高考数学-等差数列、等比数列与数列求和
- 格式:doc
- 大小:119.50 KB
- 文档页数:8
等差数列与等比数列的求和与前n项和数列是数学中一个非常重要的概念,它是由一定规律排列而成的一串数字。
等差数列和等比数列是最常见的数列类型,它们在数学和实际生活中有着广泛的应用。
本文将探讨等差数列和等比数列的求和与前n项和的计算方法。
一、等差数列的求和与前n项和等差数列是指数列中任意两个相邻的数之差都相等的数列。
通常用字母a表示首项,d表示公差,第n项表示为an。
等差数列的求和公式如下:Sn = (n/2) * (2a + (n-1)d)其中,Sn表示前n项和,n表示项数。
以等差数列1, 3, 5, 7, 9为例,首项a=1,公差d=2,项数n=5。
带入公式计算:S5 = (5/2) * (2*1 + (5-1)*2)= 5 * (2 + 4)= 5 * 6= 30所以,等差数列1, 3, 5, 7, 9的前5项和为30。
二、等比数列的求和与前n项和等比数列是指数列中任意两个相邻的数之比都相等的数列。
通常用字母a表示首项,r表示公比,第n项表示为an。
等比数列的求和公式如下:Sn = a * (1 - r^n) / (1 - r)其中,Sn表示前n项和,n表示项数,而当|r| < 1时,可以通过以下公式计算无穷项和:S∞ = a / (1 - r)以等比数列1, 2, 4, 8, 16为例,首项a=1,公比r=2,项数n=5。
带入公式计算:S5 = 1 * (1 - 2^5) / (1 - 2)= 1 * (1 - 32) / (1 - 2)= -31 / -1= 31所以,等比数列1, 2, 4, 8, 16的前5项和为31。
综上所述,等差数列和等比数列的求和与前n项和可以通过相应的公式进行计算。
掌握这些计算方法能够帮助我们更好地理解和应用数列相关的概念。
在实际问题中,等差数列和等比数列的应用也非常广泛,例如金融、物理、经济学等领域。
值得注意的是,在使用这些公式时,我们需要注意边界条件和约束条件,确保计算的准确性。
例如,S n =1002-992+982-972+…+22-12 =(100+99)+(98+97)+…+(2+1)=5 050.【高考命题】一般数列求和,应从通项入手,若无通项,先求通项,然后通过对通项变形,转化为与特殊数列有关或具备某种方法适用特点的形式,从而选择合适的方法求和.(1)1n (n +1)=1n -1n +1;(2)1(2n -1)(2n +1)=12⎝ ⎛⎭⎪⎫12n -1-12n +1;(3)1n +n +1=n +1-n(4){}n a 为等差数列,公差为d ,则11n n a a += 【小测】1.设S n 为等比数列{a n }的前n 项和,8a 2+a 5=0,则S 5S 2=________.解析 设等比数列的首项为a 1,公比为q .因为8a 2+a 5=0,所以8a 1q +a 1q 4=0. ∴q 3+8=0,∴q =-2,∴S 5S 2=a 11-q 51-q·1-q a 11-q 2=1-q 51-q 2=1--251-4=-11.3.(2012·无锡市第一学期期末考试)设S n 是等比数列{a n }的前n 项和,S 3,S 9,S 6成等差数列,且a 2+a 5=2a m ,则m =________.解析 设等比数列{a n }的公比为q ,显然q ≠1.由2S 9=S 3+S 6得2·a 11-q 91-q=a 11-q 31-q+a 11-q 61-q,所以2q 9=q 3+q 6,即1+q 3=2q 6.由于a 2+a 5=2a m ,所以a 1q +a 1q 4=2a 1q m -1,即1+q 3=2q m -2,所以m -2=6,所以m =8.4.数列{a n }是等差数列,若a 11a 10<-1,且它的前n 项和S n 有最大值,那么当S n 取得最小正值时,n =________.解析 由题意,可知数列{a n }的前n 项和S n 有最大值,所以公差小于零,故a 11<a 10,又因为a 11a 10<-1,所以a 10>0,a 11<-a 10,由等差数列的性质有a 11+a 10=a 1+a 20<0,a 10+a 10=a 1+a 19>0,所以S n 取得最小正值时n =19.【考点1】等差数列与等比数列的综合【例1】 (2011·江西卷)(1)已知两个等比数列{a n },{b n },满足a 1=a (a >0),b 1-a 1=1,b 2-a 2=2,b 3-a 3=3,若数列{a n }唯一,求a 的值;(2)是否存在两个等比数列{a n },{b n },使得b 1-a 1,b 2-a 2,b 3-a 3,b 4-a 4成公差不为0的等差数列?若存在,求{a n },{b n }的通项公式;若不存在,说明理由.解 (1)设{a n }的公比为q ,则b 1=1+a ,b 2=2+aq ,b 3=3+aq 2,由b 1,b 2,b 3成等比数列得(2+aq )2=(1+a )(3+aq 2),即aq 2-4aq +3a -1=0.*由a >0得,Δ=4a 2+4a >0,故方程*有两个不同的实根. 再由{a n }唯一,知方程*必有一根为0,将q =0代入方程*得a =13.(2)假设存在两个等比数列{a n },{b n }使b 1-a 1,b 2-a 2,b 3-a 3,b 4-a 4成公差不为0的等差数列. 设{a n }的公比为q 1,{b n }的公比为q 2,则b 2-a 2=b 1q 2-a 1q 1,b 3-a 3=b 1q 22-a 1q 21,b 4-a 4=b 1q 32-a 1q 31. 由b 1-a 1,b 2-a 2,b 3-a 3,b 4-a 4成等差数列,得 ⎩⎨⎧2b 1q 2-a 1q 1=b 1-a 1+b 1q 22-a 1q 21,2b 1q 22-a 1q 21=b 1q 2-a 1q 1+b 1q 32-a 1q 31,即⎩⎨⎧b 1(q 2-1)2-a 1(q 1-1)2=0, ①b 1q 2(q 2-1)2-a 1q 1(q 1-1)2=0. ②①×q 2-②得a 1(q 1-q 2)(q 1-1)2=0, 由a 1≠0得q 1=q 2或q 1=1.(ⅰ)当q 1=q 2时,由①②得b 1=a 1或q 1=q 2=1,这时(b 2-a 2)-(b 1-a 1)=0,与公差不为0矛盾. (ⅱ)当q 1=1时,由①②得b 1=0或q 2=1,这时(b 2-a 2)-(b 1-a 1)=0,与公差不为0矛盾.综上所述,不存在两个等比数列{a n },{b n }使b 1-a 1,b 2-a 2,b 3-a 3,b 4-a 4成公差不为0的等差数列.[方法总结] 对等差、等比数列的综合问题的分析,应重点分析等差、等比数列的通项及前n 项和;分析等差、等比数列项之间的关系.往往用到转化与化归的思想方法.【变式】 (2012·苏州市自主学习调查)已知数列{a n }各项均为正数,其前n 项和为S n ,点(a n ,S n )在曲线(x +1)2=4y 上.(1)求数列{a n }的通项公式;第(2)问求出{b n }的通项公式,用裂项相消求和. 解 (1)∵S 2n =a n ⎝⎛⎭⎫S n -12,a n =S n -S n -1 (n ≥2), ∴S 2n =(S n -S n -1)⎝⎛⎭⎫S n -12, 即2S n -1S n =S n -1-S n ,① 由题意S n -1·S n ≠0,①式两边同除以S n -1·S n ,得1S n -1S n -1=2,∴数列⎩⎨⎧⎭⎬⎫1S n 是首项为1S 1=1a 1=1,公差为2的等差数列.∴1S n =1+2(n -1)=2n -1,∴S n =12n -1. (2)又b n =S n 2n +1=12n -12n +1=12⎝ ⎛⎭⎪⎫12n -1-12n +1,∴T n =b 1+b 2+…+b n =12[(1-13)+(13-15)+…+(12n -1-12n +1)]=12⎝ ⎛⎭⎪⎫1-12n +1=n2n +1. [方法总结] 使用裂项相消法求和时,要注意正负项相消时消去了哪些项,保留了哪些项,切不可漏写未被消去的项,未被消去的项有前后对称的特点,实质上造成正负相消是此法的根源与目的.【变式】 在数列{a n }中,a n =1n +1+2n +1+…+n n +1,又b n =2a n ·a n +1,求数列{b n }的前n 项和S n . 解 a n =1n +1+2n +1+…+nn +1=1+2+…+n n +1=n n +12n +1=n2.∴b n =2a n ·a n +1=2n 2·n +12=8nn +1=8⎝ ⎛⎭⎪⎫1n -1n +1.∴S n =8⎣⎢⎡⎦⎥⎤⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1 =8⎝ ⎛⎭⎪⎫1-1n +1=8nn +1. 【考点4】错位相减法求和【例4】 设数列{a n }满足a 1+3a 2+32a 3+…+3n -1a n =n3,n ∈N *. (1)求数列{a n }的通项;(2)设b n =na n,求数列{b n }的前n 项和S n .审题视点 (1)由已知写出前n -1项之和,两式相减.(2)b n =n ·3n 的特点是数列{n }与{3n }之积,可用错位相减法. 解 (1)∵a 1+3a 2+32a 3+…+3n -1a n =n3,① ∴当n ≥2时,a 1+3a 2+32a 3+…+3n -2a n -1=n -13,② ①-②得3n -1a n =13,∴a n =13n .在①中,令n =1,得a 1=13,适合a n =13n ,∴a n =13n . (2)∵b n =na n,∴b n =n ·3n .∴S n =3+2×32+3×33+…+n ·3n ,③ ∴3S n =32+2×33+3×34+…+n ·3n +1.④ ④-③得2S n =n ·3n +1-(3+32+33+…+3n ), 即2S n =n ·3n +1-31-3n 1-3,∴S n =2n -13n +14+34.[方法总结] 解答本题的突破口在于将所给条件式视为数列{3n -1a n }的前n 项和,从而利用a n 与S n 的关系求出通项3n -1a n ,进而求得a n ;另外乘公比错位相减是数列求和的一种重要方法,但值得注意的是,这种方法运算过程复杂,运算量大,应加强对解题过程的训练,重视运算能力的培养. 【变式】 (2011·辽宁卷)已知等差数列{a n }满足a 2=0,a 6+a 8=-10. (1)求数列{a n }的通项公式;(2)求数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n 2n -1的前n 项和.解 (1)设等差数列{a n }的公差为d ,由已知条件可得⎩⎨⎧ a 1+d =0,2a 1+12d =-10,解得⎩⎨⎧a 1=1,d =-1.故数列{a n }的通项公式为a n =2-n . (2)n2n -1.即2q 2-5q +2=0,解得q =2或q =12(舍去). 又∵a 25=a 10=a 5·q 5,∴a 5=q 5=25=32, ∴32=a 1·q 4,解得a 1=2,∴a n =2×2n -1=2n ,故a n =2n .4.(2012·重庆卷)已知数列{a n }为等差数列,且a 1+a 3=8,a 2+a 4=12. (1)求{a n }的通项公式;(2)记{a n }的前n 项和为S n ,若a 1,a k ,S k +2成等比数列,求正整数k 的值.解 (1)设数列{a n }的公差为d ,则由⎩⎨⎧a 1+a 3=8,a 2+a 4=12,得⎩⎨⎧2a 1+2d =8,2a 1+4d =12,解得a 1=2,d =2.所以a n =a 1+(n -1)d =2+2(n -1)=2n . (2)由(1)得S n =na 1+a n 2=n2+2n 2=n (n +1).因为a 1,a k ,S k +2成等比数列,所以a 2k =a 1·S k +2,即(2k )2=2(k +2)(k +3), 也即k 2-5k -6=0,解得k =6或k =-1(舍去).7.(2012·常州一中期中)已知数列{a n }与{2a n +3}均为等比数列,且a 1=1,则a 168=________.解析 设{a n }公比为q ,a n =a 1q n -1=q n -1, 则2a 1+3,2a 2+3,2a 3+3也为等比数列, ∴5,2q +3,2q 2+3也为等比数列, 则(2q +3)2=5(2q 2+3),∴q =1, 从而a n =1为常数列,∴a 168=1.10.已知等比数列{a n }的前n 项和S n =2n -1,则a 21+a 22+…+a 2n =________.13(4n-1). 14.(2012·盐城市二模)在等差数列{a n }中,a 2=5,a 6=21,记数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和为S n ,若S 2n +1-S n ≤m 15对n ∈N *恒成立,则正整数m 的最小值为________. 解析 由条件得公差d =21-54=4,从而a 1=1,所以a n =4n -3,数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和为S n =1+15+…+14n -3.11。
高中数列求和公式总结大全
1. 等差数列求和公式:Sn = n/2 [2a + (n-1)d]其中,Sn表示前n 项和,a表示首项,d表示公差。
2. 等比数列求和公式:Sn = a(1-
q^n)/(1-q)其中,Sn表示前n项和,a表示首项,q表示公比。
3. 等差
数列前n项和公式:Sn = n/2 [a1 + an]其中,a1表示首项,an表示第
n项。
4. 等比数列前n项和公式:Sn = a(1-q^n)/(1-q)其中,a表示首项,q表示公比。
5. 等差数列通项公式:an = a1 + (n-1)d其中,an表示第n项,a1表示首项,d表示公差。
6. 等比数列通项公式:an = a1 * q^(n-1)其中,an表示第n项,a1表示首项,q表示公比。
7. 等差数列
求第n项公式:an = a1 + (n-1)d其中,an表示第n项,a1表示首项,d表示公差。
8. 等比数列求第n项公式:an = a1 * q^(n-1)其中,an表示第n项,a1表示首项,q表示公比。
9. 等差数列求公差公式:d = (an - a1)/(n-1)其中,d表示公差,an表示第n项,a1表示首项。
10. 等比数列求公比公式:q = (an/a1)^(1/(n-1))其中,q表示公比,an表示第n项,a1表示首项。
以上是高中数列求和公式的总结大全。
数学中的数列与等差等比数列求和问题解析在数学中,数列是由一系列按照特定规律排列的数所组成的序列。
而等差数列和等比数列是数学中常见的两类特殊数列。
在本文中,我们将分析和解析数学中的数列以及等差等比数列求和问题。
一、数列的基本概念数列是由一系列按照特定规律排列的数所组成的序列。
数列中的每个数称为该数列的项。
数列常使用a,表示第n个项,例如a₁表示数列的第一个项,a₂表示数列的第二个项。
二、等差数列求和问题解析等差数列是指数列中相邻两项之间的差值都相等的数列。
设等差数列的首项为a₁,公差为d,则该等差数列的通项公式可以表示为:an = a₁ + (n-1)d求等差数列的前n项和可以使用以下公式:Sn = (n/2)(a₁ + an) = (n/2)(a₁ + a₁ + (n-1)d) = (n/2)(2a₁ + (n-1)d)三、等比数列求和问题解析等比数列是指数列中相邻两项之间的比值都相等的数列。
设等比数列的首项为a₁,公比为r,则该等比数列的通项公式可以表示为:an = a₁ * r^(n-1)求等比数列的前n项和可以使用以下公式(当r不等于1时):Sn = a₁(1 - r^n) / (1 - r)当r等于1时,等比数列的前n项和为:Sn = n * a₁四、数列与求和问题的应用举例例1:已知等差数列的首项为3,公差为2,求该等差数列的前10项之和。
解:根据等差数列的求和公式,代入已知条件,可得:Sn = (10/2)(3 + 3 + (10-1)2) = 5(6 + 18) = 120所以该等差数列的前10项之和为120。
例2:已知等比数列的首项为2,公比为3,求该等比数列的前5项之和。
解:根据等比数列的求和公式,代入已知条件,可得:Sn = 2(1 - 3^5) / (1 - 3) = 2(-242) / (-2) = 242所以该等比数列的前5项之和为242。
总结:数列与等差等比数列求和是数学中的重要概念和知识点。
等差数列与等比数列的通项与求和公式数列(Sequence)是按照一定顺序排列的数的集合。
在数学中,等差数列与等比数列是两种常见的数列形式。
了解并掌握等差数列与等比数列的通项公式和求和公式,对于解决数学问题和数学推理具有重要意义。
本文将介绍等差数列和等比数列的概念、性质以及它们的通项公式和求和公式。
一、等差数列等差数列是指数列中相邻两项之差保持恒定的数列。
例如,1、3、5、7、9 就是一个等差数列,其中的公差(公差是指相邻两项的差)为2。
等差数列的通项公式可以通过对数列的特性进行推导得到。
1. 等差数列的概念设数列a₁,a₂,a₃,...,an,... 是等差数列,若存在常数d(称为公差),使得对于任意正整数n,恒有 an+1 - an = d,则该数列称为等差数列。
2. 等差数列的通项公式设等差数列的首项为a₁,公差为d,则该等差数列的通项公式为:an = a₁ + (n-1)d其中,an 表示等差数列的第n项。
3. 等差数列的前n项和公式设等差数列的首项为a₁,公差为d,前n项和为Sₙ,则等差数列的前n项和公式为:Sₙ = (a₁ + aₙ) * n / 2其中,aₙ 表示等差数列的第n项。
二、等比数列等比数列是指数列中相邻两项之比保持恒定的数列。
例如,1、2、4、8、16 就是一个等比数列,其中的公比(公比是指相邻两项的比)为2。
等比数列的通项公式可以通过对数列的特性进行推导得到。
1. 等比数列的概念设数列a₁,a₂,a₃,...,an,... 是等比数列,若存在常数q(称为公比),使得对于任意正整数n,恒有 an+1 / an = q,则该数列称为等比数列。
2. 等比数列的通项公式设等比数列的首项为a₁,公比为q,则该等比数列的通项公式为:an = a₁ * q^(n-1)其中,an 表示等比数列的第n项。
3. 等比数列的前n项和公式设等比数列的首项为a₁,公比为q,前n项和为Sₙ,则等比数列的前n项和公式为:Sₙ = a₁ * (q^n - 1) / (q - 1)其中,aₙ 表示等比数列的第n项。
2022年高考数学尖子生强基计划专题9等差、等比数列与数列求和一、真题特点分析:1.【2020复旦大学6】()111lim 14253n n n →+∞⎛⎫+++= ⨯⨯+⎝⎭ _________.2.【2021年清华】有限项等差数列公差为4,第二项起各项的和加首项的平方小于100,则该数列最多可有________项.3.若数列{}n a 满足211441240n n n aa a ++++-⨯=,求limnn a n→+∞.二、知识要点拓展一.等差数列:1.通项公式:*11(1)()n a a n d dn a d n N =+-=+-∈;2.前n 项和公式:1()2n n n a a s +=1(1)2n n na d -=+.二.等比数列:1.通项公式:1*11()n n n aa a q q n N q-==⋅∈;2.前n 项和公式:11(1)111n n a q q S q na q ⎧-≠⎪=-⎨⎪=⎩,,或11,11,1n n a a qq q s na q -⎧≠⎪-=⎨⎪=⎩.三.数列的通项公式与前n 项的和的关系:11,1,2n n n S n a S s n -=⎧=⎨-≥⎩(n S 为数列{}n a 的前n 项的和为).四.常见数列的前n 项和公式:(1)1232n n n +++++=21357(21)n n ++++-= 24682(1)n n n ++++=+ 2222(1)(21)1236n n n n ++++++=33332(1)123[]2n n n +++++= 一.等差数列的主要判定方法:①1n n a a d +-=(d 为常数);②122n n n a a a ++=+(*n N ∈);③n a kn b =+(,k b 为常数);④2n S An Bn =+(,A B 为常数)。
二.等差数列的主要性质:①()n m a a n m d =+-或n ma a d n m-=-(d 是公差);②若,,,*m n k l N ∈,且m n k l +=+,则m n k l a a a a +=+。
数列是数学中的一个重要概念,是由一系列按照某个规律排列的数所组成的。
在数列中,等差数列和等比数列是最基本的两类数列。
等差数列是指数列中相邻两项之间的差值恒定的数列,而等比数列是指数列中相邻两项之间的比值恒定的数列。
在数学中,我们经常需要计算等差数列和等比数列的和,这就需要应用求和公式。
首先来看等差数列的求和公式。
设等差数列的首项为a1,公差为d,项数为n,那么等差数列的和Sn可以通过以下公式计算:Sn = (n/2)(2a1 + (n-1)d)这个公式的推导过程相对简单,可以用一种更易于理解的方式解释。
在等差数列中,如果我们将数列进行反向排列,并与原数列相加,那么相邻两项之间的和就是首项与末项的和,即S1 = a1 + an。
同理,再将得到的数列反向排列,并与原数列相加,得到的和就是倒数第二项与第二项的和,即 S2 = a2 + a(n-1),以此类推,我们可以得到:Sn = S1 + S2 + ... + S(n-1) + Sn-1Sn = (n/2)[(a1 + an) + (a2 + a(n-1)) + ... + (an + a1)]接下来,我们观察一下括号里的每一对数,即 (a1 + an),(a2 + a(n-1)),...,(an + a1)。
我们不难发现,每一对数的和都等于 a1 + an,所以公式可以化简为:Sn = (n/2)(a1 + an)这就是等差数列的求和公式。
下面我们来看看等比数列的求和公式。
设等比数列的首项为a1,公比为r,项数为n,那么等比数列的和Sn可以通过以下公式计算:Sn = (a1(1-r^n))/(1-r)等比数列的求和公式推导较为复杂,可以通过如下方式进行解释。
首先,我们将等比数列的每一项与公比r相除,得到一个新的数列。
这个新的数列是一个等差数列,其首项为a1,公差为a1r,项数为n。
因此,新数列的和可以用等差数列的求和公式计算:S' = (n/2)(2a1r + (n-1)a1r)将S'乘以公比r,并整理得到:rS' = (n/2)(2a1r^2 + (n-1)a1r^2)将S'与rS'相减,得到:(1-r)S' = (n/2)(2a1r - 2a1r^2 + a1r - (n-1)a1r^2)(1-r)S' = (n/2)(2a1 - 2a1r^n + a1)得到最后的公式:Sn = (a1(1-r^n))/(1-r)这就是等比数列的求和公式。