汽车排气系统频率有限元分析及优化设计
- 格式:pdf
- 大小:986.78 KB
- 文档页数:3
汽车排气系统的CAE分析与优化设计摘要:针对汽车排气系统对车身噪音和振动方面的影响因素进行综合分析,构建汽车排气系统的三维结构模型,使用CAE软件模拟设计汽车排气系统中发生的断裂现象,并使用有限元法分析汽车排气系统的结构,对事故原因进行有效分析并解决,完善优化关键结构设计,使用试验车辆耐久性的方式验证其优化方案的可行性。
关键词:汽车排气系统;CAE分析;优化设计前言:汽车的主要振动方式是其排气系统,汽车在日常运行过程中,发动机会对汽车排气系统定期作用激振力,进而对汽车排气系统的可靠性能和使用寿命造成一定的不良影响。
而CAE工具的使用可有效辅助汽车产品的设计工作,包含汽车研发过程中的设计校核、三维设计、整车造型以及零件加工等方面,可为实际的汽车研发工作提供相应的数据和经验。
1、CAE技术的实际作用和汽车排气系统概述1.1 CAE技术的实际作用汽车排气与排气系统内的各个零件分析工作、计算工作、设计工作具有十分密切的联系,使用CAE技术能全面反映排气系统中的所有特性,从而选取与发动机更为匹配的排气系统产品。
使用的CAE技术具有以下几方面实际作用:首先,在汽车研发过程中使用CAE技术可有效降低其设计周期,并在汽车建模和分析工作中使用参数化造型和实体造型,极大便利了参数和模型的修改过程,从而进一步降低确定合理结构参数所需要的工作时间。
其次,可有效降低汽车研发成本。
在汽车研发过程中,使用CAE工具可有效分析汽车中相应零部件的功能,研发费用相较于室内试验和道路实际试验要低很多。
最后,在汽车研发过程中使用CAE 软件,可对汽车中的零件进行有效优化,从而为用户研发出性能更为出色的零件和汽车产品。
在使用CAE工具前,应注意以下两方面内容:第一,应熟练掌握CAE技术的使用方式。
第二,应提供基本的数据库和相关实验数据。
相关实验数据是指各项材料的特性和道路特性等数据。
数据库应包含汽车企业在进行汽车研发过程中所积累的数据。
18_汽车排气系统模态及悬挂点布置分析在汽车工程中,汽车排气系统的模态及悬挂点布置分析是非常重要的研究方向。
本文将对汽车排气系统的模态和悬挂点布置进行详细讨论,并探讨其对汽车整体性能和乘坐舒适性的影响。
1. 汽车排气系统的模态分析汽车排气系统是引擎排放废气的重要组成部分,其模态特性直接影响到排气噪声和排放性能。
在模态分析中,通过使用有限元分析方法,可以模拟排气管、消声器等结构在运行时的振动响应。
根据模态分析的结果,可以对排气系统的结构进行优化,以减少振动和噪声。
2. 汽车排气系统的悬挂点布置分析悬挂点是指汽车排气系统与车身连接的位置,其布置合理与否直接影响到排气系统的稳定性和可靠性。
在悬挂点布置分析中,需要考虑排气系统的重量、振动情况以及与其他车身部件的协同性。
通过使用计算机辅助设计和有限元分析方法,可以对不同悬挂点布置方案进行模拟和评估,以寻找最佳的布置方案。
3. 汽车排气系统模态与悬挂点布置的影响汽车排气系统的模态和悬挂点布置对汽车整体性能和乘坐舒适性有着重要的影响。
首先,模态的合理设计可以减少排气系统的振动和噪声,提高乘坐舒适性。
其次,悬挂点的布置应考虑到汽车的动力学特性,避免因振动引起的磨损和破损。
最后,合理的模态和悬挂点布置可以提高汽车的排放性能,减少废气排放对环境的污染。
4. 汽车排气系统模态与悬挂点布置的优化方法为了优化汽车排气系统的模态和悬挂点布置,可以采用以下方法。
首先,通过使用有限元分析方法,可以模拟不同排气系统结构在运行时的振动特性,从而找出振动频率和模态。
其次,可以对不同悬挂点布置方案进行有限元分析和模拟验证,评估其对排气系统模态和整体性能的影响。
最后,根据优化的结果,可以对排气系统的结构和悬挂点进行调整和优化,以达到最佳的模态和布置效果。
综上所述,汽车排气系统的模态及悬挂点布置分析对汽车整体性能和乘坐舒适性具有重要意义。
通过合理设计排气系统的模态和悬挂点布置,可以减少振动和噪声,提高乘坐舒适性,并改善汽车的排放性能。
汽车排气系统的三维设计和有限元分析摘要:排气系统是车辆的重要组成部分,负责发动机尾气排放。
它的降噪、尾气净化和压力损失等问题已被广泛的关注,但其静力学特性却没有引起足够的重视。
传统的排气系统同发动机和车体相连,排气系统的静力学特性的好坏对排气系统的寿命有较大影响,影响到汽车的整体性能以及人们对车辆的主观评价。
在使用UG建立排气消声器模型后,利用ANSYSWORKBENCH对所建立的排气消声器模型进行静力学分析。
通过该分析为消声器的设计提供理论依据以及方法。
关键词:排气系统;静力学分析;建模为了降低发动机排放对环境和乘员造成的不良影响,排气系统作为一个重要的组成部分被引入到车辆中来。
它的主要作用是将发动机工作时产生的废气经过处理排出并且降低排气噪声。
它的质量的优劣直接关系到车辆的动力性、舒适性和排放标准,另外,它对发动机的效率和使用寿命也会产生影响。
所以排气系统甚至是评价整车性能的一个标准。
而排气系统的寿命与许多因素有关,本文主要考虑由于自身重力的作用对排气消声器的寿命的影响。
1排气系统的功能和设计排气系统的主要功能是排放和降噪,排气系统主要由:排气管、消声器和尾管组成。
随着世界各国对汽车尾气排放的要求日益提高,各汽车生产商也通过安装各种各样的装置来降低汽车排放的尾气中污染物的含量。
如:三氧催化器、碳罐等。
而且对于某些大功率的发动机,由于噪声比较大,往往汽车生产商会外加一个副消声器以满足法规对噪声排放的要求。
排气系统看似只是简单的管道,实际设计中不仅要考虑到特定的底盘布置,同时排气系统的长度、管径大小、消声器的大小等,还要考虑到排气气体的流动特性,防止背压过大,增加功率损失。
因此排气系统设计是车辆设计的重要一环。
在排气系统的设计中,由于发动机的布置原因,导致发动机的排气口是水平方向,所以与发动机排气口相连接的排气管必须也设计成水平方向,由于该型车的车架悬挂点不足,所以在放置消声器时只能悬挂在特定的几个地方,而发动机的排气孔又是水平方向的,这就必然导致排气管通过弯曲的方式来满足排气系统布置上的要求。
图1排气系统模型1.2建立有限元模型利用Ansys workbench有限元分析软件建立三元催化器的有限元模型。
几何模型导入到有限元分析软件后,对模型进行前处理,前处理包括模型简化、网格划分、料属性、载荷及约束施加等。
排气系统一般由排气管、催化转化器、氧传感器座、模态分析模态分析是对结构动态特性的解析分析和实验分析,其结构动态特性用模态参数来表示,在数学上,模态参数可定义为力学系统运动微分方程的特征值和特征向量,物理意义是实验测得的系统固有频率和振型[4]。
根据发动动机激励频率根据下面公式计算得出:式中,i为气缸数,从以上论述中可知,排气系统的第1阶固有频率要设计成发动机最大激励频率以上,从仿真计算的结果来看,排气系统第1阶的模态频率为165.28Hz,通过计算得到的发动机的最大激励频率为137.5Hz,虽然超过发动机的最大激励频率,但考虑模态和模态之间的相互影响,一般经验上要考虑1.5倍的安全因子,即排气系统的第1阶模态频率超过200Hz。
显然目前排气系统的结构有产生共振的风险,需要对其结构进行优化设计,提高系统的整体刚度,图2排气系统有限元模型(b)第6阶振型图3排气系统第1阶和第6阶振型(a)第1阶振型何辅助支撑。
根据排气系统与发动机的相对位置及周边边对该排气系统支架结构进行重新设计。
将支架设计为铸造件,材料为球铁,厚度为8mm。
具体结构如图对优化后的排气系统模型再次重新进行模态分析,界条件与原始模型仿真保持一致,仿真结果如表3所示。
对比模型优化前后的仿真结果来看,优化后的第1模态频率为273.55Hz,远远超过发动机最大激励频率且超过1.5倍最大激励频率,有效避开了发动机从怠速到最高转速的频率范围,满足排气系统设计要求。
Ansys workbench有限元分析软件对某乘用车排气系统进行了模态分析,得到了系统的固有频率,并与计算出的发动机最大激励频率比较,为避开发动机的激励频对排气系统的结构进行优化设计,再次计算的结果表图4优化后的排气系统模型优化后的支架。
基于有限元分析的发动机排气歧管优化设计的开题报告一、选题背景在现代汽车工业中,发动机排气系统的设计是非常重要的一环,排气系统的优化设计可以提高发动机的输出功率、降低燃油消耗,并且还可以控制发动机的废气排放。
而在发动机排气系统中,排气歧管的作用是将多个汽缸的废气引导到一个出口处,以此提高发动机的功率和扭矩。
因此,排气歧管的优化设计对发动机性能的提升具有非常重要的作用。
目前,大多数汽车制造商都采用有限元分析技术对发动机排气系统进行优化。
有限元分析是一种计算机仿真技术,它可以分析结构的受力变形情况,进而优化设计结构。
而在发动机排气系统中,有限元分析可以用来研究排气歧管的结构和形状,以此优化其气动性能。
二、研究目的本研究旨在开展基于有限元分析的发动机排气歧管优化设计,具体研究目的如下:1. 掌握有限元分析技术的原理和基本方法。
2. 分析排气歧管的气动特性,并进行优化设计。
3. 验证优化后的排气歧管性能是否得到了提升。
三、研究内容1. 研究液压阀的工作原理和基本结构,分析排气歧管的气动特性。
2. 建立排气歧管的有限元模型,进行初始设计。
3. 通过有限元分析软件对排气歧管的结构进行优化,得到优化后的结构参数。
4. 进行实验验证,验证优化后的排气歧管性能是否得到了提升。
四、研究方法本研究采用以下研究方法:1. 文献资料法:通过查阅相关文献,了解排气歧管的研究现状,分析其气动特性和流场特性。
2. 数值分析法:采用有限元分析软件对排气歧管进行建模和优化设计,预测其气动性能和流场特性。
3. 实验方法:通过实验验证,验证优化后的排气歧管性能是否得到了提升。
五、预期结果本研究预期结果如下:1. 研究有限元分析技术的原理和基本方法,掌握其在排气歧管优化设计中的应用。
2. 对排气歧管的气动特性进行分析,得出初步设计方案。
3. 建立排气歧管的有限元模型,并通过有限元分析软件对其进行优化设计。
4. 验证优化后的排气歧管性能是否得到了提升,提出进一步改进的建议。
Internal Combustion Engine & Parts某汽车排气系统的有限元分析王雷(一汽-大众汽车有限公司佛山分公司,佛山528237 )摘要:首先建立排气系统的三维数模,然后根据需要进行网格划分,通过有限元的方法对某汽车排气系统进行流场和振动特性分 析,探索其尾气处理效率和在振动条件下的耐久性。
关键词:排气系统;有限元;流场;耐久性0引言汽车排气系统在尾气处理方面起到了不可代替的作 用,与发动机直接相连的岐管和催化器是排气系统中相对 独立的重要组成部分,也是本文的研究对象。
排气系统的 流场均匀性直接影响到尾气的处理效率。
另外排气系统受 到发动机激励的极大影响,其振动特性也直接影响耐久 性。
本文利用有限元仿真,通过流场分析和模态分析,探索 其流场均匀性和振动耐久性。
1建立几何模型首先通过测量,利用三维建模Catia软件,建立排气系 统的三维数模,如图1,包括排气歧管罩和支撑结构。
图1排气系统总成三维数模2划分三维有限元网格采用HyperMesh软件,进行有限元分析预处理,即对 壳体机构和流过的废气进行有限元网格划分。
只保留与尾气接触的壁面,进行二维网格划分,然后 自动生成流体网格模型。
对催化器部分,忽略内部的载体 和垫层,只留取管壁,生成管壁三维网格数模,如图2。
图2流体与管壁有限元三维网格数模3参数设定3.1出入口边界将废气看作理想气体,入口速度均匀分布,为10m/s,进气温度为860益,出口处压力为22MPa。
3.2管壁管壁设为光滑、非渗透性,没有滑移,壁面散热系数为 11000W/s*m2,外界温度为25益。
管壁材料弹性模量E= 2.1GPa,泊松比滋=0.3,材料密度p=7.85g/cm3。
作者简介:王雷(1986-),男,山东金乡人,研究生,毕业于重庆大学,研究方向为汽车振动。
3.3催化器载体蜂窝载体是由许多大小相同的方形管道组成,管道的直径远小于载体的直径,故可把载体设成多孔介质模型。
乘用车排气系统NVH分析及优化【摘要】排气器噪声是汽车中最主要的噪声源。
它的噪声要发动机整机噪声高10-15dB。
排气噪声主要形成原因是:排气系统各零部件工作时候的机械噪声,车身振动通过吊耳传递到排气管道的振动噪声,废气对管道内壁的冲击噪声,排气基频噪声,尾管紊流噪声,管道内气体共振噪以及辐射噪声等。
【关键词】排气系统;振动;噪声;模态;不平度一、前言噪声对人体健康有不良影响。
人在较强的噪声(90dB以上)环境中会感到刺耳难受,久了就会发生听觉迟钝,甚至导致噪声性耳聋。
如果乘用车的噪音超出人体接受范围,驾驶员长时间驾驶会严重影响行车安全,对乘客的舒适性也有一定影响。
所以对NVH的控制也就成为乘用车研发中重要的性能目标之一。
排气器噪声是汽车中最主要的噪声源。
它的噪声要发动机整机噪声高10-15dB。
排气噪声主要形成原因是:排气系统各零部件工作时候的机械噪声,车身振动通过吊耳传递到排气管道的振动噪声,废气对管道内壁的冲击噪声,排气基频噪声,尾管紊流噪声,管道内气体共振噪以及辐射噪声等。
二、模态分析的基本原理实验模态分析主要原理是:给予结构中某一点j一个激励jF,则在整个结构的各点都应产生不同的振动响应。
若i点的振动响应为位移Xi,则它们的比值即为Hij=Xi/Fj即为i,j两点之间的传递函数。
传递函数是结构固有的动态特性,反映了结构受外力作用时的动态响应。
为了区别于自动控制理论中关于传递函数的定义,称之为频响函数,通常用Hij(ω)=Xi/Fj,由于线性系统的互易性,应有Hij=Hji。
在p点激励、l点响应的频率响应函数为:令,Yr称为r阶模态导纳,上式可进一步变换形式如下:可见,[H]中的任一行,即包含所有模态参数,而该行的第r阶模态频响函数值之比值,即为第r阶模态振型。
由此可得:如果在结构上的某一固定点i点拾振,而轮流地激励所有的点,即可求得[H]中的一行。
这一行频响函数即可包含进行模态分析所需要的全部信息。
摘要作为汽车的重要组成部分,排气系统主要起降噪减振、尾气净化的作用。
由于发动机振动通过排气系统传到车身直接影响整车乘坐舒适性与平稳性,因此排气系统的振动控制对提高整车的NVH性能有重要意义。
本文以某乘用车排气系统为研究对象,通过模态分析、动力学分析等确定排气系统振动存在的主要问题,包括与发动机产生共振和振动性能不满足企业要求;再通过多目标优化,使排气系统约束模态避开发动机激励频率,在满足疲劳耐久性的要求下,提高系统振动性能。
首先建立排气系统有限元模型并验证模型有效性。
基于吊耳的超弹性特性,建立其本构模型并计算动刚度,用弹簧阻尼单元进行模拟。
简化排气系统部分结构,建立有限元模型。
对比排气系统自由模态和约束模态的仿真结果和实验结果,频率误差均在工程限值内,且主要阶次振型趋势基本一致,验证了仿真模型的有效性。
其次评估排气系统疲劳耐久性与振动性能。
静力学分析结果表明,吊耳静变形和预载力分别小于5 mm和55 N,满足企业要求,说明吊耳疲劳耐久性较好;动力学分析结果表明,吊耳传递力超过10 N且均匀性较差,说明排气系统振动性能不满足企业标准,影响整车舒适性。
同时排气系统第6阶约束模态与发动机激励频率重叠,排气系统将与发动机发生耦合产生强烈共振,振动性能较差,因此有必要对排气系统振动性能进行优化设计。
最后采用多目标优化设计方法对排气系统振动性能进行优化设计。
灵敏度分析结果表明吊耳动刚度对排气系统模态、疲劳耐久性和隔振性能均有较大影响,因此通过改变5个吊耳的动刚度值,使排气系统约束模态避开发动机激励频率,在满足疲劳耐久性的要求下,提高排气系统的隔振性能。
优化结果显示,排气系统约束模态避开发动机激励频率1Hz以上,吊耳传递力及其标准差分别下降34.48%和45.6%,排气系统隔振性能有较大幅度的提高,验证了该优化方案的可行性。
关键词:排气系统;模态分析;振动分析;优化设计ABSTRACTAs an important part of the automobile, the exhaust system plays an important role in noise reduction and exhaust gas purification. The engine excitation is transfered to the car body through the exhaust system, directly affecting the comfort and stability of the vehicle. Therefore, the exhaust system vibration control is of great significance to improve the NVH performance of the vehicle.This paper regards a passenger car exhaust system as a study case. The main problems of the exhaust system is determined through the modal analysis and dynamic analysis, including resonance with the engine and poor vibration performance. By the multi-objective optimization, the constrained mode doesn’t overlap with the engine excitation frequency, and the vibration performance of the exhaust system is obviously improved.Firstly, the finite element model of exhaust system is established and the validity of the model is verified. In order to obtain its dynamic stiffness, the hyperelastic constitutive model of the lug is established. The finite element model is set up by simplifying part of the 3D model. The natural frequencies and mode shapes of exhaust system are identified using the experimental modal test, and are compared with the numerical modal result. The deviation between numerical modal and experiment modal analysis is within a reasonable range, thus the effectiveness of FE model is verified.Secondly, the fatigue durability and vibration performance of exhaust system is evaluated. The static analysis results show that the static deformation and preload of lugs are relatively less than 5 mm and 55 N, satisfying the requirements of the enterprise, which indicate that lugs have good fatigue durability. The dynamic analysis results show that the transmission force exceeds 10 N and its uniformity is poor, thus the vibration performance does not meet the enterprise standard, affecting the vehicle comfort. What’s worse, the exhaust system will resonate with the engine because the sixth-order constraint mode of the exhaust system overlaps with the engine excitation frequency. Therefore, it is necessary to optimize the vibration performance of exhaust system.Finally, the multi-objective optimization design method is used to optimize the vibration performance of the exhaust system. The sensitivity analysis illustrates that the lugs’ dynamic stiffness have a great impact on constraint mode, fatigue durability and vibration performance of the exhaust system. Therefore by changing the lugs’ dynamic stiffness, under the premise that the constrained mode doesn’t fall within the engine excitation frequency’s interval, the lugs’fatigue durability meets the requirements of the enterprise, the vibration performance of the exhaust system is improved by the a large extent. After optimization, the difference between the exhaust system mode and the engine excitation frequency is 1 Hz above, the transmission force and its standard deviation are respectively decreased by 34.48% and 45.6%, accordingly verifying the feasibility of the optimization scheme.Keywords: Exhaust System; Modal Analysis; Vibration Analysis; Optimization Design目录摘要 (I)ABSTRACT (II)第一章绪论 (1)1.1 研究背景及意义 (1)1.2 排气系统振动控制研究现状 (1)1.2.1 排气系统振动控制国外研究现状 (1)1.2.2 排气系统振动控制国内研究现状 (4)1.3 本文研究方法和技术路线 (7)第二章排气系统振动性能研究基本理论 (9)2.1 排气系统简介 (9)2.1.1 排气系统基本组成 (9)2.1.2 排气系统振动源 (10)2.2 有限元分析方法 (11)2.3 模态分析基本理论 (12)2.3.1 数值模态分析 (12)2.3.2 试验模态分析 (13)2.4 频率响应分析理论 (16)2.5 挂钩位置优化理论 (19)2.6 本章小结 (20)第三章排气系统模态分析 (22)3.1 有限元前处理模型的建立 (22)3.1.1 排气管有限元模型 (22)3.1.2波纹管有限元模型 (23)3.1.3三元催化转化器有限元模型 (24)3.1.4 连接法兰有限元模型 (25)3.1.5 挂钩有限元模型 (25)3.1.6 消声器有限元模型 (26)3.2 橡胶吊耳有限元模型 (27)3.2.1 吊耳超弹性模型的建立 (27)3.2.2 吊耳静刚度仿真 (30)3.2.3 吊耳动刚度仿真 (31)3.3.4 吊耳有限元模型 (33)3.3 排气系统自由模态仿真与实验对比 (34)3.3.1 排气系统自由模态仿真 (34)3.3.2 排气系统自由模态试验 (34)3.3.3排气系统自由模态仿真与实验对比 (36)3.4 排气系统约束模态仿真与实验对比 (41)3.4.1 排气系统约束模态仿真 (41)3.4.2 排气系统约束模态试验 (41)3.4.3 排气系统约束模态仿真与实验对比 (42)3.5 本章小结 (47)第四章排气系统振动性能分析 (48)4.1排气系统静力学分析 (48)4.2 排气系统动力学分析 (49)4.3 排气系统隔振率分析 (50)4.3.1 排气系统挂钩动刚度分析 (50)4.3.2 排气系统吊耳隔振率分析 (52)4.4 排气系统运动干涉分析 (54)4.5本章小结 (56)第五章排气系统振动性能优化 (57)5.1 挂钩位置评估 (57)5.2 排气系统振动灵敏度分析 (58)5.2.1 灵敏度分析理论 (58)5.2.2 灵敏度分析的试验设计 (59)5.2.3 排气系统振动参数的灵敏度分析 (60)5.3 排气系统振动性能多目标优化 (64)5.3.1 多目标优化理论 (64)5.3.2 近似模型概述 (66)5.3.3 振动性能优化的试验设计 (67)5.3.4 振动性能优化的近似模型构建 (70)5.3.5 排气系统振动性能多目标优化 (73)5.3.6 多目标优化的Pareto最优解验证 (75)5.4排气系统优化方案分析验证 (77)5.4.1排气系统约束模态对比分析 (77)5.4.2 排气系统应力对比分析 (78)5.4.3 排气系统运动干涉对比分析 (79)5.4.4 吊耳隔振率对比分析 (80)5.5 本章小结 (82)全文总结与展望 (83)研究工作总结 (83)研究工作展望 (83)参考文献 (85)攻读硕士学位期间取得的研究成果 (91)致谢 (92)第一章结论第一章绪论1.1 研究背景及意义汽车是把双刃剑,在便利人们生活的同时,也带来了很多隐患。