数学分析-第三讲-连续与一致连续
- 格式:doc
- 大小:1.34 MB
- 文档页数:19
函数一致连续的若干方法一、函数的连续性在数学中,函数的连续性是指函数在其中一区间上的从一个点到另一个点的变化是连续而不中断的。
具体而言,对于给定的函数f(x),如果对于任意给定的x=a和x=b(a<b),当x在区间(a,b)上变化时,函数f(x)在这个区间上的变化也会连续且不中断。
例如,考虑函数f(x)=2x,在区间(0,2)上,当x增加时,函数值也会相应地增加。
无论x在该区间上的取值是多少,函数的变化都是连续的。
二、函数一致连续性函数的一致连续性是指对于给定的函数f(x)和任意正数ε,存在正数δ,当x在给定的区间上变化时,函数值的变化都不会超过ε。
具体而言,函数f(x)在区间(a,b)上一致连续,意味着对于任意给定的ε>0,存在δ>0,使得当x和y在(a,b)区间内满足,x-y,<δ时,有,f(x)-f(y),<ε。
函数的一致连续性相较于函数的普通连续性更强。
普通连续性要求在给定的区间上,函数在任意一点上的极限存在,而一致连续性要求在给定的区间上,对于任意一个ε>0,存在一个δ,使得整个区间上的函数值的变化都不会超过ε。
三、判定函数一致连续的方法函数的一致连续性常用以下方法加以判断:1.强制法:使用函数定义、极限运算、数列性质等直接证明函数的一致连续性。
2.辅助函数法:构造一个辅助函数,该函数在给定区间上是连续的,且与原函数在区间的差别足够小,从而利用其连续性证明原函数的一致连续性。
3.导数法:对函数进行导数运算,判断导数是否有界,并利用有界导数的性质证明函数的一致连续性。
4.间断点法:对函数在给定区间上所有可能的间断点进行分析,通过排除间断点引起的非一致连续性,判断函数的一致连续性。
5.紧致性定理法:利用数学分析的紧致性定理,即闭区间上连续函数的最大值和最小值存在的性质,证明函数的一致连续性。
以上方法可以根据具体问题的特点选择适用的方法来判断函数的一致连续性。
第三讲 连续与一致连续一、 知识结构1、 函数连续的概念和定义函数连续的概念: 如果函数)(x f 在区间I 上有定义,并且函数)(x f 的图象是连续不断的,我们称函数)(x f 在区间I 上连续.(1) 函数)(x f 在点0x 连续的相关定义定义1 设函数)(x f 定义在);(δ0x U 内,如果)()(lim 00x f x f x x =→,则我们称函数)(x f 在0x 点连续. 记作)()(lim 00x f x f x x =→.定义1′设函数)(x f 定义在);(δ0x U 内,对0>∀ε,∃0>'δ,当δδ<'<-0x x 时,有ε<-)()(0x f x f ,则我们称函数)(x f 在0x 点连续.定义2 设函数)(x f 定义在);(δ0x U +内,对0>∀ε,∃0>'δ,当δδ<'<-≤00x x 时,有ε<-)()(0x f x f ,则我们称函数)(x f 在0x 点连续. 记作)()(lim 00x f x f x x =+→.定义 3 设函数)(x f 定义在);(δ0x U -内,对0>∀ε,∃0>'δ,当δδ<'<-≤x x 00时,有ε<-)()(0x f x f ,则我们称函数)(x f 在0x 点左连续. 记作)()(lim 0_x f x f x x =→.(2) 函数)(x f 在区间I 上连续定义1 如果函数)(x f 在区间),(b a 内任意一点连续,则我们称函数在区间),(b a 内连续.定义1′固定),(0b a x ∈, 对0>∀ε,∃0>δ,当δ<-0x x 时(b x a x ≤+≥-δδ00,),有ε<-)()(0x f x f ,则我们称函数在区间),(b a 内连续.定义 2 如果函数)(x f 在区间),(b a 内任意一点连续,并且在点b 左连续, 则我们称函数)(x f 在区间],(b a 连续.定义3 如果函数)(x f 在区间),(b a 内任意一点连续,并且在点a 右连续, 则我们称函数)(x f 在区间),[b a 连续.定义4 如果函数)(x f 在区间),(b a 内任意一点连续,并且在点b 左连续、点a 右连续, 则我们称函数)(x f 在区间],[b a 上连续.2、 函数一致连续的概念和定义函数一致连续的概念: 如果函数)(x f 在区间I 上有定义,函数)(x f 的图象是连续不断的,并且函数)(x f 的图象没有铅直的渐进线,我们称函数)(x f 在区间I 上一致连续.例如,函数xx f 1=)(在区间),(10内连续,但不一致连续.定义1对),(0b a x ∈∀, 0>∀ε,∃0>δ,当δ<-0x x 时(b x a x ≤+≥-δδ00,),有ε<-)()(0x f x f ,则我们称函数在区间),(b a 内一致连续.定义1′设函数)(x f y =在区间()b a ,上有定义,x x ''',是区间()b a ,内的任意一点, 对0>∀ε,∃0>δ,当δ<''-'x x 时,有ε<''-')()(x f x f ,则我们称函数)(x f 在区间()b a ,上一致连续.说明: 对给定的0>ε, 由于区间()b a ,内的点对x x ''',有无穷多个, 所以对每一对x x ''',均存在一个δ, 进而有无穷多个δ, 无穷多个δ中有最小的, 我们称函数)(x f 在区间()b a ,上一致连续. 无穷多个δ中没有最小的, 我们称函数)(x f 在区间()b a ,上不一致连续.定理 1 如果函数)(x f 在闭区间],[b a 上连续,则函数)(x f 在闭区间],[b a 上一致连续.说明: 如果函数)(x f 在开区间()b a ,内连续,则函数)(x f 在开区间()b a ,内不一定一致连续.3、 函数)(x f 的间断点(不连续点)定义1 如果)()(lim 00x f x f x x ≠→,我们称函数在点0x 间断.(1) 第一类间断点定义2 如果极限)(lim x f x x 0→存在,但不等于)(0x f ,我们称点0x 为函数的可去间断点.定义2 如果极限)(lim x f x x +→0与)(lim x f x x -→0都存在但不相等,我们称点0x 为函数的跳跃间断点.可去间断点与跳跃间断点统称为第一类间断点. (2) 第二类间断点非第一类间断点称为第二类间断点,即)(li m x f x x 0→不存在,或)(lim x f x x +→0不存在,或)(lim x f x x -→0不存在,具体情况如下:①∞=→)(lim 0x f x x ;②∞=→)(lim 0x f x x 趋向于两个以上的数;③∞=+→)(lim 0x f x x ;④)(lim x f x x +→0趋向于两个以上的数;⑤∞=-→)(lim 0x f x x ;⑥)(lim x f x x -→0趋向于两个以上的数.例如,狄利克雷(Dirichlet )函数⎩⎨⎧=为无理数时,当为有理数时,,当x x x D 01)(定义域()+∞∞-,上的任意一点为第二类间断点. 因为⎩⎨⎧=→为无理数时当为有理数时当x x x D x x ,0,,1)(lim 0,所以)(lim 0x D x x →不存在. 再例如,对函数x1sin,00=x 是函数的第二类间断点. 因为xx x 10sinlim +→不存在(x x sin lim +∞→不存在前面已证).连续和一致连续的概念与定义可推广到多元函数上. 二、解证题方法 1、连续 例1(天津大学2006年)证明: 函数⎪⎩⎪⎨⎧=≠-+--=42142424322x x x x x x x f ,,,)(在4=x 处连续(用δε-语言证明). 证明因为)(624212424322+-=--+--x x x x x x , 对0>∀ε, 存在{}118,min εδ=, 当δ<-4x 时, 有ε≤-≤+-=--+--184624212424322x x x x x x x )(, 所以函数⎪⎩⎪⎨⎧=≠-+--=42142424322x x x x x x x f ,,,)(在4=x 处连续. 例2 (天津大学2005年)证明: 函数⎩⎨⎧=为无理数为有理数x x x x f ,,,s i n)(0π在n x =处连续(用δε-语言证明).证明 因为0==→ππn x nx s i n s i n lim , R x ∈, 所以, 对0>∀ε,∃0>δ,当δ<-n x 时,有επ<-0x s i n . 又因x x f πs i n )(≤,R x ∈, 所以ε<-0)(x f . 故函数⎩⎨⎧=为无理数为有理数x x x x f ,,,sin )(0π在n x =处连续.例3 (复旦大学2002年)证明函数xx f 1=)(在区间],(10上不一致连续.证明 取nx n 1=,11+=n y n , ,,,321=n ,则],(,10∈n n y x .因为,)()(1=-=-nn n n n n y x x y y f x f 所以, 存在10=ε,对所有0>δ,当δ<-n n y x 时, 有,)()(1≥-=-nn n n n n y x x y y f x f 故函数xx f 1=)(在区间],(10上不一致连续.证法2 取nx n 1=,11+=n y n , ,,,321=n ,则],(,10∈n n y x .因为0=-∞→n n n y x lim ,而1=-∞→)()(lim n n n y f x f ,所以函数xx f 1=)(在区间],(10上不一致连续.例4(中北大学2005年)证明函数xxx x f 112sin)(++=在区间),(10内不一致连续, 在],[21与),[+∞2上均一致连续.证明 取πn x n 21=,221ππ+=n y n , ,,,321=n ,则),(,10∈n n y x .因为0=-∞→n n n y x lim ,而224228=++++=-∞→∞→ππππn n y f x f n n n n lim)()(lim ,所以函数x xx x f 112sin)(++=在区间),(10上不一致连续.由于函数xx xx f 112s i n )(++=在区间],[21上连续, 所以函数xx xx f 112s i n )(++=在区间],[21上一致连续. 由于函数xx x x f 112s i n )(++=在区间],[12+A 上连续, 所以函数xxx x f 112s i n)(++=在区间],[12+A (2>A )上一致连续.因为0112=++=+∞→+∞→xxx x f x x sinlim )(lim ,对2>A ,当A x x >''',时,有ε<''-')()(x f x f . 进而函数x x xx f 112s i n )(++=在区间),[+∞A (2>A )上一致连续.例5 (北京工业大学2005年)设)(x f 和)(x g 为区间()b a ,上的连续函数,试证明{})(),(max )(x g x f x F =为区间()b a ,上的连续函数.证明 因为{}[])()()()()(),(max)(x g x f x g x f x g x f x F -++==21,所以只要证明)()(x g x f -为区间()b a ,上的连续函数即可.对()b a x ,∈∀0,由于)(x f 和)(x g 为区间()b a ,上的连续函数, 所以,对0>∀ε,∃0>δ,当δ<-0x x 时,有ε<-)()(0x f x f ,ε<-)()(0x g x g .又因ε20000<-+-≤---)()()()()()()()(x g x g x f x f x g x f x g x f ,所以)()(x g x f -为区间()b a ,上的连续函数.例6(江苏大学2006年)设函数)(x f 为],[b a 上的单调增函数,其值域为[])(),(b f a f ,证明)(x f 在],[b a 上连续.证明 因为函数)(x f 为],[b a 上的单调增函数,所以函数)(x f 在],[b a 上任意一点的极限都存在.如果函数)(x f 在],[b a 上不连续,则函数)(x f 在],[b a 上存在间断点0x ,如果a x =0,则00>-+)()(a f a f .由函数)(x f 在],[b a 上的单调性知, 函数)(x f 无法取到[])(),(0+a f a f 上的值,这与函数)(x f 的值域为[])(),(b f a f 矛盾. 如果b x =0,则00<--)()(b f b f .由函数)(x f 在],[b a 上的单调性知, 函数)(x f 无法取到[])(),(b f b f 0-上的值,这与函数)(x f 的值域为[])(),(b f a f 矛盾. 如果()b a x ,∈0,则不等式0000<--)()(x f x f 及0000>-+)()(x f x f 至少有一个成立,不妨设0000<--)()(x f x f .由函数)(x f 在],[b a 上的单调性知, 函数)(x f 无法取到[])(),(000x f x f -上的值, 这与函数)(x f 的值域为[])(),(b f a f 矛盾. 故函数)(x f 在],[b a 上连续.例7(西安交通大学2001年)证明:满足函数方程)()()(y f x f y x f =+的惟一不恒为零的连续函数是指数函数()+∞∞-∈=,,)(x a x f x,其中01>=)(f a .分析:要说明函数)(x f 是指数函数x a ,应证明①0>)(x f ;②[]cx f cx f )()(=,其中c 是实数;③01>=)(f a .证明首先证明①>)(x f .因为222222≥⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛+=x f x f x f x x f x f )(,又因为0000≠==-⋅)()()()()(x f x f f x f x f (因为)(x f 在()+∞∞-,上不恒为零,所以存在()+∞∞-∈,0x ,使00≠)(x f ).所以0≠)(x f ,进而0>)(x f .其次证明[]cx f cx f )()(=,其中c 是实数.a) 当0=c 时, 由)()()(0000f x f x f =≠得10=)(f 得10=)(f . b)当nc =,n 为正整数时,[]nnn x f x f x f x x f nx f )()()()(==⎪⎪⎭⎫ ⎝⎛++=.c) 当nm c =,m n ,为正整数时,mmmn x f n x f n x f n x n x f x n m f ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎭⎫ ⎝⎛++=⎪⎭⎫⎝⎛,又因为nnnn x f n x f n x f n x n x f x n n f ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎭⎫ ⎝⎛++=⎪⎭⎫⎝⎛,所以[]n x f n x f 1)(=⎪⎭⎫ ⎝⎛.进而()[]n mx f x n m f =⎪⎭⎫⎝⎛.d) 当nm c -=,m n ,为正整数时,()[][]n mn mnmn mx f x f x f f x f x n m f -=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=-=⎪⎭⎫⎝⎛-)()()()(10, e) 当c 为无理数时,有有理数列{}n c ,使得c c n n =∞→lim .因函数)(x f 连续,所以[][][]c c c n n n x f x f x f x c f cx f n n n )(lim )()(lim )(lim )(====∞→∞→∞→. 最后证明01>=)(f a .因为0>)(x f ,所以01>=)(f a .例8(北京交通大学2006年、江苏大学2006年)设函数)(x f 是区间()+∞∞-=,R 上的单调函数,定义)()(0+=x f x g .证明函数)(x g 在区间()+∞∞-=,R 上的每一点都右连续.分析:不妨设函数)(x f 是区间()+∞∞-=,R 上的单调增函数.要证明函数)(x g 在区间()+∞∞-=,R 上的每一点都右连续,只要证明对任意一点Rx ∈0,0>∀ε,∃0>δ,当δ≤-≤00x x 时,有ε<-≤)()(00x g x g .证明 不妨设函数)(x f 是区间()+∞∞-=,R 上的单调增函数.设0x 是区间()+∞∞-=,R 上的任意一点, 因为)0()(00+=x f x g ,即()00)(lim )0(0x g x f x f x x ==++→,所以,对0>∀ε,∃0>δ,当δ≤-≤00x x 时,有εδ<-+)()(00x g x f ,即εδε<-+<-)()(00x g x f .εδδ<-+=-+)()()()(0000x g x f x g x f ,又因函数)(x f 是区间()+∞∞-=,R 上的单调增函数, 所以)()()(δ+≤+=00x f x f x g ,故ε<-)()(0x g x g .又因函数)(x f 是区间()+∞∞-=,R 上的单调增函数,所以())()()(x g x f x f x g =+≤+=0000,进而ε<-)()(0x g x g .所以函数)(x g 在区间()+∞∞-=,R 上的每一点都右连续.例9(中北大学2005年)设函数()⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧>⎪⎭⎫ ⎝⎛+--+=<-=,0,41ln 1,0,6,0,arcsin arctan )(23x x x ax x e x x xx ax x f ax 问:(1)a 为何值时,)(x f 在0=x 处连续;(2) a 为何值时, 0=x 是)(x f 的可去间断点.解 (1) 因为()()2122033113limarcsin lim arcsin arctan lim -→→→--=-=----xaxxx axxx axx x x()()()a xa xx ax xx axx x x 616lim16lim13lim232023202322-=--=--=--=-→-→-→---,41lim41ln 1lim 22x x ax x ex x ax x e axx axx ⋅--+=⎪⎭⎫ ⎝⎛+--+++→→42212lim212lim220+=+=-+=++→→a ea xa x aeaxx axx ,所以,当64262=+=-a a 时,即1-=a 时,函数)(x f 在0=x 处连续.(2)当66422≠-=+a a 时, 0=x 是)(x f 的可去间断点.即2-=a 时, 0=x 是)(x f 的可去间断点.例10设函数()222222sin0,(,)0,0x y x y f x y x y ⎧++≠⎪=⎨⎪+=⎩,试讨论(,)f x y 在点()0,0的连续性、偏导数存在性、可微性. 解 (1)连续性 因为()()()()()22,0,0,0,0lim(,)lim sin0(0,0)x y x y f x y x y f →→⎡⎤=+==⎢⎢⎣,所以(,)f x y 在点()0,0连续.(2)偏导数存在性 因为()()()()()xxx xf x f y x y x ∆∆∆=∆-∆+→∆∆→∆∆1sinlim)0,0(0,0lim20,0,0,0,()()01sinlim0,0,=⎪⎪⎭⎫⎝⎛∆∆=→∆∆x x y x , ()()()()()yyy yf y f y x y x ∆∆∆=∆-∆+→∆∆→∆∆1sinlim)0,0(0,0lim20,0,0,0,()()01sin lim0,0,=⎪⎪⎭⎫⎝⎛∆∆=→∆∆y y y x , 所以)0,0(x f 与)0,0(y f 均存在,且都等于零. (3)可微性 因为 ρρdff -∆→0lim()()[]()()[]ρρdyf dx f f y x f y x 0,00,00,00,0lim+--∆+∆+=→()()ρρ001sin lim22220+-⎥⎥⎦⎤⎢⎢⎣⎡∆+∆∆+∆→y x y x01sin lim 1sin lim 0220=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛∆+∆→→ρρρρρy x , 所以()f df o ρ∆-=,进而函数(,)f x y 在点()0,0可微. 练习[1] (电子科技大学2005年)设函数)(x f 定义在()b a ,上,()b a c ,∈,又设)(x H 和)(x G 分别在),[],,(b c c a 上连续且在),(c a 和()b c ,内是)(x f 的原函数.令⎩⎨⎧<≤+<<=bx c C x G c x a x H x F ,)(,),()(0,其中选择0C 使)(x F 在c x =处连续,就下列情况,回答)(x F 是否是)(x f 在()b a ,上的原函数.(1))(x f 在c x =处连续;(2) c x =是)(x f 的第一类间断点;(3) c x =是)(x f 的第二类间断点. 解(1)当)(x f 在c x =处连续时,因为)()(l i m)(l i m )()(li m )(c f x f x F cx c F x F c F c x c x c x =='=--='→→→,所以)(x F 是)(x f 在()b a ,上的原函数.(2)因为 c x =是)(x f 的第一类间断点,且)(x F 在c x =处连续, 所以)()(lim )(lim c f x f x f cx c x ≠==+→→或)(lim )(lim x f x f cx cx =+→→≠.当)()(lim )(lim c f x f x f cx cx ≠==+→→时,由)(lim )(lim )()(lim)(x f x F cx c F x F c F cx cx cx +++→→→+='=--='得,)()(lim )(c f x f c F cx ≠='+→+,所以)(x F 不是)(x f 在()b a ,上的原函数.当)(lim )(lim x f x f cx cx =+→→≠时, )(c f 不存在,即)()(c f c F ≠'.所以)(x F 不是)(x f 在()b a ,上的原函数.(3)不能判断.例如⎪⎩⎪⎨⎧=≠-=--.,,,sin sin )(0001121x x xnx xnxx f n n 当21,=n 时,0=x 是)(x f 的第二类间断点,取⎪⎩⎪⎨⎧=≠=,,,,sin )(0001x x xx x F n当2=n 时,)(sinlim )()(lim)(0010000f xx x F x F F x x ===--='→→,故)(x F 是)(x f 在()b a ,上的原函数. 当1=n 时,)(sinlim )()(lim)(0010000f xx F x F F x x =≠=--='→→,故)(x F 不是)(x f 在()b a ,上的原函数.[2] (电子科技大学2003年,江苏大学2004年)证明区间()b a ,上的单调函数)(x f 的一切不连续点都为第一类间断点.证明 不妨设函数)(x f 是单调增函数,并且设()b a x ,∈0是函数)(x f 的间断点.因为())()(li m 0000x f x f x f x x ≤=--→,())()(lim 0000x f x f x f x x ≥=++→,并且函数在0x 不连续,所以不等式())(000x f x f ≤-,())(000x f x f ≥+至少有一个取>或<号,所以0x 是跳跃间断点,即区间()b a ,上的单调函数)(x f 的一切不连续点都为第一类间断点.[3](上海交通大学2003年,深圳大学2006年)定义函数如下:()10=R ,⎪⎩⎪⎨⎧==为无理数,互质x q p qpx qx R 0),(,)(1(1≤≤x 0), 证明)(x R 在区间],[10上的无理点处连续,而在区间],[10上的有理点处不连续.证明 设0x 是区间],[10上的任意一个有理点,则在区间()δδ+-00x x ,内一定存在无理点x '(根据无理数的稠密性),对我们只要取01>≥εq,使得ε≥=-'qx R x R 10)()(.所以)(x R 在区间],[10上的有理点处不连续.设0x 是区间],[10上的任意一个无理点,我们只要证明: 对0>∀ε,∃0>δ,当δ<-0x x 时,有ε<≤-=-qx R x R x R 100)()()(即可.因为ε≥q1的q 值有有限个,不妨设为m x x x ,,, 21.令{}001x x x x k k mk ≠-=≤≤,min δ,当δ<-0x x 时,有ε<≤-=-qx R x R x R 100)()()(.即)(x R 在区间],[10上的无理点处连续.[4] (南京理工大学2004年)设函数)(x f 在],[b a 上连续,且在],[b a 上的任意有理点为0,证明函数)(x f 在],[b a 上恒为零.证明 设0x 为],[b a 上的任意一点,当0x 为有理点时,0=)(x f .当0x 为无理点时,存在有理数列{}].[b a x n ⊂,使0x x n n =∞→lim .故000===∞→∞→lim )(lim )(n n n x f x f ,进而函数)(x f 在],[b a 上恒为零.[5] (江苏大学2004年)设)(x f 在],[b a 上连续,又有{}].[b a x n ⊂,使得A x f n n =∞→)(lim ,证明:存在],[b a x ∈0,使得A x f =)(0.证明 因为{}].[b a x n ⊂,由致密性定理,{}n x 存在收敛的子列{}knx ,使0x x k k n n =∞→lim .又因)(x f 在],[b a 上连续, 故A x f x f k k n n ==∞→)(lim )(0.[6]( 上海交通大学2003年)设定义在实数集R 上的函数)(x f 在10,=x 两点处连续,且对任意的R x ∈有)()(x f x f =2,证明:)(x f 为常函数.证明 对0>∀x ,由)()(x f x f =2得,N n x f x f n∈=),()(21.因为121=∞→nx n lim ,并且在1=x 点处连续,所以)()(l i m)(li m)(121f x f x f x f nn n ===∞→∞→.又)(x f 在0=x 点处连续,所以)()(lim )(100f x f f x ==+→.又因R x f x f x f ∈==),()()(12,所以)(x f 为常函数.[7](陕西师范大学2003年)设)(x f 在R 上有定义且恒不为零,)(0f '存在,且对任意的y x ,都有)()()(y f x f y x f =+,求)(),(x f x f '.解 因为)()()(00f x f x f =+,并且)(x f 在R 上恒不为零,所以10=)(f .由)(0f '存在,则)(x f 在点0连续.设对R x ∈∀0,因1000000--=--=-)()()()()()()(x x f x f x f x x f x f x f x f ,所以[]010100000=-=--=-→→)()()()(lim)()(lim f x f x x f xf x f x f x x x x ,故函数)(x f 在R 上连续.对任意的有理数x ,有[]xf x f )()(1=,对任意的无理数x ,存在有理数列{}n x ,使得x x n n =∞→lim .进而[][]xx n n n f f x f x f n)()(lim )(lim )(11===∞→∞→.所以[]xf x f )()(1=.所以[]{}[])(ln )()()(1111f f x f x f x x⋅='='-.[8](中北大学2005年)设)(x f 在R 上有定义,且0=-∞→)(lim x f x ,1=+∞→)(lim x f x ,在区间()10,上定义函数{}x t f t x g >=)(i n f )(,证明:函数)(x g 右连续.证明 对()100,∈∀x ,{}00x t f t x g >=)(inf )(,所以对0>∀ε,存在()()+∞∞-∈,εt ,当0x t f >))((ε,有εε<-≤)()(00x g t .因为{}()εt x t f t x g ≤>=)(inf )(,所以ε<-)()(0x g x g ,())((,εt f x x 0∈,即函数)(x g 右连续.[9](中北大学2005年)证明: (1)函数xxx x f 112sin)(++=在()10,内不一致连续,(2) 函数xxx x f 112sin)(++=在],[21与),[+∞2上均一致连续.证明 (1)取πn x n 21=,221ππ+=n y n ,则()10,,∈n n y x .因为()022*******=⎪⎭⎫ ⎝⎛+=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+-=-∞→∞→∞→πππππππn n n n y x n n n n n l i m l i m l i m , 而)()(lim n n n y f x f -∞→()122sin 2212222sin 2122lim=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++-++=∞→πππππππππn n n n n n n , 所以函数xx f 1sin)(=在()10,内不一致连续.(2)因为xxx x f 112sin)(++=在],[21上连续,所以xxx x f 112sin)(++=在],[21上一致连续.因为01s i n 12l i m )(l i m =⎪⎭⎫⎝⎛++=+∞→+∞→x x xx f x x ,所以,对0>∀ε,存在2>X ,当X x x >''',时,有ε<''-')()(x f x f ,即xxx x f 112si n )(++=在),[+∞+1X 上连续(当),[,+∞+∈'''1X x x 时,显然有δ<''-'x x 时,ε<''-')()(x f x f ).因为xx xx f 112s i n )(++=在],[12+X 上连续,所以xx xx f 112s i n)(++=在],[12+X 上一致连续. [10](复旦大学2002年、汕头大学2003年、中北大学2005、浙江师范大学2003年)证明:函数xx f 1sin )(=在],(10内不一致连续.证明 取πn x n 21=,221ππ+=n y n ,则],(,10∈n n y x .因为()022*******=⎪⎭⎫ ⎝⎛+=⎪⎪⎪⎪⎭⎫⎝⎛+-=-∞→∞→∞→πππππππn n n n y x n n n n n lim lim lim ,而()1222=⎪⎭⎫ ⎝⎛+-=-∞→∞→πππn n y f x f n n n n sin sin lim )()(lim ,所以函数xx f 1s i n )(=在],(10内不一致连续.。
一引入“一致性”的意义数学分析教材中有不少概念,如函数的连续性与一直连续性、函数列的收敛性与一致收敛性,初学者很容易混淆,因而成为“数学分析”中学习的一个难点所在。
数学分析中的三个“一致性”(即一致有界, 一致连续, 一致收敛) 的概念对数学基础知识的学习很重要。
弄清函数的一致连续性的概念和掌握判断函数一致连续的方法无疑是学好函数一致连续性理论的关键。
数学分析教材只给出一致连续的概念和判断函数在闭区间上一致连续的G·康托定理,内容篇幅少,为了使初学者对函数一致连续性的理论有正确的理解和全面的掌握,作为教材内容的适当扩展和补充显然,一致连续要比连续条件强。
但在数学分析教科书中,仅给出一致连续的定义以及利用定义证明函数f(x)在某区间上一致连续的数学方法,呈现了函数一致连续完美的逻辑结果,但学生对定义特别是其中δ的很难理解。
一致连续是一个很重要的概念,在微积分学以及其他学科中常常用到,而且函数列的一致连续性和一致收敛又有着密切关系。
在研究函数列的收敛问题中,常常要用到函数列与函数之间的收敛、一致连续性、一致收敛的关系。
数学分析中的函数一致连续性、函数列一致有界性、函数列一致收敛性、函数项级数一致收敛性、含参变量无穷积分一致收敛性等“一致性”概念是学习上的难点,因此,牢固掌握这些概念及与之有关的理论,对打好分析基础,培养良好的数学素养和创新能力都有着重要的意义。
对函数列的极限函数、函数项级数的和函数以及含参变量积分性质的讨论,常常需要讨论其一致收敛性,而函数项级数的一致收敛性可归结成部分和函数列的一致收敛性的研究,含参变量无穷积分的一致收敛性,又可归结成函数项级数的一致收敛性的研究,故本文着重讨论函数一致连续性和函数列一致收敛性重要概念。
函数一致连续的概念是学生学习高等数学的一个难点,证明某一个函数是否具有一致连续性让许多同学更是无从下手。
为了解决这一难点,化抽象为简单,给出一致连续性的几种等价形式,能帮助同学易于接受。
摘要从函数连续与一致连续的概念和关系出发,函数的一致连续性在数学分析中是一个比较精细的概念,占的地位比较重要。
对函数连续性的研究一直受到人们的重视,经过多年不懈地研究,很多学者都取得了不少的研究成果,以对函数连续性和一致连续的内涵有更全面的理解和认识。
本论文综述了连续函数的定义和一致连续函数的定义,以及一致连续函数所具有的性质,最后本文介绍了三种判别函数一致连续性的方法,第一种利用连续函数的性质判别不同类型区间上函数的一致连续性,第二种利用瑕积分判断函数的一致连续性,第三种利用比值判别法判断函数一致连续性。
关键词:连续函数性质,一致连续性,判别法About a discussion of function continuousand uniformly continuousAbstract:Uniform continuity of functions in mathematical analysis is a more sophisticated concept,representing more important role.definition this paper summarizes the continuous function continuous function and consistent,and consistent with the nature of the continuous function,finally, this paper describes three methods discriminant function consistent continuity,the first use of continuous functions on the nature of the different types of discrimination uniform continuity interval function,the second use of uniform continuity flaw integral function of judge,the third function is to determine the continuity of the use of a consistent ratio of discrimination law.Keyword:Properties of continuous functions,Uniform Continuity,Criterion目录一、引言 (1)(一)相关的背景和意义 (1)(二)选题依据及研究内容 (1)二、函数连续及函数一致性连续的定义 (2)(一)函数连续性定义 (2)(二)函数一致连续性定义 (2)三、函数连续的性质 (4)(一)连续函数的局部性质 (4)(二)闭区间上连续函数的基本性质 (4)(三)反函数的连续性 (5)(四)初等函数的连续性 (5)四、一致连续函数的性质 (5)(一)一致连续函数自变量与函数值的关系 (5)(二)区间内一致连续函数的有界性 (6)(三)函数一致连续的四则运算性质 (7)五、判别函数一致连续性的方法 (9)(一)利用连续函数的性质判别不同类型区间上函数的一致连续性 10 (二)利用瑕积分的敛散性判断函数的一致连续性 (13)(三)利用比值判别法判断函数一致连续性 (14)六、结论 (15)致谢...................................... 错误!未定义书签。
一致连续与连续的关系我们知道,f(x)在区间I上一致连续,自然f(x)在I上连续,反之不一定.若I为有限闭区间,据Cantor定理,f在[a,b]上连续等价于f在[a,b]上一致连续.现在让我们来讨论开区间以及无穷区间的情况.例1设f(x)在有限开区间(a,b)上连续,试证f(x)在(a,b)上一致连续的充要证1°(必要性)已知∀ε>0,∃δ>0,当x′,x″∈(a,b),|x′-x″|<δ时,有|f(x′)-f(x″)|<ε.故∀x′,x″∈(a,b),a<x′<a+δ,a<x″<a+δ时,有|f(x′)-f(x″)|<ε.Cantor定理,f(x)在[a,b]上一致连续.从而原f在(a,b)上一致连续.注(1)此例表明:在有限开区间上连续函数是否一致连续,取决于函数在端点(2)由此例还可看出,f(x)在(a,b)上一致连续,则f在(a,b)上有界.然而,在(3)当(a,b)改为无穷区间时,该例的必要性不再成立.如f(x)=x,g(x)=sinx在(-∞,+∞)上一致连续,但在端点±∞无极限.对于无穷区间,充分性仍是对的.请看:上一致连续.|f(x′)-f(x″)|<ε(1)(Cauchy准则之“必要性”).2°由Cantor定理,f在[a,Δ+1]上一致连续,故对此ε>0,∃δ1>0,当x′,x″∈[a,Δ+1],|x′-x″|<δ1时,有|f(x′)-f(x″)|<ε.(2)3°令δ=min{1,δ1},则x′,x″>a,|x′-x″|<δ时,x′,x″要么同属于[a,Δ+1],要么同属于(Δ,+∞).从而由(1)、(2)知|f(x′)-f(x″)|<ε.即f在[a,+∞)上一致连续.注如下的证明是错误的:首先利用以上证明的1°,得结论“f在[Δ,+∞)上一致连续”,然后利用Cantor定理,f在[a,Δ]上一致连续,从而f在[a,+∞)上一致连续.其错误在于1°中Δ与ε有关,由1°得不出f在[Δ,+∞)上一致连续.=0.证明:ϕ(x)在[a,+∞)上一致连续.2°利用Cantor定理,可知ϕ(x)在[a,Δ+1]上一致连续,所以对此ε>0,∃δ2>0,当x′,x″∈[a,Δ+1]|x′-x″|<δ2时,有|ϕ (x′)-ϕ(x″)|<ε.3°取δ=min{1,δ1,δ2]时,则x′,x″∈[a,+∞)|x′-x″|<δ时,有|ϕ (x′)-ϕ(x″)|<ε.证毕.我们知道,y=x在(-∞,+∞)内一致连续,但y=x2在(-∞,+∞)内非一致连续.我们要问:在无穷区间上一致连续的函数,当x→±∞时,阶次有何估计.例4设f(x)在(-∞,+∞)上一致连续,则存在非负实数a与b,使对一切x∈(-∞,+∞),都有|f(x)|≤a|x|+b.试证明之.证因为f(x)一致连续,所以∀ε>0,∃δ>0,当|x′-x″|≤δ时,有|f(x′)-f(x″)|<ε.现将ε>0,δ>0固定.由于∀x∈(-∞,+∞),∃n∈Z(整数集),使得x=nδ+x0,其中x0∈(-δ,δ).注意到f(x)在[-δ,δ]上有界,即∃M>0,使得|f(x)|≤M(∀ x∈[-δ,δ]).因此,≤|n|ε+M.|f(x)|≤a|x|+b (∀ x∈(-∞,+∞)).此例说明,若f(x)在(-∞,+∞)内一致连续,则x→∞时,f(x)=O(x).下面我们来看一个使用一致连续性的例子.应∃N x>0,n>N x时|f(x+n)|<ε.可惜这么找得的N x(x∈[0,1])共有无穷多个.无相应∃N i>0,使得n>N i时,|f(x i+n)|<ε.令N=max{N1,…,N k}则n>N时,有|f(x i+n)|<ε(i=1,2,…,k).如此我们虽未找到所需的Δ>0,但至少在[N,+∞)内的每个格点x i+n(i=1,2,…,k,n=N+1,N+2,…)上,有|f(x i+n)|<ε.注意到f(x)在[0,+∞)上一致连续,因此把分划取得足够细,使得格点足够密,可使二格点之间的函数值,与格点的函数值,相差任意小.证1°因f(x)在[0,+∞)上一致连续,所以∀ε>0,∃δ>0,当|x′-x″|<δ(x′,x″>0)时,有(1)(2)4°取Δ=N>0,来证x>Δ时|f(x)|<ε.事实上,∀x>N,记n≡[x]≥N,因x -n∈[0,1),故∃i∈{1,2,…,k},使得|(x-n)-x i|<δ,即|x-(n+x i)||f(x)|≤|f(x)-f(n+x i)|+|f(n+x i)|。
函数的一致连续性一致连续性是数学分析中的一个重要概念,它不仅在微积分中有着广泛的应用,而且在函数论和拓扑学等领域也扮演着关键的角色。
本文将对一致连续性的定义、性质及其与普通连续性的关系进行深入探讨,并通过例子说明其在实际中的应用。
一致连续性的定义传统的连续性涉及到函数在某一点的邻域内的行为,而一致连续性则进一步扩展了这一概念。
设 ( f: A ) 是定义在集合 ( A ) 上的一个函数。
如果对任意的 ( > 0 ),存在一个 ( > 0 ),使得对于所有的 ( x, y A ),只要满足 ( |x - y| < ),就有 ( |f(x) -f(y)| < ),那么我们称函数 ( f ) 是在 ( A ) 上一致连续的。
这种定义与普通的连续性不同,普通的连续性要求在特定点附近都能找到适合的 ( ) 值,而一致连续性则要求这个 ( ) 值能够适用于整个区间或集合。
这种“整体”性质使得一致连续性在分析中极具吸引力。
一致连续性的性质性质一:一致连续性的充要条件一致连续性最重要的一个性质是其与有界闭集上连续性的关系。
即如果函数 ( f: [a, b] ) 在区间上是连续的,并且该区间是有界闭集,那么函数 ( f ) 是一致连续的。
这一性质也可以称为“海涅-博尔查诺定理”的一种表现。
性质二:复合函数的一致连续性如果 ( f: A B ) 和 ( g: B C ) 都是显式一致连续的函数,那么复合函数 ( g(f(x)) ) 也是一致连续的。
这为我们提供了在处理复杂问题时的一种手段,可以将多个容易处理的一致连续函数组合起来。
性质三:一致连续函数的有限性如果一组函数 ( f_n: A_n B_n ) 是一致连续的,并且它们都定义在相同的集合上,则它们的一致收敛也将保持一致性,即如果( f_n(x) f(x) )(对所有 ( x A_n )),那么 ( f(x) ) 同样是一致连续的。
一致连续性与普通连续性的关系虽然所有的一致连续函数都是普通连续函数,但并非所有普通连续函数都是一致连续函数。
数学分析第三讲连续与一致连续连续与一致连续是数学分析中非常重要的概念,在计算和证明数学问题时经常会用到。
本文将详细介绍连续与一致连续的定义、性质以及它们之间的关系。
首先,我们来定义连续与一致连续。
连续:设函数ƒ的定义域为D,若对于任意给定的ε>0,对于函数ƒ的任意一点x0∈D,存在δ>0,使得当x∈D且,x-x0,<δ时,有,f(x)-f(x0),<ε成立。
那么我们称函数ƒ在点x0处连续。
如果函数在定义域的每一个点都连续,则称函数ƒ在D上连续。
一致连续:设函数ƒ的定义域为D,若对于任意给定的ε>0,存在δ>0,使得当x1,x2∈D且,x1-x2,<δ时,有,f(x1)-f(x2),<ε成立。
那么我们称函数ƒ在D上一致连续。
连续与一致连续的不同之处在于,连续性是根据每个点的邻域来定义的,而一致连续性则是根据全体点的邻域来定义的。
下面我们来看连续与一致连续的性质。
连续性的性质:1. 函数ƒ在D上连续的充要条件是:对于D中任意的收敛数列{x_n},若lim(x_n) = x,则lim(f(x_n)) = f(x)。
2.连续函数的和、差、积、商(分母不为零)也是连续的。
3.连续函数的复合函数也是连续的。
一致连续性的性质:1.若ƒ在D上一致连续,则ƒ在D上也连续。
2.若ƒ在D上不一致连续,则ƒ在D上也不连续。
3.闭区间上的连续函数是一致连续的。
连续与一致连续之间的关系:若函数ƒ在闭区间[a,b]上连续,那么ƒ在[a,b]上一致连续。
这个结论被称为魏尔斯特拉斯逼近定理。
魏尔斯特拉斯逼近定理的证明比较复杂,我们不再详细介绍,但是可以简单说明一下思路。
证明的关键在于利用闭区间的有界性和完备性。
首先证明ƒ在闭区间上有界,然后利用闭区间的完备性,将ƒ定义域上的任意 Cauchy 序列映射到闭区间上,从而证明ƒ在闭区间上一致连续。
魏尔斯特拉斯逼近定理的详细证明可以在数学分析的相关教材中找到。
哈尔滨师范大学学年论文题目关于函数一致连续的探究学生万鑫指导教师曾伟梁副教授年级 2008级专业信息与计算科学系别信息系学院数学学院哈尔滨师范大学2011年 6 月关于一致连续函数的判据万鑫摘 要:连续与一致连续是数学分析中非常重要也非常基础的概念。
这两个概念来自于实际问题,现实问题。
我们经常观察的自然现象,如生物的连续生长,反映的是事物连续不断的变化的过程,如果用函数来刻画即是函数的连续性。
数学分析研究种种不同性质的函数,其中有一类重要的函数就是一致连续函数。
我们通过给出一致连续函数与非一致连续函数的定义,从而对函数的一致连续性进行探讨。
关键词:一致连续 非一致连续 判别依据 比较判别法 比值判别法。
一 函数)(x f 一致连续的概念定义1:设函数()x f 在()a u 上有定义,若函数()x f 在点a 上存在极限,且极限是()a f , 即()()a f x f ax =→lim ,则称函数()x f 在点a 上连续,也称a 是函数()x f 的连续点.用“δε—”语言叙述:函数()x f 在a 上连续⇔0>∀ε,0>∃δ,x ∀:,δ<-a x 时,有()()ε<a f x f -定义2: 设函数()x f 在区间I (开区间,闭区间,半开区间及无穷区间)上有定义,若0>∀ε,0>∃δ,I x x ∈∀21,,δ<-XX 21时,有()()ε<x x f f 21-可以看出,函数c 在I 上一直连续是指:不管x 1,x 2在I 中的位置如何,只要他们的距离小于δ,可使()()ε<x x f f21-,其中x 1,x 2都可变,δ依赖于ε而与x 1,x 2无关。
定义3: 设函数()x f 在区间I 上有定义,若0>∃ε,0>∀δ ,I x x ∈∃21, ,δ<-XX 21时有()()ε≥-x x f f 21,则称函数()x f 在I 上非一致连续。
关于连续与一致连续连续与一致连续是数学分析中非常基础也是非常重要的概念。
这两个概念来自于实际问题、现实世界。
我们经常观察到的一些自然现象有一些共同特性:例如气温的变化,生产的连续进行,生物的连续生长等等,反映出来的是事物连续不断地进行的过程。
如果用函数来刻画,即研究函数的连续性。
数学分析研究种种不同性质的函数,其中有一类重要的函数就是连续函数。
一﹑连续与一致连续的定义,二者的区别定义1 若函数在0x 点附近0()U x 有定义,并且00lim ()()x xf x f x →=时,我们称()f x 在0x 点连续,或者称0x 点是()f x 的连续点.定义1' 若函数在0x 点附近0()U x 有定义,若,0>∀ε0(,)0x δδε∃=>只要0()x U x ∈:0||x x δ-<,都有0|()()|f x f x ε-<,则称)(x f 在区间0x 处连续。
定义2 函数)(x f 在区间I 的每一点都连续,则称)(x f 在区间I 内连续。
定义3设函数)(x f 在区间I 上有定义,若,0>∀ε0)(>=∃εδδ只要',''x x I ∈:|'''|x x δ-<,都有|(')('')|f x f x ε-<,则称)(x f 在区间I 上一致连续.注:函数)(x f 在某区间内的连续性只反映函数在区间内每一点附近的局部性质;函数)(x f 在某区间内一致连续性,则是函数在区间上的整体性质,是反映函数在区间上更强的连续性。
直观地说,)(x f 在区间I 一致连续意味着:不论两点',''x x 在I 中处于什么位置只要它们的距离小于δ,就可使|(')('')|f x f x ε-<. 显然)(x f 必然在I 上每一点连续。
第三讲 连续与一致连续一 内容提要1.函数在一点的连续性 若函数)(x f 在0x 处的邻域内有定义,)(x f 在点0x 连续0lim 0=∆⇔→∆y x )()(lim 00x f x f x x =⇔→)lim ()(lim 00x f x f x x x x →→=⇔,0,0>∃>∀⇔δε使得δ<-<∀00:x x x ,有ε<-)()(0x f x f .注1 若)()(lim 00x f x f x x =+→,则称函数)(x f 在0x 右连续;若)()(lim 00x f x f x x =-→,则称函数)(x f 在0x 左连续.)(x f 在点0x 连续)(lim 0x f x x +→⇔)()(lim 00x f x f x x ==-→.注2 设)(x f 定义于区间I ,I x ∈0,则)(x f 在0x 连续的充要条件是⎭⎬⎫⎩⎨⎧∈→∈∀∞→I x x x x x n n n n n ,|}{}{0,有)()(lim 0x f x f n n =∞→称之为连续的海涅归结原则.注3 初等函数在有定义的地方处处连续. 2.间断点的分类若函数)(x f 在0x 处的某个空心邻域内有定义,)(x f 在点0x 处无定义,或)(x f 在点0x 有定义而不连续,则称点0x 为函数)(x f 的间断点. 第一类间断点(1)可去间断点:)0(0-x f A x f =+=)0(0,)(x f 在点0x 处无定义,或有定义但A x f ≠)(0.(2)跳跃间断点:)0(0-x f )0(0+≠x f . 第二类间断点)0(0-x f ,)0(0+x f 中至少有一个不存在.3.连续函数的局部性质(1)若函数)(x f 在点0x 连续,则0,>∃M δ,使得δ<-<∀00:x x x ,有M x f ≤)(. (2)若函数)(x f 在点0x 连续,且γ>)(0x f ,则0>∃δ,使得δ<-<∀00:x x x ,有γ>)(x f .(3)四则运算:若函数)(x f ,)(x g 均在点0x 连续,则 ±)(x f )(x g ,⋅)(x f )(x g ,)()(x g x f (0)(≠x g )在点0x 连续. (4)若函数)(x f 在点0x 连续,)(x g 在点0u 连续,且)(00x f u =,则 ()=→)(lim 0x f g x x =⎪⎭⎫ ⎝⎛→)(lim 0x f g x x ())(0x f g即函数())(x f g 在点0x 连续.(会证明)4 闭区间上连续函数的整体性质(1)有界性定理:若)(x f 在],[b a 上连续,则)(x f 在],[b a 上有界.(2)最值定理:若)(x f 在],[b a 上连续,则)(x f 在],[b a 上能取得最大值M 和最小值m . (3)介值定理:若)(x f 在],[b a 上连续,则],[),(b a ⊂∀βα,)(x f 可取介于)(αf 与)(βf 之间的一切值.(4)零点定理:若)(x f 在],[b a 上连续,且0)()(<⋅b f a f ,则在区间),(b a 内至少存在一点ξ,使得0)(=ξf .注1 闭区间上连续函数的整体性质在整个分析理论中具有重要性. 注2 介值定理和零点定理是讨论方程0)(=x f 的根的重要工具. 5 一致连续性设函数)(x f 在区间I 上有定义,若对,0)(,0>∃>∀εδε使得I x x ∈∀21,,只要δ<-21x x ,就有ε<-)()(21x f x f ,则称)(x f 在I 上一致连续.注 1 )(x f 在区间I 上一致连续,0)(,0>∃>∀⇔εδε使得I x ∈∀0,只要δ<-0x x ,就有ε<-)()(0x f x f .注2 一致连续定义中的δ是对整个区间I 适用的,即δ只信赖于ε,而于21,x x 的位置无关,不论21,x x 在I 的什么位置,只要1x 与2x 接近到同一程度,其函数值)(1x f 与)(2x f 就能接近到要求的程度,这表明函数)(x f 在I 的“连续程度”是一致的、均匀的. 注 3 )(x f 在区间I 上非一致连续,0,00>∀>∃⇔δε总存在I x x ∈''',,使得δ<''-'x x ,但0)()(ε>''-'x f x f .注4 )(x f 在区间I 上一致连续⇔对任何数列{}{}I x x n n∈''',,若 ()0lim =''-'∞→n nx x x ,则有()()()0lim =''-'∞→n n x x f x f . 称之为函数一致连续的Heine 归结原则.注5 )(x f 在],[b a 上连续,则函数)(x f 必定是一致连续的.注6 若)(1x f )(,2x f 在I 上均一致连续,则函数)(1x f )(2x f ±在I 上一致连续,特别的,若I 为有限区间,则)(1x f )(2x f ⋅,)()(21x f x f ()0)(2≠x f 在I 上一致连续. 注7 有关一致连续的几个重要结论:(1)满足Lipschitz 条件的函数)(x f 在I 上一定一致连续.(2)),[)(+∞∈a C x f ,且单调有界,则)(x f 在区间),[+∞a 上一致连续. (3)),[)(+∞∈a C x f ,且)(lim x f x +∞→存在,则)(x f 在区间),[+∞a 上一致连续.(4)若)(x f '在区间I 上有界,则)(x f 在区间I 上一致连续.(5)),()(b a C x f ∈,)(x f 在),(b a 上一致连续⇔)(lim x f ax +→与)(lim x f bx -→存在.二、典型例题例 用定义讨论下面函数在所给区间的连续、一致连续性:(1)x x f 1)(=,)1,0(∈x ; (2)xx f 1sin )(=,(ⅰ)),0(+∞∈x ,(ⅱ))1,(c x ∈;(3)2)(x x f =,(ⅰ)),(+∞-∞∈x ,(ⅱ)),(b a x ∈;(4)2sin )(x x f =,(ⅰ)),(+∞-∞∈x ,(ⅱ)),(b a x ∈;(5)x x f =)(,),0[+∞∈x ;(6)x x f cos )(=,),0[+∞∈x .例 设函数)(x f 只有可去间断点,定义)(lim )(y f x g xy →=,证明:)(x g 为连续函数.例 设)(x f 在0=x 连续,且对R y x ∈∀,,有)()()(y f x f y x f +=+. 证明:(1))(x f 在R 上连续;(2)x f x f )1()(=;(3))(x f 在R 上一致连续.例 证明⎩⎨⎧-∈∈=Q R x Q x x x f ,0,sin )(π在整数点处处连续,在其他点处间断.证明:Q x ∈∀且为整数时,有0sin )(==πk k f (Λ,2,1,0±±=k ).例 讨论xt x x t x t x f sin sin sin sin lim )(-→⎪⎭⎫⎝⎛=的间断点类型.例 设)(x f 在),(+∞-∞上连续,)(lim x f x ∞→存在且为A ,证明:(1))(x f 在),(+∞-∞内有界;(2))(x f 在),(+∞-∞上能取到最大(小)值; (3))(x f 在),(+∞-∞上一致连续.例 设)(x f 在R 上一致连续,则存在正数B A ,,使R x ∈∀,有B x A x f +≤)(.例 设上满足在)0)(,[)(>+∞a a x f Lipschitz 条件,即|||)()(|y x K y f x f -≤-,),,[,+∞∈∀a y x 为常数)0(≥K试证明:(1);a xx f 上有界在),[)(+∞ (2)上一致连续。
§2.9 函数的一致连续性定义 2.21 设f 是X 上的单变量函数.若0,0εδ∀>∃>,使得当12,x x X ∈,12x x δ-<时总成立12()()f x x ε-<,则称f 是X 上的一致连续函数.显然,若f 是X 上的一致连续函数,则f 一定是X 上的连续函数(反之通常不正确).命题1 (不一致连续的充要条件) X 上的单变量函数f 不一致连续0ε⇔∃>和{},{}n n x y X ⊂,使得lim()0n n n x y →∞-=,并且()()n n f x f y - ,n ε*≥∀∈.证: “⇒”.假定f 不是X 上的一致连续函数,则0ε∃>,n *∀∈,n x ∃,n y X ∈满足1n n x y n -<和()(),n n f x f y n ε*-≥∀∈.这说明右边成立. “⇐”.假定0ε∃>和{}n x ,{}n y X ⊂,使得l i m ()0n n n x y →∞-=,并且()(),n n f x f y n ε*-≥∀∈.这时,0δ∀>,,,N N N N x y X x y δ∃∈-<使得()()N N f x f y ε-≥.这说明f 不是X 上的一致连续函数.□ 命题 2 若f 是区间..I 上的一致连续函数,00δ>是常数,则必存在0M >使得当,x y I ∈,0x y δ-≤时总成立()()f x y M -≤. 证:对于固定的0,0εδ>>取,使得当12,x x I ∈,12x x δ-<时总成立12()()f x x ε-<.再取n *∈使得0,M n n δδε<=令.当,,x y I ∈x y -0δ≤时,()()f x f y -11(())(())n k k k f x y x f x y x n n=-≤+--+-∑n ε< M =.□命题 3 有限开区间(,)a b 上的连续函数f 一致连续⇔存在有限单侧极限()f a +和()f b -.证:“⇒”.若f 是(,)a b 上的一致连续函数,即0,0εδ∀>∃>,使得当,(,),2x y a b x y δ∈-<时成立()()f x f y ε-<,则当,(,)x y a b ∈,0 x a <-,0y a δδ<<-<时有()()f x f y ε-<.根据函数单侧极限的Cauchy 收敛原理,便知存在有限右极限()f a +.同理,存在有限左极限()f b -.“⇐”. (反证法)假定存在有限单侧极限()f a +和()f b -,但连续函数f 不一致连续.由命题1,0ε∃>和{},{}(,)n n x y a b ⊂,使得l i m ()0n n n x y →∞-=,并且()()n n f x f y -,n ε*≥∀∈.取{}n x 的收敛一个子列{}n k x ,则(1),n n k k x y a →+;(2),n n k k x y b →-;(3)0,n n k k x y x → (,)a b ∈三者必居其一.这样,便有0lim ()()n n k k n f x f y →∞=- 0ε≥>,得到矛盾.□例1 设Y X ∅≠⊂⊂.(1) 若f 是X 上的连续函数,则f 也是Y 上的连续函数;(2) 若f 是X 上的一致连续函数,则f 也是Y 上的一致连续函数.(3) 若,f g 都是X 上的一致连续函数,则f g ±也是X 上的一致连续函数.(4) 若,f g 都是一致连续函数,g f 有意义,则g f 也是一致连续函数.例2 当常数(0,1]μ∈时,幂函数x μ是[1,)+∞上的一致连续函数. 证: 121x x ∀≤<,有不等式1111112222(1)(1)x x x x x x x x μμμμ---=-≤-=-,即 2121x x x x μμ-≤-.故 0ε∀>,令0δε=>,则当12,[1,)x x ∈+∞,12x x δ-<时总成立1212x x x x μμδε-≤-<=.□例3 (连续但不一致连续的函数) 当常数(1,)μ∈+∞时,幂函数x μ不是[1,)+∞上的一致连续函数(这说明两个一致连续函数的积可能不是一致连续函数).证: 1x y ∀≤<,有不等式 11()y x x y x x y x μμμμμ---≥-=-.n *∀∈,令 11,n n x n y n n μ-==+,则 11lim()lim 0n n n n y x n μ-→∞→∞-==, n n y x μμ- 1()n n n x y x μ-≥-1111n nμμ--==.由命题1便知x μ不是[1,)+∞上的一致连续函数.□例4 (连续但不一致连续的函数) 1sin x不是(0,1)上的一致连续函数. 证: 由命题3.□例 5 10,xσ∀>是[,)σ+∞上的一致连续函数,但却不是(0,)+∞上的一致连续函数.证: 12x x σ∀≤<,有不等式21212121211x x x x x x x x σ---=≤.故0ε∀>,令20δσε=>,则当12,[,)x x σ∈+∞,12x x δ-<时总成立1211x x -212x x σ-≤ε<. 这说明1x 是[,)σ+∞上的一致连续函数. 由命题2或命题3知1x不是(0,)+∞上的一致连续函数.□练习题2.9(109P ) 1,2,3.问题2.9(109P ) 2.§2.10 有限闭区间上连续函数的性质定理 2.22(一致连续性) 若f 是有限闭区间[,]a b 上的连续函数,则f 必在[,]a b 上一致连续.证:(利用有限闭区间的列紧性反证) 假定连续函数f 不一致连续,即0ε∃>和{}n x ,{}n y ⊂[,]a b ,使得 lim()0n n n x y →∞-=,并且()()n n f x f y - ε≥,n ∀*∈.取{}n x 的一个子列{}n k x 收敛于0[,]x a b ∈,则{}n k y 也收敛于0[,]x a b ∈,从而0lim ()()0n n k k n f x f y ε→∞=-≥>,得到矛盾.□定理2.23和2.24 (最大值和最小值的可达性) 若f 是有限闭区间[,]a b 上的连续函数,则必00,[,]x y a b ∃∈,使得0()min ()a x b f x f x ≤≤=, 0()m ()a x bf y ax f x ≤≤=. 作为推论,f 在[,]a b 上有界.证:(利用有限闭区间的列紧性)仅证最小值的可达性.令inf ([,])m f a b ∞=∈,由§1.9的命题2知,{()}([,])n f x f a b ∃⊂使得lim ()n n f x m →∞=.取{}n x 一个子列{}n k x 收敛于0[,]x a b ∈,便有0l i m ()()n k n m f x f x →∞==,即0()min ()a x bf x f x ≤≤=.□ 定理2.25和2.26 (介值定理和零值定理) 若f 是有限闭区间[,]a b 上的连续函数,()()f a f b ≠,则∀介于()()f a f b 和之间的实数γ,必c ∃∈(,)a b 使得()f c γ=.作为推论,若()()0f a f b <,则必c ∃∈(,)a b 使得()0f c =.证: (利用区间的连通性) 记{[,]:()}A x a b f x γ=∈<,{[,]:B x a b =∈ ()f x }γ≥,则A ≠∅,B ≠∅,,[,]A B A B a b =∅=.由[,]a b 的连通性,或者可取{}n x A ⊂收敛于c B ∈,此时()lim ()n n f c f x γγ→∞≤=≤;或者可取{}n y B ⊂收敛于1c A ∈,此时1()lim ()n n f c f y γγ→∞>=≥(该情形不会出现).因而()f c γ=,c ∈(,)a b .□推论 若f 是区间I 上的连续函数,则()f I 也是区间. 证:(利用区间的连通性),(),l L f I l L ∀∈<,要证(,)()l L f I ⊂. 取,a b I ∈满足()f a l =,()f b L =,并不妨设a b <.(,)l L γ∀∈,c ∃∈(,)a b 使得()f c γ=.这说明()f I γ∈,从而(,)()l L f I ⊂.□例1 任何实系数奇次多项式必有实根.证: 设()p x 是实系数奇次多项式(首系数为1), 则lim (),x p x →+∞=+∞ lim ()x p x →-∞=-∞.故当0A >充分大时,有()0,()0f A f A >-<,从而(,)c A A ∃∈-使得()0p c =.□例2(115P ,8)设([0,1])f C ∈,(0)(1)f f =.求证n *∀∈,n x ∃∈1[0,1]n- 使得1()()n n f x f x n =+. 证: 考虑1[0,1]n -上的函数1()()()x f x f x n ϕ=-+.由于01()()n nϕϕ+ 101121()()()()()()()0n n n f f f f f f n n n n n n nϕ--++=-+-++-=, 故或者()0,01k k n nϕ=∀≤≤-,或者1212,,01k k k k n ∃≤<≤-,使得12()()0k k n n ϕϕ<.由零值定理便知n x ∃∈1[0,1]n-使得()0n x ϕ=.□练习题2.10(114P ) 2,4,5,7,9,10,11.问题2.10(114P ) 2,4.§2.11 函数的上极限和下极限本节内容与数列的上极限和下极限的概念及相关结论完全一样. 定义2.22 设f 是X 上的单变量函数,0x ∈是X 的极限点,那么 00{:{}\{},lim ,lim ()}n n n n n E l x X x x x f x l ∞→∞→∞=∈∃⊂==≠∅使得. 记 0limsup ()sup x x f x E →= 和 0liminf ()inf x xf x E →=,分别称为当0x x →时f 的上极限和下极限;或称为f 在0x 处的上极限和下极限.类似地,能定义当00,,,,x x x x x x x →+→-→+∞→-∞→∞时f 的上极限和下极限.注记2.22' X 上的单变量函数f 在X 的极限点0x 处的上极限和下极限一定存在,其值与f 在0x 处是否有定义无关,只与f 在0x 的去心邻域00{:0}X x X x x δ∈<-<上的定义有关.这里,0δ是固定的正数. 注记2.22'' 设f 是X 上的单变量函数,0x ∈是X 的极限点.0δ∀>,记0()sup{():,0}f x x X x x ψδδ=∈<-<,0()inf{():,0}f x x X x x ϕδδ=∈<-<,则()ψδ在(0,)+∞上递增, ()ϕδ在(0,)+∞上递减(注意()ψδ和()ϕδ可能不是函数).故存在广义右极限0lim ()δψδ→+和0lim ()δϕδ→+.这两个广义右极限就是当0x x →时f 的上极限和下极限.当00,,,,x x x x x x x →+→-→+∞→-∞→∞时的情形类似. 定理2.27 设f 是X 上的单变量函数,0x ∈是X 的极限点,{E l =∈:∞00{}\{},lim ,lim ()}n n n n n x X x x x f x l →∞→∞∃⊂==使得. 则β∞∈是当0x x →时f 的上极限(或下极限)的充要条件是(1) E β∈;(2) (),0y y ββδ∀><∃>或,使得当0,0x X x x δ∈<-<时成立 ()f x y <(或()f x y >).当00,,,,x x x x x x x →+→-→+∞→-∞→∞时的情形类似. 推论 设条件如同定理2.27,则sup max ,inf min E E E E ==. 定理2.28 设,f g 是X 上的单变量函数,0x ∈是X 的极限点,则有(1) 00liminf ()limsup ()x x x x f x f x →→≤; (2) 000lim ()liminf ()limsup ()x x x x x x f x a f x f x a ∞→→→=∈⇔==; (3) 当00,0x X x x δ∈<-<时成立()()f x g x ≤⇒0000liminf ()liminf (),limsup ()limsup ()x x x x x x x x f x g x f x g x →→→→≤≤. 当00,,,,x x x x x x x →+→-→+∞→-∞→∞时的情形类似. 补充定义 设f 是X 上的单变量函数,0x X ∈是X 的极限点.若00limsup ()()x x f x f x →≤,则称f 在0x 处上半连续;若00liminf ()()x x f x f x →≥,则称f 在0x 处下半连续.命题 设f 是X 上的单变量函数,0x X ∈是X 的极限点.那么f 在0x 处连续⇔f 在0x 处既上半连续又下半连续.例(115P ,问题3)设f 是[,)a +∞上有界的连续函数,求证0λ∀>,{}n x ∃ [,),lim n n a x →∞⊂+∞=+∞,满足 lim(()())0n n n f x f x λ→∞+-=. 证: 记limsup(()())x f x f x L λ→+∞+-=,liminf (()())x f x f x l λ→+∞+-=,则,l L ∈.(1) 当0l =或0L =时,结论显然成立.(2) 当0l L <<时,{},{}[,)n n y z a ∃⊂+∞,lim n n y →∞=+∞,lim n n z →∞=+∞,使得()()0n n f y f y λ+-<,()()0,n n f z f z n λ*+->∀∈.利用零值定理,可取(,)n n n x y z ∈使得()()0n n f x f x λ+-=.显然{}n x 满足要求.(3) 0l >或0L <这两种情形不会出现.(反证法)假定0l >成立,则N *∃∈,使得当x N λ≥时成立()()2l f x f x λ+->.故当n N >时成立1()()[()()]()2n k N l f n f N f k f k n N λλλλλλ-=+-=+->-∑.这与f 有界相矛盾.同理,能证0L <不成立.□练习题2.11(118P ) 1,2,3.。
第三讲 连续与一致连续一、 知识结构1、 函数连续的概念和定义函数连续的概念: 如果函数)(x f 在区间I 上有定义,并且函数)(x f 的图象是连续不断的,我们称函数)(x f 在区间I 上连续.(1) 函数)(x f 在点0x 连续的相关定义定义1 设函数)(x f 定义在);(δ0x U 内,如果)()(lim 00x f x f x x =→,则我们称函数)(x f 在0x 点连续. 记作)()(lim 00x f x f x x =→.^定义1′设函数)(x f 定义在);(δ0x U 内,对0>∀ε,∃0>'δ,当δδ<'<-0x x 时,有ε<-)()(0x f x f ,则我们称函数)(x f 在0x 点连续.定义 2 设函数)(x f 定义在);(δ0x U +内,对0>∀ε,∃0>'δ,当δδ<'<-≤00x x 时,有ε<-)()(0x f x f ,则我们称函数)(x f 在0x 点连续. 记作)()(lim 00x f x f x x =+→.定义 3 设函数)(x f 定义在);(δ0x U -内,对0>∀ε,∃0>'δ,当δδ<'<-≤x x 00时,有ε<-)()(0x f x f ,则我们称函数)(x f 在0x 点左连续. 记作)()(lim 0_x f x f x x =→.(2) 函数)(x f 在区间I 上连续定义1 如果函数)(x f 在区间),(b a 内任意一点连续,则我们称函数在区间),(b a 内连续.定义1′固定),(0b a x ∈, 对0>∀ε,∃0>δ,当δ<-0x x 时(b x a x ≤+≥-δδ00,),有ε<-)()(0x f x f ,则我们称函数在区间),(b a 内连续.定义 2 如果函数)(x f 在区间),(b a 内任意一点连续,并且在点b 左连续, 则我们称函数)(x f 在区间],(b a 连续.定义 3 如果函数)(x f 在区间),(b a 内任意一点连续,并且在点a 右连续, 则我们称函数)(x f 在区间),[b a 连续.^定义 4 如果函数)(x f 在区间),(b a 内任意一点连续,并且在点b 左连续、点a 右连续, 则我们称函数)(x f 在区间],[b a 上连续.2、 函数一致连续的概念和定义函数一致连续的概念: 如果函数)(x f 在区间I 上有定义,函数)(x f 的图象是连续不断的,并且函数)(x f 的图象没有铅直的渐进线,我们称函数)(x f 在区间I 上一致连续.例如,函数xx f 1=)(在区间),(10内连续,但不一致连续. 定义1对),(0b a x ∈∀, 0>∀ε,∃0>δ,当δ<-0x x 时(b x a x ≤+≥-δδ00,),有ε<-)()(0x f x f ,则我们称函数在区间),(b a 内一致连续.定义1′设函数)(x f y =在区间()b a ,上有定义,x x ''',是区间()b a ,内的任意一点, 对0>∀ε,∃0>δ,当δ<''-'x x 时,有ε<''-')()(x f x f ,则我们称函数)(x f 在区间()b a ,上一致连续.说明: 对给定的0>ε, 由于区间()b a ,内的点对x x ''',有无穷多个, 所以对每一对x x ''',均存在一个δ, 进而有无穷多个δ, 无穷多个δ中有最小的, 我们称函数)(x f 在区间()b a ,上一致连续. 无穷多个δ中没有最小的, 我们称函数)(x f 在区间()b a ,上不一致连续.定理 1 如果函数)(x f 在闭区间],[b a 上连续,则函数)(x f 在闭区间],[b a 上一致连续.)说明: 如果函数)(x f 在开区间()b a ,内连续,则函数)(x f 在开区间()b a ,内不一定一致连续.3、 函数)(x f 的间断点(不连续点)定义1 如果)()(lim 00x f x f x x ≠→,我们称函数在点0x 间断.(1) 第一类间断点定义2 如果极限)(lim x f x x 0→存在,但不等于)(0x f ,我们称点0x 为函数的可去间断点.定义2 如果极限)(lim x f x x +→0与)(lim x f x x -→0都存在但不相等,我们称点0x 为函数的跳跃间断点.可去间断点与跳跃间断点统称为第一类间断点. (2) 第二类间断点&非第一类间断点称为第二类间断点,即)(lim x f x x 0→不存在,或)(lim x f x x +→0不存在,或)(lim x f x x -→0不存在,具体情况如下:①∞=→)(lim 0x f x x ;②∞=→)(lim 0x f x x 趋向于两个以上的数;③∞=+→)(lim 0x f x x ;④)(lim x f x x +→0趋向于两个以上的数;⑤∞=-→)(lim 0x f x x ;⑥)(lim x f x x -→0趋向于两个以上的数.例如,狄利克雷(Dirichlet )函数⎩⎨⎧=为无理数时,当为有理数时,,当x x x D 01)(定义域()+∞∞-,上的任意一点为第二类间断点. 因为⎩⎨⎧=→为无理数时当为有理数时当x x x D x x ,0,,1)(lim 0,所以)(lim 0x D x x →不存在. 再例如,对函数x 1sin,00=x 是函数的第二类间断点. 因为x x x 10sinlim +→不存在(x x sin lim +∞→不存在前面已证).连续和一致连续的概念与定义可推广到多元函数上. 二、解证题方法 1、连续例1 (天津大学2006年)证明: 函数⎪⎩⎪⎨⎧=≠-+--=42142424322x x x x x x x f ,,,)(在4=x 处连续(用δε-语言证明).证明因为)(624212424322+-=--+--x x x x x x , 对0>∀ε, 存在{}118,min εδ=, 当δ<-4x 时, 有ε≤-≤+-=--+--184624212424322x x x x x x x )(,所以函数⎪⎩⎪⎨⎧=≠-+--=42142424322x x x x x x x f ,,,)(在4=x 处连续.?例2(天津大学2005年)证明:函数⎩⎨⎧=为无理数为有理数x x x x f ,,,sin )(0π在n x =处连续(用δε-语言证明).证明 因为0==→ππn x nx sin sin lim , R x ∈, 所以, 对0>∀ε,∃0>δ,当δ<-n x 时,有επ<-0x sin . 又因x x f πsin )(≤, R x ∈, 所以ε<-0)(x f . 故函数⎩⎨⎧=为无理数为有理数x x x x f ,,,sin )(0π在n x =处连续.例3 (复旦大学2002年)证明函数xx f 1=)(在区间],(10上不一致连续. 证明 取nx n 1=,11+=n y n , ,,,321=n ,则],(,10∈n n y x .因为,)()(1=-=-nn nn n n y x x y y f x f 所以, 存在10=ε,对所有0>δ,当δ<-n n y x 时, 有,)()(1≥-=-nn n n n n y x x y y f x f 故函数x x f 1=)(在区间],(10上不一致连续.证法 2 取nx n 1=,11+=n y n , ,,,321=n ,则],(,10∈n n y x .因为0=-∞→n n n y x lim ,而1=-∞→)()(lim nn n y f x f ,所以函数xx f 1=)(在区间],(10上不一致连续.例4(中北大学2005年)证明函数xx x x f 112sin )(++=在区间),(10内不一致连续, 在],[21与),[+∞2上均一致连续.证明 取πn x n 21=,221ππ+=n y n , ,,,321=n ,则),(,10∈n n y x .因为0=-∞→n n n y x lim ,而224228=++++=-∞→∞→ππππn n y f x f n n n n lim )()(lim ,所以函数xx x x f 112sin )(++=在区间),(10上不一致连续.由于函数xx x x f 112sin )(++=在区间],[21上连续, 所以函数xx x x f 112sin )(++=在区间],[21上一致连续.》由于函数xx x x f 112sin )(++=在区间],[12+A 上连续, 所以函数xx x x f 112sin )(++=在区间],[12+A (2>A )上一致连续.因为0112=++=+∞→+∞→xx x x f x x sin lim )(lim ,对2>A ,当A x x >''',时,有ε<''-')()(x f x f . 进而函数xx x x f 112sin )(++=在区间),[+∞A (2>A )上一致连续.例5 (北京工业大学2005年)设)(x f 和)(x g 为区间()b a ,上的连续函数,试证明{})(),(max )(x g x f x F =为区间()b a ,上的连续函数.证明 因为{}[])()()()()(),(max )(x g x f x g x f x g x f x F -++==21, 所以只要证明)()(x g x f -为区间()b a ,上的连续函数即可.对()b a x ,∈∀0,由于)(x f 和)(x g 为区间()b a ,上的连续函数, 所以,对>∀ε,∃0>δ,当δ<-0x x 时,有ε<-)()(0x f x f ,ε<-)()(0x g x g .又因ε20000<-+-≤---)()()()()()()()(x g x g x f x f x g x f x g x f ,所以)()(x g x f -为区间()b a ,上的连续函数.例6(江苏大学2006年)设函数)(x f 为],[b a 上的单调增函数,其值域为[])(),(b f a f ,证明)(x f 在],[b a 上连续.证明 因为函数)(x f 为],[b a 上的单调增函数,所以函数)(x f 在],[b a 上任意一点的极限都存在.;如果函数)(x f 在],[b a 上不连续,则函数)(x f 在],[b a 上存在间断点0x ,如果a x =0,则00>-+)()(a f a f .由函数)(x f 在],[b a 上的单调性知, 函数)(x f 无法取到[])(),(0+a f a f 上的值,这与函数)(x f 的值域为[])(),(b f a f 矛盾. 如果b x =0,则00<--)()(b f b f .由函数)(x f 在],[b a 上的单调性知, 函数)(x f 无法取到[])(),(b f b f 0-上的值,这与函数)(x f 的值域为[])(),(b f a f 矛盾. 如果()b a x ,∈0,则不等式0000<--)()(x f x f 及0000>-+)()(x f x f 至少有一个成立,不妨设0000<--)()(x f x f .由函数)(x f 在],[b a 上的单调性知, 函数)(x f 无法取到[])(),(000x f x f -上的值, 这与函数)(x f 的值域为[])(),(b f a f 矛盾. 故函数)(x f 在],[b a 上连续.例7(西安交通大学2001年)证明:满足函数方程)()()(y f x f y x f =+的惟一不恒为零的连续函数是指数函数()+∞∞-∈=,,)(x a x f x,其中01>=)(f a .分析:要说明函数)(x f 是指数函数xa ,应证明①0>)(x f ;②[]cx f cx f )()(=,其中c 是实数;③01>=)(f a .证明首先证明①>)(x f .因为222222≥⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛+=x f x f x f x x f x f )(,又因为0000≠==-⋅)()()()()(x f x f f x f x f (因为)(x f 在()+∞∞-,上不恒为零,所以存在()+∞∞-∈,0x ,使00≠)(x f ).所以0≠)(x f ,进而0>)(x f .其次证明[]cx f cx f )()(=,其中c 是实数.a) 当0=c 时, 由)()()(0000f x f x f =≠得10=)(f 得10=)(f . b)当nc =,n为正整数时,[]nn nx f x f x f x x f nx f )()()()(==⎪⎪⎭⎫ ⎝⎛++= .c)当nmc =,m n ,为正整数时, |mm m n x f n x f n x f n x n x f x n m f ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎭⎫ ⎝⎛++=⎪⎭⎫ ⎝⎛ ,又因为nn n n x f n x f n x f n x n x f x n n f ⎥⎦⎤⎢⎣⎡⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎭⎫ ⎝⎛++=⎪⎭⎫ ⎝⎛ ,所以[]n x f n x f 1)(=⎪⎭⎫ ⎝⎛.进而()[]n mx f x n m f =⎪⎭⎫ ⎝⎛. d)当nmc -=,m n ,为正整数时, ()[][]n m nm nm nm x f x f x f f x f x n m f -=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=-=⎪⎭⎫ ⎝⎛-)()()()(10, e) 当c 为无理数时,有有理数列{}n c ,使得c c n n =∞→lim .因函数)(x f 连续,所以[][][]c c c n n n x f x f x f x c f cx f n n n )(lim )()(lim )(lim )(====∞→∞→∞→. 最后证明01>=)(f a .因为0>)(x f ,所以01>=)(f a .…例8(北京交通大学2006年、江苏大学2006年)设函数)(x f 是区间()+∞∞-=,R 上的单调函数,定义)()(0+=x f x g .证明函数)(x g 在区间()+∞∞-=,R 上的每一点都右连续.分析:不妨设函数)(x f 是区间()+∞∞-=,R 上的单调增函数.要证明函数)(x g 在区间()+∞∞-=,R 上的每一点都右连续,只要证明对任意一点R x ∈0,0>∀ε,∃0>δ,当δ≤-≤00x x 时,有ε<-≤)()(00x g x g . 证明 不妨设函数)(x f 是区间()+∞∞-=,R 上的单调增函数.设0x 是区间()+∞∞-=,R 上的任意一点, 因为)0()(00+=x f x g ,即()00)(lim )0(0x g x f x f x x ==++→,所以,对0>∀ε,∃0>δ,当δ≤-≤00x x 时,有εδ<-+)()(00x g x f ,即εδε<-+<-)()(00x g x f .εδδ<-+=-+)()()()(0000x g x f x g x f ,又因函数)(x f 是区间()+∞∞-=,R 上的单调增函数, 所以)()()(δ+≤+=00x f x f x g ,故ε<-)()(0x g x g .又因函数)(x f 是区间()+∞∞-=,R 上的单调增函数,所以())()()(x g x f x f x g =+≤+=0000,进而ε<-)()(0x g x g .所以函数)(x g 在区间()+∞∞-=,R 上的每一点都右连续.例9(中北大学2005年)设函数()⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧>⎪⎭⎫ ⎝⎛+--+=<-=,0,41ln 1,0,6,0,arcsin arctan )(23x x x ax x e x x xx ax x f ax 问:(1)a 为何值时,)(x f 在0=x 处连续;(2) a 为何值时, 0=x 是)(x f 的可去间断点.解 (1) 因为()()212203030113lim arcsin lim arcsin arctan lim -→→→--=-=----xax x x ax x x ax x x x)()()()a xa xx ax xx ax x x x 616lim16lim13lim2320232023220-=--=--=--=-→-→-→---,41lim 41ln 1lim 2020x x ax x e x x ax x e ax x ax x ⋅--+=⎪⎭⎫ ⎝⎛+--+++→→ 42212lim 212lim 2200+=+=-+=++→→a e a x a x ae ax x ax x ,所以,当64262=+=-a a 时,即1-=a 时,函数)(x f 在0=x 处连续.(2)当66422≠-=+a a 时, 0=x 是)(x f 的可去间断点.即2-=a 时,0=x 是)(x f 的可去间断点.例10设函数()2222220,(,)0,0x y x y f x y x y ⎧++≠⎪=⎨⎪+=⎩,试讨论(,)f x y 在点()0,0的连续性、偏导数存在性、可微性. 解 (1)连续性 因为()()()()()22,0,0,0,0lim(,)lim sin 0(0,0)x y x y f x y x y f →→⎡⎤=+==⎢⎢⎣,所以(,)f x y 在点()0,0连续.((2)偏导数存在性 因为()()()()()xxx xf x f y x y x ∆∆∆=∆-∆+→∆∆→∆∆1sinlim )0,0(0,0lim20,0,0,0,()()01sin lim0,0,=⎪⎪⎭⎫⎝⎛∆∆=→∆∆x x y x ,()()()()()yyy yf y f y x y x ∆∆∆=∆-∆+→∆∆→∆∆1sinlim )0,0(0,0lim20,0,0,0,()()01sin lim0,0,=⎪⎪⎭⎫⎝⎛∆∆=→∆∆y y y x ,所以)0,0(x f 与)0,0(y f 均存在,且都等于零. (3)可微性 因为]ρρdff -∆→0lim()()[]()()[]ρρdy f dx f f y x f y x 0,00,00,00,0lim+--∆+∆+=→()()ρρ001sin lim22220+-⎥⎥⎦⎤⎢⎢⎣⎡∆+∆∆+∆→y x y x 01sin lim 1sin lim 0220=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛∆+∆→→ρρρρρy x ,所以()f df o ρ∆-=,进而函数(,)f x y 在点()0,0可微. 练习[1] (电子科技大学2005年)设函数)(x f 定义在()b a ,上,()b a c ,∈,又设)(x H 和)(x G 分别在),[],,(b c c a 上连续且在),(c a 和()b c ,内是)(x f 的原函数.令⎩⎨⎧<≤+<<=bx c C x G c x a x H x F ,)(,),()(0,其中选择0C 使)(x F 在c x =处连续,就下列情况,回答)(x F 是否是)(x f 在()b a ,上的原函数.(1))(x f 在c x =处连续;`(2) c x =是)(x f 的第一类间断点; (3) c x =是)(x f 的第二类间断点.解(1)当)(x f 在cx =处连续时,因为)()(lim )(lim )()(lim)(c f x f x F cx c F x F c F c x c x c x =='=--='→→→,所以)(x F 是)(x f 在()b a ,上的原函数.(2)因为 c x =是)(x f 的第一类间断点,且)(x F 在c x =处连续, 所以)()(lim )(lim c f x f x f cx cx ≠==+→→或)(lim )(lim x f x f cx cx =+→→≠.当)()(lim )(lim c f x f x f cx c x ≠==+→→时,由)(lim )(lim )()(lim )(x f x F c x c F x F c F c x c x c x +++→→→+='=--='得,)()(lim )(c f x f c F cx ≠='+→+,所以)(x F 不是)(x f 在()b a ,上的原函数.当)(lim )(lim x f x f cx c x =+→→≠时, )(c f 不存在,即)()(c f c F ≠'.所以)(x F 不是)(x f 在()b a ,上的原函数.(3)不能判断.例如⎪⎩⎪⎨⎧=≠-=--.,,,sin sin )(0001121x x xnx x nx x f n n 当21,=n 时,0=x 是)(x f 的第二类间断点,取⎪⎩⎪⎨⎧=≠=,,,,sin )(0001x x xx x F n当2=n 时,)(sin lim )()(lim )(00100000f xx x F x F F x x ===--='→→,故)(x F 是)(x f 在()b a ,上的原函数.当1=n 时,)(sin lim )()(lim)(00100000f xx F x F F x x =≠=--='→→,故)(x F 不是)(x f 在()b a ,上的原函数.[2] (电子科技大学2003年,江苏大学2004年)证明区间()b a ,上的单调函数)(x f 的一切不连续点都为第一类间断点.证明 不妨设函数)(x f 是单调增函数,并且设()b a x ,∈0是函数)(x f 的间断点.因为())()(lim 0000x f x f x f x x ≤=--→,())()(lim 0000x f x f x f x x ≥=++→,并且函数在0x 不连续,所以不等式())(000x f x f ≤-,())(000x f x f ≥+至少有一个取>或<号,所以0x 是跳跃间断点,即区间()b a ,上的单调函数)(x f 的一切不连续点都为第一类间断点.[3](上海交通大学2003年,深圳大学2006年)定义函数如下:。