防仿冒 (49)有限的API代码执行权限 (50)动态标签代码安全管理 (50)安全检测服务(Safety Detect) (50)系统完整性检测(SysIntegrity) (50)应用安全检测(AppsCheck) (51)恶意URL检测(URLCheck) (52)虚假用户检测(UserDetect) (52)9隐私控制 (53)本地化部署 (53)数据处理清晰透明 (54)最小化数据获取 (54)数据主体权利与隐私控制 (55)数据处理者义务 (56)数据隔离 (56)差分隐私 (56)联合学习 (57)保护未成年人个人信息 (57)10安全和隐私认证及合规 (58)ISO/IEC 27001/27018认证 (58)ISO/IEC 27701认证 (59)CSA STAR 认证 (59)CC认证 (59)PCI DSS认证 (60)华为帐号EuroPriSe认证 (60)11展望 (61)关注安全技术,保护用户并对用户赋能 (61)巩固防御机制,提升安全能力,共建安全生态 (62)做好准备,应对颠覆性技术带来的威胁 (62)A缩略语表 (64)注:由于不同型号或不同国家市场特性的差异,部分能力仅在部分市场可用,具体以产品说明为主,本文其他地方不再单独说明。
华为的物联⽹产业布局(知识储备,纯⼲货)“OceanConnect”是以华为IoT联接管理平台为核⼼的IoT平台开放⽣态。
通过丰富的API和系列化Agent保障⽹络联接,简化终端接⼊,加速应⽤上线,实现与上下游伙伴产品的⽆缝联接。
通过IoT联接管理平台,将华为擅长的⽹络通信能⼒、设备接⼊能⼒、数据分析能⼒开放给合作伙伴,⽀撑伙伴的效率提升和商业成功。
华为曾预测,到2025年物理联接将达到1000亿,增长幅度超过10倍,⽽虚拟联接将达到万亿,增长幅度将达100倍。
物理连接与虚拟联接在数量上的爆发性增长将引发质变,引领⼈类社会⾛向全联接的世界。
物联⽹相关名词解释华为核⼼⽹:华为核⼼⽹系列解决⽅案,⽀持运营商实现向关注⽤户体验、⽹络精细运营、ICT融合转型的重⼤转⾝,成为运营商推进⽹络、数据、业务、运营融合的关键控制点,帮助运营商赢在后话⾳时代,掘⾦移动互联⽹时代,领导ICT融合时代。
主要功能有: 1、CSCS融合通信解决⽅案致⼒于为运营商轻松实现⽹络转型。
⼀⽅⾯,它可帮助运营商实现⽹络的平滑演进和智能运维;另⼀⽅⾯,它可增强终端⽤户的业务体验。
2、IMSIMS(IP Multimedia Subsystem)是运营商新⼀代电信核⼼⽹络,引⼊语⾳、数据、视频、富媒体能⼒,帮助运营商实现固定移动融合、传统话⾳到ICT融合的转型,实现宽窄带统⼀接⼊、固定⽆线统⼀接⼊,兼有融合、IP、多媒体三⼤特征,满⾜运营商在后话⾳时代、移动互联⽹时代ICT融合发展的终极需求。
3、融合⽤户数据融合⽤户数据中⼼解决⽅案是基于下⼀代ATCA电信平台,具备⾼可靠性、⼤容量以及融合演进能⼒的⽤户数据管理系统解决⽅案,帮助运营商⾼效地管理⽇益庞⼤的⽤户数据,简化⽹络、降低OPEX、提升运营效率、加速业务创新,从⽤户数据中挖掘更多的价值和利润。
4、IoTHuawei IoM 解决⽅案是专门设计⽤于IOT的连接管理的平台解决⽅案。
它提供连接管理平台,IoT 业务使能平台,IoT 数据管理以及开放平台等系列功能。
下一代数据中心白皮书01下一代数据中心白皮书前言前言人类社会正在加速迈向智能化,比如智能手机、智能家居、智能制造、自动驾驶等正在重塑人们的工作和生活。
作为智能世界和数字经济的坚实底座,数据中心迎来了蓬勃发展。
同时,碳中和已经成为全球的共识和使命,绿色低碳变成世界新的主题,也是数据中心建设、运营必须考虑的重要因素。
面对ICT技术快速演进、建设需求激增以及绿色低碳要求,数据中心产业正在发生深刻变革,将进入新的时代。
什么是符合新时代需求的“下一代数据中心”?华为携手全球数据中心行业领袖和技术专家,举办了系列“松湖论道”下一代数据中心研讨会,深入探讨了行业和技术发展趋势,并就下一代数据中心定义达成重要共识。
未来已来,相信集业界专家智慧共同定义的下一代数据中心,将为产业可持续发展发挥重要作用!目录前言 01智能化与低碳化推动数据中心快速、高质量发展 031.1 数字经济促进数据中心快速增长 04 1.2 碳中和对数据中心可持续发展提出新的要求 04下一代数据中心052.1 低碳共生 062.1.1 全绿色:源头绿色化,与自然共生 062.1.2 全高效:PUE→xUE,评价体系从单指标到多指标 072.1.3 全回收:全生命周期,资源回收利用最大化 082.2 融合极简 092.2.1 架构极简,孕育建筑与机房新形态 092.2.2 供电极简,部件重定义,链路重塑 112.2.3 温控极简,冷热交换效率最大化 122.3 自动驾驶 132.3.1 运维自动,实现无人值守 142.3.2 能效自优,从制冷到“智”冷 142.3.3 运营自治,资源价值最大化 152.4 安全可靠 162.4.1 主动安全,事后到事前,故障快速闭环 172.4.2 架构安全,从器件到DC,全方位构筑安全防线 17总结语1804下一代数据中心白皮书智能化与低碳化推动数据中心快速、高质量发展当前,世界正在经历以人工智能、云计算、大数据、物联网、5G等为代表的数字技术变革,在加速创新的数字技术驱动下,数字经济已成为全球GDP增长的主引擎。
华为 Agile Controller 控制器标准接口技术白皮书数据中心敏捷控制器 Agile Controller-DCN 是华为数据中心解决方案的核心部件 , 提供从应用到物理网络的自动映射、资源池化部署和可视化运维,能够实现数据中心 VXLAN 网络的自动化部署。
AC 控制器是一个开放系统,基于开源平台设计,北向支持与业界主流 Openstack 云平台对接,南向支持和 vswitch 、物理交换机以及防火墙对接,控制器能够将北向的网络业务接口转换为南向的具体设备配置命令,实现网络自动化。
在没有云平台情况下,AC 控制器还能够提供单独的业务发放界面 , 支持与业界主流的计算资源管理系统对接,实现网络和计算协同。
AC 控制器和周边系统关系如下:业务发放REST API资源上报下面表格分别是南向、北向和东西向接口类型和具体作用解释。
一、北向和Openstack 云平台对接Openstack 是最主流的开源云管理平台,控制器能够和Openstack Neutron 对接,实现网络虚拟化,并且通过云平台能够和计算资源联动,在VM 创建/ 删除/ 迁移时候,按需调整网络配置。
AC 北向提供标准的Neutron REST API 的接口,通过在云平台Neutron 组件中插入Agent 或使用Driver 方式,实现从用户业务到Fabric 配置的逻辑抽象与协同下发。
AC 控制器和Openstack 之间对接接口如下:neutron-server 接收北向请求, 通过RESTCONF 将业务所需要的参数下发给AC, 通过AC 来实现vSwitch、物理交换机以及L4-L7 的VAS 设备管理。
•二层功能对接:AC 控制器通过ML2 Driver 实现二层虚拟网络管理,AC 支持创建VXLAN 类型网络,虚拟网络标识采用24bit VNID,虚拟网络标识可以突破4K 租户规模限制。
VXLAN 封装和解封装实体VTEP 可以位于TOR 也可以位于vswitch,前者为硬件VXLAN,后者为软件VXLAN。
BFD技术白皮书BFD技术白皮书华为技术有限公司Huawei Technologies Co., Ltd.目录1前言 (2)2技术介绍 (4)2.1协议概述 (4)2.2报文格式 (4)2.3检测模式 (7)2.4发送周期及检测时间 (9)2.5参数修改 (10)2.6会话建立 (11)2.6.1会话初始化过程 (11)2.6.2会话建立过程 (13)3BFD的标准化 (16)4典型应用 (17)4.1应用于快速重路由 (17)4.2应用于媒体网关与核心网的可靠连接 (19)5结束语 (20)附录A 参考资料 (21)附录B 缩略语 (21)BFD技术白皮书摘要:BFD(双向转发检测)是一套用来实现快速检测的国际标准协议,提供一种轻负荷、持续时间短的检测。
与以往的其他”HELLO”检测机制相比,具有许多独到的优势。
华为公司已经在数通产品上实现了BFD技术,并提供整套解决方案。
关键词:BFD、快速检测1 前言网络设备一个越来越重要的特征是,要求对相邻系统之间通信故障进行快速检测,这样在出现故障时可以更快的建立起替代通道或倒换到其他链路。
目前,一些硬件如SDH等可以提供这个功能,但是对于很多硬件或者软件无法提供这个功能,比如以太网,还有一些无法实现路径检测,比如转发引擎或者接口等,无法实现端到端的检测,在目前的网络一般采用慢Hello机制,尤其在路由协议中,在没有硬件帮助下,检测时间会很长(例如:OSPF需要2秒的检测时间,ISIS需要1秒的检测时间),这对一些电信级业务来说时间太长了,当数据速率到吉比特时,缺陷感应时间长代表着大量数据的丢失,并且对于不允许路由协议的节点没有办法检测到链路的状态。
同时,在现有的IP网络中不具备秒以下的间歇性故障修复功能,而传统路由架构在对实时应用(如语音)进行准确故障检测方面能力有限,伴随着VoIP应用的激增,实现快速网络故障检测和修复越发显得必要。
BFD协议的出现,为上述问题提出了一种解决方案,BFD能够在系统之间的任何类型通道上进行故障检测,这些通道包括直接的物理链路,虚电路,隧道,MPLS LSP,多跳路由通道,以及非直接的通道。
Table of Contents1.Emerging Market for Low Power Services and Applications 41.1IoT development & Growing Demand for LPWA 41.2NB-IoT Use Cases & Market Potential 5 2Emerging Low Power Technologies 62.1Introduction to NB-IOT (Best Solution For LPWA ) 62.2The NB-IOT deployment scenarios 72.3Low band, an excellent choice for fast deployment 83.Shaping the Business model 93.1Value Chain and Partnerships 93.2Business Potential & Revenue model 103.3Summary 10 4IOT Use case 114.1IOT Public 114.2IOT Industry 134.3IOT Appliance 154.4IOT Personal 16 5Operator Reference Cases 185.1Smart Parking 185.2Smart Metering 195.3Pet Tracking 20 6Glossary 22Executive SummaryThe LPWA market has existed for about 10 years; it’s not a new thing. The current technologies (solutions) supporting this market are fragmented and non-standardized, therefore there are shortcomings like poor reliability, poor security, high operational and maintenance costs. Furthermore, the new overlay network deployment is complex.NB-IOT overcomes the above defects, with all the advantages like wide area ubiquitous coverage, fast upgrade of existing network, low-power consumption guaranteeing 10 year battery life, high coupling, low cost terminal, plug and play, high reliability and high carrier-class network security, unified business platform management. Initial network investment may be quite substantial and superimposed costs are very little. NB-IOT perfectly matches LPWA market requirements, enabling operators to enter this new field.NB-IOT enables operators to operate traditional businesses such as Smart Metering, Tracking, by virtue of ultra-low-cost ($ 5 ) modules and super connectivity (50K / Cell), also opens up more industry opportunities, for example, Smart City, eHealth.NB-IOT makes it possible for more things to be connected, but also managing the commercial value of the resulting Big Data is a big task, operators can carry out cooperation with related industries, in addition to selling connections, they can also sell data.1.Emerging Market for Low Power Services and Applications1.1IoT development & Growing Demand for LPWAThe Internet of Things – IoT – has moved from fiction to reality. By 2020, there will be over 14 billion network-enabled devices, according to the International Energy Agency. This compares to approximately 3.2 billion people using the internet. IoT dramatically widens the internet’s scope from people-operated computers towards autonomous smart devices. Often, these devices are connected to the internet for remote diagnostics & control, leading to cost savings. In addition, innovative IoT hardware & services can generate new revenues – for example, connected glasses used for industrial applications, more efficient logistics serving new market segments, or industrial appliances sold in a per-usage business model. In many cases, business users & private users can control their IoT application through existing smartphones and tablets, through mobile applications that interact with web servers which the connected objects connect to.Many mobile operators have set up dedicated IoT/M2M business units in order to serve the growing number of companies looking to embrace the business benefits that mobile IoT brings. Larger operators have even made acquisitions so that they can serve a wider part of the value chain and capture revenues beyond pure connectivity. As the market grows, it is becoming obvious that there are many mobile IoT use cases for which existing cellular networks are not suitable.The reasons are simple: Coverage, battery life and device cost. First, coverage: Existing cellular networks already offer very good area coverage in mature markets. However, many potential “connected objects” are located in vast remote areas, far away from the next cellular base station. If there is coverage, it is often weak which requires the device transmitter to operate at high power, draining the battery. In addition, cellular networks are not optimized for applications that occasionally transmit small amounts of data. A battery life of several years combined with an inexpensive device cannot be realized on existing cellular standards, as they do not support the required power saving mechanisms.The third aspect is device cost: Mobile devices working on GSM, 3G and LTE are designed for a variety of services, including mobile voice, messaging and high-speed data transmission. However, NB-IoT applications do not utilize any of this; they just require low-speed but reliable data transfer, and an appropriate level of reliability. Therefore, using cellular devices for NB-IoT applications means using devices that are too expensive for the application. Many of the NB-IoT use cases require a low device price, not just in order to have a positive business case for the service operation, but also due to practical aspects such as ease of installation or risk of theft.In summary, there are strong market trends pointing at growing demand for NB-IoT applications, while the networks that can efficiently serve such applications are not in place yet. This whitepaper examines trends in the market for NB-IoT applications and discusses technology options that operators can choose from in order to enter this new business.1.2 NB-IoT Use Cases & Market PotentialThe strong growth in the NB-IoT market has motivated many analyst firms to create forecasts showing the expected numbers of connections as well as the revenue potential. Generally, the global IoT market is expected to be worth trillions of dollars by 2020. The NB-IoT market is a subset of this, and it is important for operators to understand the revenue potential in the countries they operate in. Before looking into specific countries, we need to identify the industries or verticals where NB-IoT can add value. Figure 1 below shows nine industries where we see major market potential for NB-IoT services:Figure 1: Target Industries for NB-IoT Services Huawei’s business case analytics is designed to evaluate the NB -IoT business for specificindustries, countries or regions. Based on our deep country-specific research which includes social and demographic data evaluation, we have modeled how the adoption rates for different NB-IoT applications will develop during the next five years.Our forecasts are based on use cases; distinct NB-IoT applications that will often be deployed in more than one industry. The model currently includes over fifty use cases, covering many service categories such as:∙Smart metering (electricity, gas and water) ∙Facility management services ∙Intruder alarms & fire alarms for homes & commercial properties ∙Connected personal appliances measuring health parameters ∙ Tracking of persons, animals or objectsAgriculture Health Care /E-Health Retail Safety and SecurityAutomotive &LogisticsEnergy &Utilities Manufacturing Smart City Smart Home∙ Smart city infrastructure such as street lamps or dustbins∙ Connected industrial appliances such as welding machines or air compressors.Figure 2 below shows as one output example of five-year revenue forecast (connectivity only) by Huawei for Germany divided by nine industries: Figure 2: Five-year NB-IoT revenue forecast for GermanyThe overall sum of 1.67 billion USD for five years equals a per-year NB-IoT revenue of 334 million USD. This would equal to a revenue uplift of 2.2% for the existing German operators thanks to the launch of NB-IoT services. This show, just as starting point, that already with conservativeassumptions, NB-IoT is a promising new business area which operators should invest into now, if they do not want other players to capture this attractive market. 2 Emerging Low Power Technologies2.1 Introduction to NB-IOT (Best Solution For LPWA )As mentioned earlier services that leverage low power wide area networks mainly require deep / wide coverage, low power consumption and massive connections. There are several inherent characteristics of the NB-IOT technology that makes it the best for LPWA deployment.15922518011778175227276233Overall Revenues:1.67 bn USDFigure 3: Inherent capabilities of NB-IOTMoreover low power consumption is a prerequisite for almost 80% of all LPWA use cases, ranging from applications like smart meter, smart parking, and wearables to smart grid. Additionally, with the availability of massive connections it is possible to make everything around us smart.To realize this, it’s ideal to have about 50K devices per cell; this is possible assuming there are the household density per every sq m is 1500 with 40 devices in every household.When we compare inherent capabilities of NB-IOT with other LPWA technologies like e-MTC, SigFox and Lora, NB-IOT offers better performance. Furthermore, when we look at all the technologies in terms of network investment, coverage scenario, uplink and downlink traffic and network reliability we realize that NB-IOT is the most suitable technology.Additionally from a performance point of view, NB-IOT guarantees 20+dB coverage, ~1000x connections, ~10 years using only 200 KHz bandwidth whereas the other technologies like eMTC, SigFox offers far less in terms of performance.NB-IOT has quite an extensive ecosystem mainly because of its support from many global top operators. Most importantly unlicensed solutions can’t guarant ee reliability and security.2.2The NB-IOT deployment scenariosThe recently 3GPP agreed technology for LPWA deployment NB-IOT will offer three deployment scenarios; these are, Guard Band, In Band and Stand Alone.Standalone deployment is mainly utilizes new bandwidth where as guard band deployment is done using the bandwidth reserved in the guard band of the existing LTE network, In Band on the other hand makes use of the same resource block in the LTE carrier of the existing LTE network.Figure 4: Three deployment scenarios of NB-IOTIn summary, it becomes clear that the Standalone and Guard band deployment options tend to offer the best performance in terms of improved indoor coverage, FDMA (GMSK) also offers about 20% power consumption saving and lower cost.2.3Low band, an excellent choice for fast deploymentLow band is quite known for its excellent performance in terms of coverage; furthermore leveraging the inherent characteristics of this frequency band in deploying NBIOT offers several benefits. It is widely known that several operators around the globe use the 900MHz frequency band for GSM voice deployments because of its extensive coverage capability. This is possible because such low frequency bands have excellent propagation characteristics and this generally improves the indoor penetration.Deploying NB-IOT in frequency bands like 700MHz, 800MHz, and 900MHz is a great choice because they provide an already large and established ecosystem since quite a number of operators select them; it also offers benefits in terms of site number. There is quite a substantial number of commercial networks both UMTS and LTE that are currently running on the 900MHz frequency band. Analyst firms recently confirmed that there are about 14 LTE 900MHz commercial networks as at July 2015.A few examples of such operators can be found in the Czech Republic and Sweden. There are other operators in South Korea with commercial LTE networks on the 800MHz frequency band. For mobile operators who are already running GSM 900MHz, it is possible to just upgrade, some operators might also be running on LTE 800MHz, there is a clear upgrade pathway to NB-IOT for such operators too.3.Shaping the Business model3.1Value Chain and PartnershipsAs shown in the NB-IoT business study for Germany, already connectivity is a valuable contributor to the operator’s bottom line. Partnerships with IoT technology providers and alliances with chipset manufacturers are helping the operators to secure this part of the value chain as we see it today for some of the NB-IoT solutions, e.g. smart metering, smart parking and pet tracking. At the moment we see connectivity platforms already in the cloud in many markets where operators have deployed IoT services.But there is more in than just connectivity. Operators have a chance to go further up the value chain by taken over more responsibilities than pure connectivity.Figure 5 : Telco business models for NB-IoT along the value chain Consequently the next step towards an integrated offer would be the incorporation of more functionality which points towards a setup, where the operators can offer the full NB –IoT Network as a service in the cloud to end to end service providers which are either private or governmental entities, according to the addressed industries or verticals .This will create for the operator the opportunity to lever its asset as security, billing and big data into that domain. Quality of service assurance and service level agreements are common in the telco space and could be leveraged into the NB-IoT Network as a service business model Following this idea even more, operators themselves can enter the IoT business as an end to end service provider by adding customer management and system integration functionalities on top. The operator as e2e business owner can also outsource certain parts of the e2e domain to its partners, sharing effort and revenues, and to expand the operators own experience in the OTT domain. However competing in the OTT domain is not comm on to most of the today’s opera tors and could be quite challenging.3.2 Business Potential & Revenue modelThe business is scalable and can be grown by demands by orienting the service introduction and go to market strategy on use cases which are profitable at a given point of time and contributing to the operator’s bottom line allowing further business expansion. As the operator can reuse his exi sting sites, no specific investment in towers or acquisition of sites are needed.Figure 6 : NB-IoT “time to market” and number of primary use casesThe selection of use cases can be different per operator, country and region or per addressed market. Huawei’s business modeling framework is able to address those challenges and advise on the right mix of investment, use case deployment and business model selection.3.3 SummaryThe opportunities for operators to enter business in NB-IoT domain are reflecting the huge potential of NB-IoT. Operators can choose from three basic setups according to their strategy per country or region:Connectivity: For the Internet of Things a reliable connectivity is required, but there are more business opportunities as just to engage in connectivityNB-IoT networks can be deployed by usingthe existing sites 1 Year 3 Year5 YearSmart ElectricitySmart WaterMeteringAlarms in Single-Family Houses Motor VehicleTrackingConnected StreetLamp………..Connected BloodPressure Meter Smart GasNB- IoT NW as a Service: Carrier grade solutions with security, billing, big data integration and QoS assurance allow the creation of new businesses and improvements to existing ones on a solid technological basis. NB-IoT Network as a service is supporting the global trends of network virtualization and cloud based service provision.End to End service provision: Operators may choose to extend into the e2e service provider domain for specific IoT solutions, but this needs careful planning, technology and business partnerships with players in the industry, including outsourcing and revenue sharing models.4IOT Use CaseIn this section, the various services and applications supported by LPWA has been classified under four categories; IOT Appliance, Personal, Public and Industry.Figure 7: Four use case categories for NB-IOT4.1IOT PublicAs the name suggests, IOT public focuses on LPWA applications that serves the general public; below are a few examples.i.Smart meteringSmart metering helps saves manpower by remotely collecting electricity, water and gas meter data over the cellular network. This is gaining quite an amount of momentum with most of the top European MNOs taking an interest in this topic mainly due to the market opportunity it presents. Smart metering will consequently help cut down cost generated from manual meter reading andchanging of meter batteries, which seems to be the two major cost drivers for conventional metering. Smart metering includes smart meters for water, gas and electricity.Figure 8: Smart metering use caseii.Alarms & Event DetectorsSecurity has always been a very important aspect of human living , people at all times want to be guaranteed of home safety. Alarms and event detection will help to rapidly inform that user about a detected home intrusion. This system will not only offer inteligent protection from intrusion but will also offer intelligence for detected events that can lead to a fire outbreak like a sudden increase in home temperature or smoke. Alarms and events detectors will make use of sensors placed devices in ideal locations in the home that constantly communicates with the LPWA network, this use case will make use of a very low data throughput and battery life of the devices will be ultra critical.Figure 9: Alarm & Event Detectorsiii. Smart garbage binsGarbage bins in city are not built by demand, and most of time the collecting trucks routes and schedule are fixed which is not optimal for a smooth collection. Smart garbage cans can signal to the waste management agent when the garbage can is full and in need of service, the best collection route will be calculated and delivered to the drivers. Historical collection data can provide optimized routes and guide on the right-size garbage can for each location. Charging for this service can be done on sensor amount or on monthly fee basis.Figure 10: Smart garbage bin4.2IOT INDUSTRYIOT Industry mainly delivers low power wide area applications that help to improve general enterprise and industrial efficiency; here are a few examples;iv.Logistics trackingLarge volumes of sensor data sent from tracking devices on shipping containers are aggregated and taken into an analysis to ensure that real time tracking of the location of shipments can be made possible. Alerts and optimized service recommendations are sent to technicians on their iPads, so that they can take preemptive actions in -real time. Charging model for this application can be done on a monthly payment or postpaid basis.Figure 11: Logistics tracking use casev. Asset trackingAsset tracking mainly deals with monitoring methods of physical assets made possible by a module on the asset broadcasting its location. Assets are usually tracked using GPS technology. This service is best leveraged in the logistics and transportation management industry, where through the use of sensors in modules sending information over the cellular network it is possible to gather and manage data relating to the current geographical location of assets. Asset tracking helps the owners of the assets to detect and preemtively react to unexpected events.Figure 12: Asset tracking use casevi. Smart agriculture NB-IOTTracking ApplicationSatelliteFarming industry is a sector with slim margins, and the way to survive in this industry is to optimize the general agriculture production including crops and livestock.Developing a sensor function to ensure the feeding of cattle has an optimized mix of nutritions to improve the yields from farming, and to reduce the waste of cattle feed. Installing sensors in the farming equipment that mix the cattle’s feed, through sensors measurements the variation in the cattle diet can quickly be identified, assessed and corrected. Charging model for this application can be done on a monthly payment or postpaid basis.Figure 13: Smart agriculture4.3IOT ApplianceConventionally, smart home application are deployed on short range technologies like Z-Wave, Zigbee but a home gateway is needed. In the case, where the appliance is embedded with an NB-IOT chipset the benefits are surprising. For example, management becomes more efficient through improvements in big data analysis. IOT appliance mainly comprises of LPWA applications that aims to provide intelligence for the user through sensors and devices that are found in the local area. Below are a few examples;Figure 14: IOT Appliance use cases4.4IOT PersonalIOT personal largely features LPWA applications that create a personal area network for the purposes of information exchange for the user. Below are a few examples;vii.WearablesConnected wearables in the past few years have taken center stage and increasingly becoming a lucrative industry as it is an application that mainly revolves around health, fitness and wellness. According to Cisco, there will be 177M connected wearables by 2018. Its market value is estimated at $250M in 2015 and is set to rise to $1.6B in 2022. A report released by Research&Markets and Berg Insight also estimated that global shipments of connected wearables in 2014 was 19 million and this figure is set to hit 168.2million by 2019 growing at a CAGR of 74.8%. Some of the few products that are making inroads in this industry are JawBone, GoPro & Nike just to name a few. While smartphone giants like Apple, Sony and Samsung are more linked to smartwatches.Figure 15: Wearables use caseviii. Smart bicycleFor bike rental companies it is vital to keep track of where the bike is at the moment, especially if it gets stolen. A bike rental company in Holland has embedded an M2M SIM card into the bike’s frame, and in this way the bike rental company can always find the bike. The M2M SIM is embedded into the bike in a non visible placeIf the bike is not returned to the rental company then the bike is positioned via the SIM. The rental cost for bikes can be reduced since the number of stolen bikes dramatically decrease. Stolen bikes can easily and quickly be located by the police via the SIM. Charging model can be done on a monthly payment or postpaid basis.Figure 16: Smart bicyclei.Kids monitoring use caseThe world’s population is aging, and senior people living alone at home need care in an easy and affordable way. Also parents have a great interest in being assured about their wellbeing andactivities. This use case provides realtime tracking of kids and the elderly. The information about their activities to the cloud. Real-time insights about the their status can be received on the users smartphone or other device.Figure 17: Kids monitoring use case5Operator Reference Cases5.1Smart ParkingParking can be a challenging issue, especially in urban areas where 30 % of all traffic congestion is caused by drivers circling around to find a parking space. Smart parking provides parking information to citizens in real time to enable better parking management. Huawei and a top operator are working on a smart parking project. Operator expects tens of millions of devices to be connected with this smart parking service. Another collaborator in this project is Neul, who provides the platform.Figure 18: Smart Parking reference caseIn this service, sensors that are placed under cars will communicate with the parking server through the cellular network to gain parking information. The operator and Huawei completed field trials for the smart parking project in July 2015 with Proof of Concepts already done. The commercialization of this project is expected in the second quarter of 2016.5.2Smart MeteringSmart metering as mentioned earlier enable the automated collection of utility meter data (Electricity, Water & Gas). Huawei and another operator are collaborating on an end to end smart metering solution. During Mobile World Congress 2015, Huawei and the operator unveiled this partnership on end to end smart metering project. Other players like Neul, Veolia, Kamstrup and Ublox are all collaborating efforts on this project that is planned to be launched in the first half of 2016.Figure 19: Smart metering reference caseProof of Concept for the smart metering project have already been completed, Huawei and the operator are looking forward to conducting field trials in November mercialization of the smart metering project is expected in the third quarter of 2016.5.3Pet TrackingHumans and their pets share a good bond, unfortunately many users often face issues regarding lost or stolen pets. Pet tracking use case is one application that helps the user to keep track of its pets activities and most importantly location at all times. A small lightweight device placed around the neck of the pet embedded with an NB-IOT chipset helps to send tracking information to its user’s device. This NB-IOT devices collects and sends location information leveraging GPS and Location Based Services and this can be done either periodically or in real time based on the users’ preferences.Figure 20: Pet tracking reference caseThe user can then receive the information with a tracking route that is already integrated with the map. Furthermore, this device is embedded with several forms of alarms that can alert the user when the device battery is running low .Huawei is collaborating with other industry players and another operator on the pet tracking application.6GlossaryNBIOT- Narrow Band Internet of ThingsPSD – Power Spectral DensityLPWA-Low Power Wide AreaGMSK – Gaussian Minimum Shift KeyingCAGR – Compound Annual Growth RateSC FDMA – Single Carrier Frequency Division Multiple Access DL – DownlinkUL – UplinkeHealth – Electronic Health3GPP – Third Generation Partnership ProjectTTM – Time to MarketdB – DecibelGPRS – General Packet Radio ServiceMNO – Mobile Network OperatorPoC – Proof of ConceptKHz – Kilohertz2017。