表达式求值问题++数据结构
- 格式:doc
- 大小:110.50 KB
- 文档页数:14
数据结构表达式求值数据结构表达式求值=================1:引言---------本文档旨在介绍数据结构中的表达式求值问题。
首先会讨论表达式的定义和基本概念,然后介绍不同类型的表达式,并详细阐述它们的求值过程。
最后,本文还会给出一些例子和实用技巧,供读者参考。
2:表达式的定义和基本概念-------------------------表达式是由操作数、操作符和括号组成的数学式子。
它们可以用来表示数学运算、逻辑判断等。
在表达式中,操作数是指参与运算的数值或变量,操作符是指进行运算的符号,括号用于控制运算的优先级和顺序。
3:前缀表达式的求值------------------前缀表达式是一种将操作符放在操作数前面的表达式写法。
求解前缀表达式的过程可以通过使用栈来实现。
4:后缀表达式的求值------------------后缀表达式是一种将操作符放在操作数后面的表达式写法。
求解后缀表达式的过程也可以通过使用栈来实现。
5:中缀表达式的求值------------------中缀表达式是我们常见的数学表达式写法,操作符位于操作数中间。
求解中缀表达式的过程可以通过将中缀表达式转换为后缀表达式来简化。
6:表达式求值的实例-----------------本节将通过一些实例来演示表达式求值的过程,包括前缀表达式、后缀表达式和中缀表达式的求解方法。
7:实用技巧和注意事项-------------------本节将介绍一些实用的技巧和注意事项,可以帮助读者更好地理解和应用表达式求值的方法。
8:附件-------本文档不需要附加内容。
9:法律名词及注释----------------本文档中涉及的法律名词和相关注释如下:- 操作数(operand):参与运算的数值或变量。
- 操作符(operator):进行运算的符号。
- 表达式(expression):由操作数、操作符和括号组成的数学式子。
10:结束语---------本文档详细介绍了数据结构中的表达式求值问题,包括前缀表达式、后缀表达式和中缀表达式的求解方法。
XXXXXX大学《数据结构》课程设计报告班级:学号:姓名:指导老师:目录一算术表达式求值一、需求分析二、程序得主要功能三、程序运行平台四、数据结构五、算法及时间复杂度六、测试用例七、程序源代码二感想体会与总结算术表达式求值一、需求分析一个算术表达式就是由操作数(operand)、运算符(operator)与界限符(delimiter)组成得。
假设操作数就是正整数,运算符只含加减乘除等四种运算符,界限符有左右括号与表达式起始、结束符“#”,如:#(7+15)*(23—28/4)#。
引入表达式起始、结束符就是为了方便.编程利用“算符优先法”求算术表达式得值.二、程序得主要功能(1)从键盘读入一个合法得算术表达式,输出正确得结果。
(2)显示输入序列与栈得变化过程。
三、程序运行平台Visual C++6、0版本四、数据结构本程序得数据结构为栈。
(1)运算符栈部分:struct SqStack //定义栈{char *base; //栈底指针char *top; //栈顶指针intstacksize; //栈得长度};intInitStack (SqStack &s) //建立一个空栈S{if (!(s、base= (char *)malloc(50*sizeof(char))))exit(0);s、top=s、base;s、stacksize=50;return OK;}char GetTop(SqStack s,char &e) //运算符取栈顶元素{if (s、top==s、base) //栈为空得时候返回ERROR{ﻩ printf("运算符栈为空!\n");ﻩ return ERROR;}elsee=*(s、top-1); //栈不为空得时候用e做返回值,返回S得栈顶元素,并返回OK returnOK;}int Push(SqStack&s,char e) //运算符入栈{if (s、top—s、base >= s、stacksize)ﻩ{printf("运算符栈满!\n");ﻩs、base=(char*)realloc(s、base,(s、stacksize+5)*sizeof(char));//栈满得时候,追加5个存储空间if(!s、base)exit (OVERFLOW);s、top=s、base+s、stacksize;s、stacksize+=5;}ﻩ*(s、top)++=e;//把e入栈ﻩreturn OK;}int Pop(SqStack &s,char &e) //运算符出栈{if (s、top==s、base) //栈为空栈得时候,返回ERROR{printf("运算符栈为空!\n”);ﻩ return ERROR;}else{ﻩﻩe=*-—s、top;//栈不为空得时候用e做返回值,删除S得栈顶元素,并返回OK return OK;}}int StackTraverse(SqStack&s)//运算符栈得遍历{ﻩchar *t;ﻩt=s、base;ﻩif (s、top==s、base){ﻩ printf(”运算符栈为空!\n”); //栈为空栈得时候返回ERRORreturn ERROR;}while(t!=s、top){ﻩﻩprintf(" %c",*t); //栈不为空得时候依次取出栈内元素t++;ﻩ}return ERROR;}(2)数字栈部分:struct SqStackn//定义数栈{int *base; //栈底指针int*top; //栈顶指针int stacksize; //栈得长度};intInitStackn (SqStackn &s) //建立一个空栈S{s、base=(int*)malloc(50*sizeof(int));if(!s、base)exit(OVERFLOW);//存储分配失败s、top=s、base;s、stacksize=50;return OK;}int GetTopn(SqStackn s,int&e) //数栈取栈顶元素{if(s、top==s、base){printf("运算数栈为空!\n");//栈为空得时候返回ERRORﻩ return ERROR;}elseﻩe=*(s、top-1);//栈不为空得时候,用e作返回值,返回S得栈顶元素,并返回OKreturnOK;}int Pushn(SqStackn &s,int e) //数栈入栈{if(s、top—s、base>=s、stacksize){ﻩﻩprintf("运算数栈满!\n");//栈满得时候,追加5个存储空间ﻩs、base=(int*)realloc (s、base,(s、stacksize+5)*sizeof(int));if(!s、base) exit (OVERFLOW);ﻩs、top=s、base+s、stacksize;//插入元素e为新得栈顶元素s、stacksize+=5;}*(s、top)++=e; //栈顶指针变化returnOK;}int Popn(SqStackn &s,int &e)//数栈出栈{ﻩif (s、top==s、base){ﻩ printf("运算符栈为空!\n");//栈为空栈得视时候,返回ERRORﻩ return ERROR;ﻩ}else{ﻩﻩe=*—-s、top;//栈不空得时候,则删除S得栈顶元素,用e返回其值,并返回OK ﻩreturnOK;}}int StackTraversen(SqStackn &s)//数栈遍历{ﻩint*t;ﻩt=s、base ;ﻩif(s、top==s、base)ﻩ{printf("运算数栈为空!\n”);//栈为空栈得时候返回ERRORﻩ return ERROR;ﻩ}ﻩwhile(t!=s、top)ﻩ{printf(” %d”,*t); //栈不为空得时候依次输出t++;}return ERROR;}五、算法及时间复杂度1、算法:建立两个不同类型得空栈,先把一个‘#’压入运算符栈。
表达式求值(数据结构)表达式求值(数据结构)1.引言在计算机科学中,表达式求值是一项重要的任务。
它涉及解析和计算数学或逻辑表达式,以得出最终结果。
表达式可以包括数字、变量、运算符和函数,通过采用特定的计算规则,我们可以将这些表达式转化为具体的数值或逻辑结果。
2.表达式的基本概念2.1 数字在表达式中,数字是最基本的元素。
可以是整数或浮点数,用于进行算术计算。
2.2 变量变量是用于存储和代表值的符号,它可以在表达式中使用。
变量可以通过赋值操作来获得具体的值,在表达式求值过程中,变量会被相应的数值替换。
2.3 运算符运算符是用于执行特定操作的符号。
常见的算术运算符包括加法(+), 减法(-), 乘法和除法(/)逻辑运算符包括与(&&), 或(--------) 和非(!)在表达式求值中,运算符的优先级和结合性规则是非常重要的。
2.4 函数函数是一段封装了特定功能的代码块,可以接受输入参数并返回一个结果。
在表达式中,函数可以用于处理特定的数据操作或算法。
例如,sin(x) 和cos(x) 是常见的三角函数。
3.表达式求值的步骤3.1 词法分析首先,需要对表达式进行词法分析,将表达式分解为一个个的词法单元,例如数字、变量、运算符和函数等。
词法分析可以使用正则表达式或者逐字符扫描的方式进行。
3.2 语法分析在得到词法单元序列后,需要进行语法分析,根据语法规则验证表达式的结构是否正确。
语法分析可以使用自顶向下的LL(1)分析方法或者自底向上的LR分析方法。
3.3 语义分析一旦表达式的结构验证通过,就需要进行语义分析。
语义分析的任务是根据语法树运用特定的求值规则,将表达式转换为具体的数值或逻辑结果。
在语义分析过程中,需要处理变量的赋值和函数的调用。
4.表达式求值的例子为了更好地理解表达式求值的过程,以下是一个例子:________表达式:________ 2 (3 + 4) ●5 / 24.1 词法分析:________将表达式分解为以下词法单元:________ 数字(2, 3, 4, 5), 运算符(, +, -), 括号(), 除法运算符(/)4.2 语法分析:________根据语法规则验证表达式的结构是否正确,构建语法树:________-/ \\// \\ / \\2 + 5 2/ \\3 44.3 语义分析:________根据语法树使用求值规则,依次计算每个节点的值:________●节点:________ 2 (7) ●5 / 2●节点:________ 2 7 ●5 / 2●节点:________ 14 ●5 / 2●节点:________ 14 ●2.5●最终结果:________ 11.55.附件本文档没有涉及附件。
数据结构课程设计四则运算表达式求值(C语⾔版) 明⼈不说暗话,直接上,输⼊提取码z3fy即可下载。
⽂件中包含程序,程序运⾏⽂件,设计报告和测试样例,应有尽有,欢迎⼩伙伴们在中下载使⽤。
本课程设计为四则运算表达式求值,⽤于带⼩括号的⼀定范围内正负数的四则运算标准(中缀)表达式的求值。
注意事项:1、请保证输⼊的四则表达式的合法性。
输⼊的中缀表达式中只能含有英⽂符号“+”、“-”、“*”、“/”、“(”、“)”、“=”、数字“0”到“9”以及⼩数点“.”,输⼊“=”表⽰输⼊结束。
例如9+(3-1)*3.567+10/2=,特别是请勿输⼊多余空格和中⽂左右括号。
2、输⼊的中缀表达式默认限定长度是1001,可根据具体情况调整字符串数组的长度。
3、请保证输⼊的操作数在double数据类型范围内,单个数字有效数字长度不可超过15位。
本课程设计中操作数是C语⾔中的双精度浮点数类型。
4、本课程设计中的运算数可以是负数,另外如果是正数可直接省略“+”号(也可带“+”号)。
下⾯的程序正常运⾏需要在上⾯的百度⽹盘中下载相应⽂件,否则⽆法正常使⽤哦。
1/*本程序为四则运算表达式求值系统,⽤于计算带⼩括号的四则运算表达式求值。
2具体算法:3先将字符串处理成操作单元(操作数或操作符),再利⽤栈根据四则运算4的运算法则进⾏计算,最后得出结果。
*/56 #include<stdio.h>7 #include<ctype.h>8 #include<stdlib.h>9 #include<string.h>10 #include<stdlib.h>11 #include<ctype.h>1213const int Expmax_length = 1001;//表达式最⼤长度,可根据适当情况调整14struct Ope_unit15 {//定义操作单元16int flag;//=1表⽰是操作数 =0表⽰是操作符 -1表⽰符号单元17char oper;//操作符18double real;//操作数,为双精度浮点数19 };2021void Display();//菜单22void Instru(); //使⽤说明23int Check(char Exp_arry[]);24void Evalua(); //先调⽤Conver操作单元化,再调⽤Calculate函数计算结果并输出25int Conver(struct Ope_unit Opeunit_arry[],char Exp_arry[]);//将字符串处理成操作单元26int Isoper(char ch);//判断合法字符(+ - * / ( ) =)27int Ope_Compar(char ope1,char ope2);//操作符运算优先级⽐较28double Calculate(struct Ope_unit Opeunit_arry[],int Opeunit_count,int &flag);//⽤栈计算表达式结果29double Four_arithm(double x,double y,char oper);//四则运算3031int main()32 {33int select;34while(1)35 {36 Display();37 printf("请输⼊欲执⾏功能对应的数字:");38 scanf("%d",&select);39 printf("\n");40switch(select)41 {42case1: Evalua(); break;43case2: Instru(); break;44case0: return0;45default : printf("⽆该数字对应的功能,请重新输⼊\n");46 system("pause");47 }48 }49return0;50 }5152int Check(char Exp_arry[])53 {//检查是否有⾮法字符,返回1表⽰不合法,0表⽰合法54int Explength=strlen(Exp_arry),i;55for(i=0;i<Explength;i++)56 {57if(!Isoper(Exp_arry[i]) && Exp_arry[i] != '.' && !isdigit(Exp_arry[i]))58return1;59if(isdigit(Exp_arry[i]))60 {61int Dig_number=0,Cur_positoin=i+1;62while(isdigit(Exp_arry[Cur_positoin]) || Exp_arry[Cur_positoin]=='.')63 {64 Dig_number++;65 Cur_positoin++;66 }67if(Dig_number >= 16)//最多能够计算15位有效数字68return1;69 }70 }71return0;72 }7374void Evalua()75 {//先调⽤Conver函数将字符串操作单元化,再调⽤Calculate函数计算结果并输出76char Exp_arry[Expmax_length];77int flag=0;//假设刚开始不合法,1表达式合法,0不合法78struct Ope_unit Opeunit_arry[Expmax_length];7980 getchar();//吃掉⼀个换⾏符81 printf("请输⼊四则运算表达式,以=结尾:\n");82 gets(Exp_arry);83 flag=Check(Exp_arry);84if(flag)85 printf("该表达式不合法!\n");86else87 {88int Opeunit_count = Conver(Opeunit_arry,Exp_arry);89double ans = Calculate(Opeunit_arry,Opeunit_count,flag);90if(flag)91 {92 printf("计算结果为:\n");93 printf("%s%lf\n",Exp_arry,ans);94 }95else96 printf("该表达式不合法!\n");97 }98 system("pause");99 }100101int Conver(struct Ope_unit Opeunit_arry[],char Exp_arry[])102 {//将字符串操作单元化103int Explength=strlen(Exp_arry);104int i,Opeunit_count=0;105for(i=0;i<Explength;i++)106 {107if(Isoper(Exp_arry[i]))//是操作符108 {109 Opeunit_arry[Opeunit_count].flag=0;110 Opeunit_arry[Opeunit_count++].oper=Exp_arry[i];111 }112else//是操作数113 {114 Opeunit_arry[Opeunit_count].flag=1;115char temp[Expmax_length];116int k=0;117for(; isdigit(Exp_arry[i]) || Exp_arry[i]=='.' ;i++)118 {119 temp[k++]=Exp_arry[i];120 }121 i--;122 temp[k]='\0';123 Opeunit_arry[Opeunit_count].real=atof(temp);//将字符转化为浮点数124125//负数126if(Opeunit_count == 1 && Opeunit_arry[Opeunit_count-1].flag==0127 && Opeunit_arry[Opeunit_count-1].oper=='-')128 {129 Opeunit_arry[Opeunit_count-1].flag = -1;130 Opeunit_arry[Opeunit_count].real *= -1;131 }// -9132if(Opeunit_count >= 2 && Opeunit_arry[Opeunit_count-1].flag==0133 && Opeunit_arry[Opeunit_count-1].oper=='-' && Opeunit_arry[Opeunit_count-2].flag==0 134 && Opeunit_arry[Opeunit_count-2].oper !=')')135 {136 Opeunit_arry[Opeunit_count-1].flag = -1;137 Opeunit_arry[Opeunit_count].real *= -1;138 }// )-9139140//正数141if(Opeunit_count == 1 && Opeunit_arry[Opeunit_count-1].flag==0142 && Opeunit_arry[Opeunit_count-1].oper=='+')143 {144 Opeunit_arry[Opeunit_count-1].flag = -1;145 }// +9146if(Opeunit_count >= 2 && Opeunit_arry[Opeunit_count-1].flag==0147 && Opeunit_arry[Opeunit_count-1].oper=='+' && Opeunit_arry[Opeunit_count-2].flag==0148 && Opeunit_arry[Opeunit_count-2].oper !=')')149 {150 Opeunit_arry[Opeunit_count-1].flag = -1;151 }// )+9152 Opeunit_count++;153 }154 }155/*for(i=0;i<Opeunit_count;i++)156 {//查看各操作单元是否正确,1是操作数,0是操作符157 if(Opeunit_arry[i].flag == 1)158 printf("该单元是操作数为:%lf\n",Opeunit_arry[i].real);159 else if(Opeunit_arry[i].flag == 0)160 printf("该单元是操作符为:%c\n",Opeunit_arry[i].oper);161 else162 printf("该单元是负号符为:%c\n",Opeunit_arry[i].oper);163 }*/164return Opeunit_count;165 }166167double Calculate(struct Ope_unit Opeunit_arry[],int Opeunit_count,int &flag)168 {//根据运算规则,利⽤栈进⾏计算169int i,dS_pointer=0,oS_pointer=0;//dS_pointer为操作数栈顶指⽰器,oS_pointer为操作符栈顶指⽰器170double Dig_stack[Expmax_length];//操作数栈(顺序存储结构)171char Ope_stack[Expmax_length];//操作符栈172173for(i=0;i<Opeunit_count-1;i++)174 {175if( Opeunit_arry[i].flag != -1 )176 {177if(Opeunit_arry[i].flag)//是操作数178 {179 Dig_stack[dS_pointer++]=Opeunit_arry[i].real;//⼊操作数栈180//printf("%lf\n",Digit[dS_pointer-1]);181 }182else//是操作符 + - * / ( )183 {184//操作符栈为空或者左括号⼊栈185if(oS_pointer==0 || Opeunit_arry[i].oper=='(')186 {187 Ope_stack[oS_pointer++]=Opeunit_arry[i].oper;188//printf("%oS_pointer\Ope_u_count",Operator[oS_pointer-1]);189 }190else191 {192if(Opeunit_arry[i].oper==')')//是右括号将运算符⼀直出栈,直到遇见左括号193 {194 oS_pointer--;//指向栈顶195 dS_pointer--;//指向栈顶196while(Ope_stack[oS_pointer] != '(' && oS_pointer != 0)197 {198 Dig_stack[dS_pointer-1] = Four_arithm(Dig_stack[dS_pointer-1],Dig_stack[dS_pointer], 199 Ope_stack[oS_pointer--]);//oS_pointer--为操作符出栈200201 dS_pointer--;//前⼀个操作数出栈202//printf("操作数栈顶元素等于%lf\n",Digit[dS_pointer]);203 }204 oS_pointer--;//左括号出栈205206 oS_pointer++;//恢复指向栈顶之上207 dS_pointer++;208 }209else if(Ope_Compar(Opeunit_arry[i].oper,Ope_stack[oS_pointer-1]))//和栈顶元素⽐较210 {211 Ope_stack[oS_pointer++]=Opeunit_arry[i].oper;212//printf("%oS_pointer\Ope_u_count",Operator[oS_pointer-1]);213 }214else//运算符出栈,再将该操作符⼊栈215 {216 oS_pointer--;//指向栈顶217 dS_pointer--;//指向栈顶218while(Ope_Compar(Opeunit_arry[i].oper,Ope_stack[oS_pointer])==0 && oS_pointer != -1) 219 {//当前操作符⽐栈顶操作符优先级⾼220 Dig_stack[dS_pointer-1]=Four_arithm(Dig_stack[dS_pointer-1],Dig_stack[dS_pointer], 221 Ope_stack[oS_pointer--]);222 dS_pointer--;223//printf("操作数栈顶元素等于%lf\n",Digit[dS_pointer]);224 }225 oS_pointer++;//恢复指向栈顶之上226 dS_pointer++;227 Ope_stack[oS_pointer++]=Opeunit_arry[i].oper;228 }229 }230 }231 }232 }233/*for(i=0;i<oS_pointer;i++)234 printf("操作符栈%oS_pointer\Ope_u_count",Operator[i]);235 for(i=0;i<dS_pointer;i++)236 printf("操作数栈%lf\n",Digit[i]);*/237 oS_pointer--;//指向栈顶元素238 dS_pointer--;//指向栈顶元素239while(oS_pointer != -1)240 {241 Dig_stack[dS_pointer-1]=Four_arithm(Dig_stack[dS_pointer-1],Dig_stack[dS_pointer], 242 Ope_stack[oS_pointer--]);//oS_pointer--为操作符出栈243 dS_pointer--;//前⼀个操作数出栈244//printf("操作数栈顶元素为%lf\Ope_u_count",Digit[dS_pointer]);245 }246//printf("%dS_pointer,%dS_pointer\n",oS_pointer,dS_pointer);247if(oS_pointer==-1 && dS_pointer==0)248 flag=1;//为1表⽰表达式合法249return Dig_stack[0];250 }251252int Ope_Compar(char ope1,char ope2)253 {//操作符运算优先级⽐较254char list[]={"(+-*/"};255int map[5][5]={//先⾏后列,⾏⽐列的运算级优先级低为0,⾼为1256// ( + - * /257/* ( */1,0,0,0,0,258/* + */1,0,0,0,0,259/* - */1,0,0,0,0,260/* * */1,1,1,0,0,261/* / */1,1,1,0,0 };262int i,j;263for(i=0;i<5;i++)264if(ope1==list[i]) break;265for(j=0;j<5;j++)266if(ope2==list[j]) break;267return map[i][j];268 }269270double Four_arithm(double x,double y,char oper)271 {//四则运算272switch(oper)//保证不含其它运算符273 {274case'+': return x+y;275case'-': return x-y;276case'*': return x*y;277case'/': return x/y;//y不能为0278default : return0;279 }280 }281282int Isoper(char ch)283 {//判断合法字符 + - * / ( ) =284if(ch=='+' || ch=='-' || ch=='*' || ch=='/' || ch=='(' || ch==')' || ch=='=')285return1;286return0;287 }288289void Display()290 {//打印菜单291 system("cls");292 printf("/******************************************************************************/\n");293 printf("\t\t 欢迎使⽤本四则运算表达式求值系统\n");294 printf("\n\t说明:建议请您先阅读使⽤说明,再输⼊相应的数字进⾏操作,谢谢配合!\n"); 295 printf("\n\t\t1 四则运算表达式求值\n");296 printf("\n\t\t2 使⽤说明\n");297 printf("\n\t\t0 退出\n");298 printf("/******************************************************************************/\n");299 }300301void Instru()302 {//打印使⽤说明303 FILE *fp;304char ch;305if( ( fp=fopen("使⽤说明.txt","r") ) == NULL)306 {307 printf("⽂件打开失败!\n");308 exit(0);309 }310for(; (ch = fgetc(fp)) != EOF; )311 putchar(ch);312 fclose(fp);313 printf("\n");314 system("pause");315 }。
数据结构课程设计院别计算机与通信工程学院专业计算机科学与技术班级学号姓名指导教师成绩2013 年7 月18 日目录一、设计课题 (3)二、需求分析 (3)三、算法设计 (3)四、调试分析 (9)五、用户手册 (10)六、测试结果 (10)七、附录(源代码) (13)八、参考文献 (21)一、设计课题: 表达式求值 二、需求分析:当用户输入一个合法的算术表达式后,能够返回正确的结果。
能够计算的运算符包括:加、减、乘、除、括号;能够计算的操作数要求在实数范围内;对于异常表达式能给出错误提示。
三、算法设计:概要说明:为实现上述程序功能,1. 首先置操作数栈为空栈,表达式起始符#为运算符栈的栈底元素;2. 依次扫描表达式中每个字符,若是操作数则进OPND 栈;若是运算符,则和OPTR 栈的栈顶运算符比较优先权后作相应操作,直至整个表达式求值完毕。
3. 先做一个适合个位的+-*/运算, 其次就要考虑到对n 位和小数点的运算。
模块间调用关系:调用主程序模块————>输出模块详细说明(ADT 描述) :ADT SqStack{数据对象:D={i a |i a ∈ElemSet,i=1,2,…,n, n ≧0} 数据对象:R1={<1,-i i a a >|1-i a ,D a i ∈,i=2,…,n}约定n a 端为栈顶,i a 端为栈底。
基本操作:InitStack(&S)操作结果:构造一个空栈S 。
GetTop(S)初始条件:栈S 已存在。
操作结果:用P 返回S 的栈顶元素。
Push(&S ,e)初始条件:栈S 已存在。
操作结果:插入元素ch 为新的栈顶元素。
Pop(&S ,e)初始条件:栈S 已存在。
操作结果:删除S 的栈顶元素。
In(c)操作结果:判断字符是否是运算符,运算符即返回1。
Precede(c1, c2)初始条件:c1,c2为运算符。
操作结果:判断运算符优先权,返回优先权高的。
数据结构表达式求值实验报告数据结构表达式求值实验报告1. 引言表达式求值是计算机科学中的一个重要问题,也是数据结构的一个经典应用。
通过将中缀表达式转换为后缀表达式,并利用栈这一数据结构,可以实现对表达式的有效求值。
本实验旨在探究数据结构在表达式求值中的应用。
2. 实验内容本实验中,我们将实现一个表达式求值的程序。
具体步骤如下:1. 将中缀表达式转换为后缀表达式。
2. 使用栈来求解后缀表达式。
3. 算法原理3.1 中缀表达式转后缀表达式中缀表达式是我们常见的数学表达式,如 2 + 3 4。
而后缀表达式是将操作符放在操作数后面的表达式,上述中缀表达式的后缀表达式为 2 3 4 +。
中缀表达式到后缀表达式的转换可以通过以下步骤完成:1. 初始化一个栈和一个输出队列。
2. 从左到右遍历中缀表达式的每个字符。
3. 如果当前字符是数字,将其加入输出队列。
4. 如果当前字符是左括号,将其压入栈。
5. 如果当前字符是右括号,将栈中的操作符依次弹出并加入输出队列,直到遇到左括号为止。
6. 如果当前字符是操作符,将其与栈顶操作符进行比较:1. 如果栈为空,或者栈顶操作符为左括号,直接将当前操作符压入栈。
2. 否则,比较当前操作符与栈顶操作符的优先级,如果当前操作符的优先级较低,将栈顶操作符弹出并加入输出队列,然后将当前操作符压入栈。
3. 如果当前操作符的优先级大于等于栈顶操作符的优先级,则直接将当前操作符压入栈。
7. 遍历完中缀表达式后,将栈中的操作符依次弹出并加入输出队列。
3.2 后缀表达式求值通过将中缀表达式转换为后缀表达式,我们可以利用栈来对后缀表达式进行求值。
具体求值操作如下:1. 初始化一个栈。
2. 从左到右遍历后缀表达式的每个字符。
3. 如果当前字符是数字,将其加入栈。
4. 如果当前字符是操作符,从栈中弹出两个数字,进行相应的运算,然后将结果加入栈。
5. 遍历完后缀表达式后,栈中的元素即为最终的结果。
4. 实验结果我们用中缀表达式\。
实验课程名称专业班级学生姓名学号指导教师20 至 20 学年第学期第至周算术表达式求值演示一、概述数据结构课程设计.要求学生在数据结构的逻辑特性和物理表示、数据结构的选择和应用、算法的设计及其实现等方面.加深对课程基本内容的理解。
同时.在程序设计方法以及上机操作等基本技能和科学作风方面受到比较系统和严格的训练。
在这次的课程设计中我选择的题目是算术表达式求值演示。
表达式计算是实现程序设计语言的基本问题之一.也是栈的应用的一个典型例子。
设计一个程序.演示用算符优先法对算术表达式求值的过程。
深入了解栈和队列的特性.以便在解决实际问题中灵活运用它们.同时加深对这种结构的理解和认识。
二、系统分析1.以字符列的形式从终端输入语法正确的、不含变量的整数表达式。
利用已知的算符优先关系.实现对算术四则混合运算表达式的求值.并仿照教科书的例子在求值中运算符栈、运算数栈、输入字符和主要操作的变化过程。
2.一般来说.计算机解决一个具体问题时.需要经过几个步骤:首先要从具体问题抽象出一个适当的数学模型.然后设计一个解决此数学模型的算法.最后编出程序.进行测试.调试直至得到想要的答案。
对于算术表达式这个程序.主要利用栈.把运算的先后步骤进行分析并实现简单的运算!为实现算符优先算法.可以使用两个栈.一个用以寄存运算符.另一个用以寄存操作数和运算结果。
3.演示程序是以用户于计算机的对话方式执行.这需要一个模块来完成使用者与计算机语言的转化。
4.程序执行时的命令:本程序为了使用具体.采用菜单式的方式来完成程序的演示.几乎不用输入什么特殊的命令.只需按提示输入表达式即可。
(要注意输入时格式.否者可能会引起一些错误)5. 测试数据。
三、概要设计一个算术表达式中除了括号、界限符外.还包括运算数据和运算符。
由于运算符有优先级别之差.所以一个表达式的运算不可能总是从左至右的循序执行。
每次操作的数据或运算符都是最近输入的.这与栈的特性相吻合.故本课程设计借助栈来实现按运算符的优先级完成表达式的求值计算。
数据结构表达式求值在计算机科学中,数据结构是组织和存储数据的方式,而表达式求值则是一个常见且重要的任务。
表达式求值可以帮助我们计算数学表达式的结果,无论是简单的四则运算,还是复杂的包含函数和变量的表达式。
让我们从一个简单的算术表达式开始,比如“2 +3 4”。
要计算这个表达式的值,我们不能简单地从左到右依次计算,因为乘法的优先级高于加法。
所以,正确的计算顺序应该是先计算 3 4 = 12,然后再计算 2 + 12 = 14。
为了能够正确地处理表达式中不同运算符的优先级,我们需要使用特定的数据结构和算法。
其中,栈(Stack)是一种非常有用的数据结构。
栈就像是一个只能从一端进出的容器,遵循“后进先出”(Last In First Out,LIFO)的原则。
在表达式求值中,我们可以使用两个栈,一个用来存储操作数(Operand Stack),另一个用来存储运算符(Operator Stack)。
当我们读取表达式中的数字时,将其压入操作数栈;当读取到运算符时,需要和运算符栈顶的运算符比较优先级。
如果当前运算符的优先级高于栈顶运算符,那么将其压入运算符栈;如果当前运算符的优先级低于或等于栈顶运算符,就从操作数栈中弹出相应数量的操作数,进行计算,将结果压回操作数栈,然后再将当前运算符压入运算符栈。
例如,对于表达式“2 +3 4”,我们首先读取到数字 2,将其压入操作数栈。
接着读取到“+”号,此时运算符栈为空,所以将“+”号压入运算符栈。
然后读取到数字 3,压入操作数栈。
再读取到“”号,由于“”号的优先级高于“+”号,将“”号压入运算符栈。
接着读取到数字 4,压入操作数栈。
此时,表达式已经读取完毕。
因为“”号的优先级高于“+”号,所以先从操作数栈中弹出 3 和 4 进行乘法运算,得到 12,将 12 压回操作数栈。
然后从运算符栈中弹出“+”号,从操作数栈中弹出 2 和 12 进行加法运算,得到 14,这就是表达式的最终结果。
数据结构表达式求值c语言在C语言中,表达式通常由运算符和操作数组成。
运算符可以是算术运算符(如加减乘除)、关系运算符(如等于、不等于)或逻辑运算符(如与、或)。
操作数可以是变量、常量或其他表达式。
为了对表达式进行求值,我们需要将表达式转换为一种方便计算的形式。
常用的表达式形式有中缀表达式、后缀表达式和前缀表达式。
其中,后缀表达式也被称为逆波兰表达式,前缀表达式也被称为波兰表达式。
在表达式求值的过程中,我们可以使用栈这种数据结构来辅助计算。
栈是一种后进先出(Last In First Out,LIFO)的数据结构,可以用来保存运算符和中间结果。
我们可以通过以下步骤来求解一个后缀表达式:1. 创建一个空栈,用于保存操作数和中间结果。
2. 从左到右扫描后缀表达式的每个字符。
3. 如果遇到操作数,则将其压入栈中。
4. 如果遇到运算符,则从栈中弹出两个操作数,并根据运算符进行计算。
将计算结果压入栈中。
5. 重复步骤3和步骤4,直到扫描完所有字符。
6. 栈中最后剩下的元素即为表达式的求值结果。
下面是一个示例,演示如何使用后缀表达式求解一个简单的数学表达式:后缀表达式:"2 3 + 4 *"1. 创建一个空栈。
2. 从左到右扫描后缀表达式的每个字符。
- 遇到数字2,将其压入栈中。
- 遇到数字3,将其压入栈中。
- 遇到运算符+,从栈中弹出两个操作数2和3,计算2 + 3 = 5,并将结果5压入栈中。
- 遇到数字4,将其压入栈中。
- 遇到运算符*,从栈中弹出两个操作数5和4,计算5 * 4 = 20,并将结果20压入栈中。
3. 扫描完所有字符后,栈中最后剩下的元素20即为表达式的求值结果。
除了后缀表达式,我们还可以使用其他形式的表达式来进行求值。
前缀表达式的求值过程与后缀表达式类似,只是扫描的顺序从左到右变成了从右到左。
中缀表达式的求值过程比较复杂,需要使用算符优先级和括号来确定运算顺序。
在实际编程中,我们可以使用数组、链表或树等数据结构来表示和存储表达式。
数据结构表达式求值实验报告数据结构表达式求值实验报告⒈引言本实验旨在研究和实现数据结构中表达式求值的算法。
表达式求值是计算机科学中常见的问题,对于计算机程序的正确性和性能具有重要影响。
本报告将详细介绍实验设计、实验步骤、实验结果及分析,并对实验过程中遇到的问题进行讨论。
⒉实验设计⑴实验目的本实验的目的是实现一个可以对常见的算术表达式进行求值的算法,包括支持基本的加减乘除运算符和括号。
⑵实验环境●操作系统:Windows 10●开发语言:C++●开发工具:Visual Studio 2019⑶数据结构设计为了实现表达式求值的算法,我们需要设计适当的数据结构来存储和处理表达式。
本实验中,我们选择使用栈来实现表达式求值。
●表达式栈:用于存储操作数和运算符。
●运算符栈:用于存储运算符。
⑷算法设计表达式求值的算法可以分为以下几个步骤:●遍历表达式,逐个处理操作数和运算符:●如果是操作数,入表达式栈。
●如果是运算符,与运算符栈栈顶元素进行比较,根据优先级决定如何处理。
●当表达式遍历完成后,依次处理剩余的运算符。
●最终表达式栈中的元素即为求值结果。
⒊实验步骤⑴数据结构实现根据设计,我们首先实现表达式栈和运算符栈的数据结构,包括入栈、出栈等操作。
⑵表达式输入与预处理用户输入待求值的表达式,进行预处理,去除空格、验证表达式的合法性等。
⑶表达式求值算法实现根据前述的算法设计,实现表达式求值的算法,利用表达式栈和运算符栈来处理表达式。
⑷测试与结果分析对于不同的测试用例,进行表达式求值的测试,并分析结果的正确性和性能。
⒋实验结果与分析经过实验测试,我们得到了表达式求值的结果。
结果显示,我们的算法能够正确地求得表达式的值,而且性能良好。
⒌讨论与总结在实验过程中,我们遇到了一些问题,并进行了讨论和解决。
通过这个实验,我们更加深入地理解了表达式求值的算法,并对数据结构的应用有了更清晰的认识。
附件:无法律名词及注释:●无。
1【实验题目及要求】[问题描述]一个算术表达式是由操作数(operand)、运算符(operator)和界限符(delimiter)组成的。
假设操作数是正实数,运算符只含加减乘除等四种运算符,界限符有左右括号和表达式起始、结束符“#”,如:#(7+15)*(23-28/4)#。
引入表达式起始、结束符是为了方便。
编程利用“算符优先法”求算术表达式的值。
[基本要求](1)从键盘或文件读入一个合法的算术表达式,输出正确的结果。
(2)显示输入序列和栈的变化过程。
(3)考虑算法的健壮性,当表达式错误时,要给出错误原因的提示。
(4) 实现非整数的处理(可选功能)。
2【源代码(C语言)】#include<stdio.h>#include<stdlib.h>#include<string.h>#define MAXSIZE 20#define OK 1#define ERROR 0#define OVERLOW 0#define YES 1#define NO 0typedefstruct{char * base;char * top;int stacksize; //最大存储量}OPTR; //字符存储栈typedefstruct{float *base;float *top;int stacksize; //最大存储量}OPND; //数值存储栈int InitOptrStack(OPTR *); //字符栈初始化函数int OptrPush(OPTR *, char); //进字符栈操作int OptrPop(OPTR*, char *); //出字符栈操作int OptrEmpty(OPTR ); //判断字符栈是否为空char GetOptrTop(OPTR); //返回字符栈顶元素int InitOpndStack(OPND *); //数值栈初始化函数int OpndPush(OPND *, float); //进数值栈操作int OpndPop(OPND*, float*); //出数值栈操作int OpndEmpty(OPND ); //判断数值栈是否为空int JudgeChar(char); //判断是否为字符float GetFloat(char *); //接收一个数字char Precede(char, char); //判断优先级操作float Caculate(float,float,char);//计算数值{char ch, noMean, ci;float num, number1, number2;OPTR optr;OPND opnd;//system("color 30");InitOptrStack(&optr);InitOpndStack(&opnd);while(1){printf(" 请输入表达式以“#”开始,以“#”结束\n ");do{ch = getchar();}while(ch !='#'); //忽略前面非‘#’字符OptrPush(&optr, ch);ch = getchar();while(ch != '#' || GetOptrTop(optr) != '#'){if(!JudgeChar(ch)){ //如果输入的是数字num = GetFloat( &ch );OpndPush(&opnd, num);else{ //输入的是字符switch(Precede(GetOptrTop(optr),ch)){case'<':OptrPush(&optr,ch); //栈顶优先级低ch = getchar();break;case'=':OptrPop(&optr,&noMean); //左右括号,把左括号出栈ch = getchar ();break;case'>': //栈顶优先级高if(OpndPop(&opnd, &number2) && OpndPop(&opnd,&number1)){OptrPop(&optr, &ci);num = Caculate(number1, number2, ci ); //出栈计算OpndPush(&opnd, num);}else{printf(" 输入过多运算符!\n");system ("PAUSE");exit(0);}break;}//witch}//else}if(opnd.top -opnd.base >= 2){printf(" 俩个括号之间缺少运算符!\n ");system ("PAUSE");exit( 0 );}OpndPop(&opnd,&num); //直接把OPND的栈元素赋值给numprintf(" 运算结果为%.3f\n", num);}system ("PAUSE");}int InitOptrStack(OPTR * OP){OP->base = (char*)malloc((MAXSIZE+1)*sizeof(char));OP->top = OP->base;OP->stacksize = MAXSIZE;return OK;}int OptrPush(OPTR *OP, char ch){*(OP->top) = ch;OP->top++;return OK;}int OptrPop(OPTR *OP, char *ch){if(OP->base == OP->top)return ERROR;else{OP->top--;*ch = *(OP->top);return OK;}}int OptrEmpty(OPTR OP){if(OP.top == OP.base )return YES;elsereturn NO;}char GetOptrTop(OPTR OP){return *(OP.top -1);}int InitOpndStack(OPND * OP){if(!(OP->base = (float*)malloc((MAXSIZE+1)*sizeof(float)))) exit(OVERLOW);OP->top = OP->base;OP->stacksize = MAXSIZE;return OK;}int OpndPush(OPND *OP, float number) {*(OP->top) = number;OP->top++;return OK;}int OpndPop(OPND *OP, float* number) {if(OP->top == OP->base)return ERROR;else{OP->top--;*number = *(OP->top);return OK;}}int OpndEmpty(OPND OP){if(OP.top == OP.base )return YES;elsereturn NO;}int JudgeChar(char ch){if(ch>='0'&&ch<= '9')return NO;elsereturn YES;}float GetFloat(char* ch){int i;float num = 0;for( i = 0; *ch>= '0'&& *ch<= '9'; i++){ num = num*10 + *ch - '0';*ch = getchar();}return num;}char Precede(char a, char b){char ch;switch(a){case'+':case'-': if(b == '*' || b == '/' || b == '(')ch = '<';elsech = '>';break;case'*':case'/': if( b == '(')ch = '<';elsech = '>';break;case'(': if(b == ')')ch = '=';elseif(b == '#'){printf(" 缺少反括号\n");system ("PAUSE");exit(0);}elsech = '<';break;case')': if(b == '('){printf(" 两个括号之间没有符号相连!\n");system("PAUSE");exit(0);}ch = '>';break;case'#': if(b == '#')ch = '=';elseif(b == ')'){printf(" 没有左括号!\n ");system("PAUSE");exit(0);}elsech = '<';break;default: printf(" 输入运算符超出范围! \n ");system ("PAUSE");exit(0);break;}return ch;}float Caculate(float number1, float number2, char ci){float num;switch( ci){case'+': num = number1 + number2; break;case'-': num = number1 - number2; break;case'*': num = number1 * number2; break;case'/': num = number1 / number2; break;}return num;}3【算法思想】根据栈的原理,建立数字栈OPND和运算符号栈OPTR,对读入的字符进行判断,存入不同的栈内,每次读入一个字符就把该字符和运算符栈顶的优先级进行比较,然后选择相应的操作,这是这个程序的核心代码,如下:switch(Precede(GetOptrTop(optr),ch)){case '<':OptrPush(&optr,ch); //栈顶优先级低ch = getchar();break;case '=':OptrPop(&optr,&noMean); //左右括号,把左括号出栈ch = getchar ();break;case '>': //栈顶优先级高if(OpndPop(&opnd, &number2) && OpndPop(&opnd, &number1)){OptrPop(&optr, &ci);num = Caculate(number1, number2, ci ); //出栈计算OpndPush(&opnd, num);}else{printf(" 输入过多运算符!\n");system ("PAUSE");exit(0);}break;}//witch4【实现效果】完全可以实现题目的要求,除了下图的错误提示,本程序还可以提示的错误有:输入过多运算符,缺少反括号,两个括号之间缺少运算符相连,缺少左括号,输入的运算符超出范围等提示。
数据结构实验二——算术表达式求值实验报告算术表达式求值实验报告一、引言算术表达式求值是计算机科学中一个重要的基础问题,它涉及到了数据结构和算法的应用。
本实验旨在通过实现一个算术表达式求值的程序,加深对数据结构中栈的理解和应用,并掌握算术表达式的求值过程。
二、实验目的1. 理解算术表达式的基本概念和求值过程;2. 掌握栈的基本操作和应用;3. 实现一个能够正确求解算术表达式的程序;4. 进一步熟悉编程语言的使用。
三、实验内容1. 设计并实现一个栈的数据结构;2. 实现算术表达式求值的算法;3. 编写测试用例,验证程序的正确性;4. 进行性能测试,分析算法的时间复杂度。
四、实验方法与步骤1. 设计栈的数据结构在本实验中,我们选择使用数组来实现栈的数据结构。
栈的基本操作包括入栈(push)、出栈(pop)、判断栈空(isEmpty)和获取栈顶元素(top)等。
2. 算术表达式求值算法算术表达式求值的一种常用算法是通过后缀表达式进行求值。
具体步骤如下: - 将中缀表达式转换为后缀表达式;- 通过栈来求解后缀表达式;- 返回最终的计算结果。
3. 编写测试用例编写一系列测试用例,包括不同类型的算术表达式,以验证程序的正确性。
例如:- 简单的四则运算表达式:2 + 3 * 4 - 5;- 包含括号的表达式:(2 + 3) * (4 - 5);- 包含多位数的表达式:12 + 34 * 56;- 包含浮点数的表达式:3.14 + 2.71828。
4. 性能测试和时间复杂度分析针对不同规模的输入数据,进行性能测试,记录程序的运行时间。
同时,分析算法的时间复杂度,验证算法的效率。
五、实验结果与分析我们设计并实现了一个栈的数据结构,并成功地完成了算术表达式求值的程序。
通过对一系列测试用例的验证,我们发现程序能够正确地求解各种类型的算术表达式,并返回正确的计算结果。
在性能测试中,我们对不同规模的输入数据进行了测试,并记录了程序的运行时间。
数据结构表达式求值实验报告一、实验目的本次实验的主要目的是通过实现表达式求值的程序,深入理解数据结构和算法在解决实际问题中的应用。
具体包括掌握栈这种数据结构的操作和使用,熟悉表达式的转换和计算过程,提高编程能力和问题解决能力。
二、实验环境本次实验使用的编程语言为C++,开发工具为Visual Studio 2019。
三、实验原理表达式求值是程序设计中的一个常见问题,通常采用栈这种数据结构来实现。
表达式可以分为中缀表达式、后缀表达式和前缀表达式。
中缀表达式是我们日常使用的表达式形式,如“2 +3 4”,但直接对中缀表达式求值比较复杂。
而后缀表达式(如“2 3 4 +”)和前缀表达式(如“+2 3 4”)求值相对简单。
因此,在实现表达式求值时,通常先将中缀表达式转换为后缀表达式,然后对后缀表达式进行求值。
转换过程中,使用两个栈,一个用于存储操作数,另一个用于存储运算符。
求值过程中,根据后缀表达式的特点,从左到右依次处理操作数和运算符,进行相应的计算。
四、实验步骤1、定义数据结构定义栈类,用于存储操作数和运算符。
定义一个结构体来表示操作数和运算符。
2、中缀表达式转后缀表达式从左到右扫描中缀表达式。
遇到操作数,直接输出。
遇到运算符,根据其优先级与栈顶运算符的优先级进行比较,决定入栈或出栈操作。
3、后缀表达式求值从左到右扫描后缀表达式。
遇到操作数,入栈。
遇到运算符,从栈中取出两个操作数进行计算,将结果入栈。
4、主函数输入中缀表达式。
调用转换函数和求值函数,输出计算结果。
五、实验代码```cppinclude <iostream>include <stack>include <string>//定义操作符的优先级int priority(char op) {if (op =='+'|| op =='')return 1;if (op ==''|| op =='/')return 2;return 0;}//中缀表达式转后缀表达式std::string infixToPostfix(std::string infix) {std::stack<char> opStack;std::string postfix ="";for (char c : infix) {if (isdigit(c)){postfix += c;} else if (c =='('){} else if (c ==')'){while (!opStackempty()&& opStacktop()!='('){postfix += opStacktop();opStackpop();}opStackpop();//弹出'('} else {while (!opStackempty()&& priority(opStacktop())>=priority(c)){postfix += opStacktop();opStackpop();}opStackpush(c);}}while (!opStackempty()){postfix += opStacktop();}return postfix;}//后缀表达式求值int evaluatePostfix(std::string postfix) {std::stack<int> operandStack;for (char c : postfix) {if (isdigit(c)){operandStackpush(c '0');} else {int operand2 = operandStacktop();operandStackpop();int operand1 = operandStacktop();operandStackpop();switch (c) {case '+':operandStackpush(operand1 + operand2);break;case '':operandStackpush(operand1 operand2);break;case '':operandStackpush(operand1 operand2);break;case '/':operandStackpush(operand1 / operand2);break;}}}return operandStacktop();}int main(){std::string infixExpression;std::cout <<"请输入中缀表达式: ";std::cin >> infixExpression;std::string postfixExpression = infixToPostfix(infixExpression);int result = evaluatePostfix(postfixExpression);std::cout <<"表达式的计算结果为: "<< result << std::endl;return 0;}```六、实验结果输入不同的中缀表达式,如“2 +3 4”“( 2 + 3 )4”等,程序能够正确地将其转换为后缀表达式,并计算出结果。
数据结构表达式求值正文:1. 引言本文档旨在介绍数据结构中表达式求值的相关知识和算法。
通过对不同类型的表达式进行解析、转换和计算,可以实现数学运算、逻辑判断等功能。
2. 表达式基础概念2.1 表达式定义:一个由操作符(如加减乘除)、操作数(变量或常量)以及括号组成的序列。
2.2 中缀表示法:将操作符置于两个相邻的操作数之间,例如a +b c。
2.3 后缀表示法:将所有操作符都放到其相关联的两个对象后面,例如 abc+。
3. 中缀转后缀在计算机内部处理表达时通常使用后缀形势更为方便,在此我们需要先把中边形势得出来再做进一步分析与运行4.栈应用-前驱关系图这里是讲述了当遇见某些特殊字符要怎么去处理5.从左至右扫描并分类输入串:这里主要说明了如果用户给定字符串有误该怎样提示错误信息6.数字直接输出, 操作者入堆栈:当检测到当前读取元素是数字就会直接打印7 . 遇到操作符时,比较其与栈顶运算符的优先级:这里主要是讲述了当遇见某些特殊字符要怎么去处理8 . 操作者入堆栈当检测到当前读取元素是数字就会直接打印9. 遇括号则进行如下判断:如果为左括号,则将此运算符压入堆叠。
(2)如果为右括号。
则依次弹出S中的所有运算符,并加至输出串尾部, 直至删除一个相应的左括号(不包含该左扩展)。
10.重复步骤3-6 ,直至表达式结束附件:无法律名词及注释:1. 表达式求值:指对给定数学或逻辑表达式进行计算并得出结果的过程。
2. 中缀表示法:一种常用于书写和理解数学表达式的形式,其中操作符位于两个相关联的对象之间。
3. 后缀表示法(也称逆波兰表示法):一种以后置方式排列操作数和操作符来构造代数、布尔函数等合成函数公式或语言文法规范的记录方法和数据结构.。
《数据结构》课程设计报告书课程题目:表达式求值问题一.需求分析(1)以字符序列的形式从终端输入语法正确的不含变量的整数表达式,将该中缀表达式转换为后缀表达式。
(2)实现对后缀表达式的求值。
(3)演示在求值过程中运算符栈,操作数栈,输入字符和主要操作的变化过程。
二.概要设计表达式求值的算法分为两步进行:首先将中缀表达式转换为后缀表达式,再求后缀表达式的值。
(1)将中缀表达式转换为后缀表达式,对于字符串形式的合法的中缀表达式,“(”的运算优先级最高,“*”次之,“+”,“—”最低,同级运算符从左到右按顺序运算。
转化过程算法描述如下:从左到右对中缀表达式进行扫描,每次处理一个字符。
若遇到左括号入栈。
如遇到数字,原样输出。
若遇到运算符,如果它的优先级比栈顶元素优先级高,则直接入栈,否则栈顶元素出栈,直到新栈顶数据元素的优先级比它低,然后将它直接入栈。
重复以上步骤,直到表达式结束。
若表达式已全部结束,将栈顶元素全部出栈。
(2)后缀表达式求值算法描述如下:从左到右对后缀表达式进行扫描,每次处理一个字符。
若遇到数字,转化为整数,入栈。
若遇到运算符,出栈两个值进行运算,运算结果再入栈。
重复以上步骤,直到表达式结束,栈中最后一个数据元素就是所求表达式的结果。
三.详细设计#include<stdio.h>#include<stdlib.h>#define TRUE 1#define FALSE 0#define MAXNUM 100typedef int DataType;struct SeqStack{ DataType s[MAXNUM];int t;};typedef struct SeqStack *PSeqStack;PSeqStack createEmptyStack_seq(){PSeqStack pastack;pastack = (PSeqStack)malloc(sizeof(struct SeqStack));if (pastack == NULL)printf("Out of space!!\n");elsepastack->t = -1;return pastack;} int isEmptyStack_seq(PSeqStack pastack){return pastack->t == -1;} void push_seq(PSeqStack pastack, DataType x){if (pastack->t >= MAXNUM - 1)printf("Overflow!\n");else{pastack->t = pastack->t + 1;pastack->s[pastack->t] = x;}} void pop_seq(PSeqStack pastack){if (pastack->t == -1)printf("Underflow!\n");elsepastack->t = pastack->t - 1;} DataType top_seq(PSeqStack pastack){return pastack->s[pastack->t];} int infixtoSuffix(const char * infix, char * suffix){ /*将中缀表达式转换为后缀表达式,顺利转换返回true,若转换过程中发现中缀表达式非法则返回false*/int state_int = FALSE;/*state_int记录状态,等于true表示刚读入的是数字字符,等于false表示刚读入的不是数字字符,设置这个变量是为了在每输出一个整数后输出一个空格,以免连续输出的两个整数混在一起。
*/char c, c2;PSeqStack ps = createEmptyStack_seq(); /*运算符栈*/int i, j = 0;if (infix[0] == '\0')return FALSE; /*不允许出现空表达式*/for (i = 0; infix[i] != '\0'; i++){c = infix[i];switch (c){case ' ':case '\t':case '\n':if (state_int == TRUE)suffix[j++] = ' ';/*状态从true转换为false时输出一个空格*/state_int = FALSE;break; /*遇到空格或制表符忽略*/case '0':case '1':case '2':case '3':case '4':case '5':case '6':case '7':case '8':case '9':state_int = TRUE;suffix[j++] = c; /*遇到数字输出*/break;case '(':if (state_int == TRUE)suffix[j++] = ' ';/*状态从true转换为false时输出一个空格*/state_int = FALSE;push_seq(ps, c); /*遇到左括号,入栈*/break;case ')':if (state_int == TRUE)suffix[j++] = ' ';/*状态从true转换为false时输出一个空格*/ state_int = FALSE;c2 = ')';while (!isEmptyStack_seq(ps)){c2 = top_seq(ps);/*取栈顶*/pop_seq(ps); /*出栈*/if (c2 == '('){break;}suffix[j++] = c2;}if (c2 != '('){free(ps);suffix[j++] = '\0';return FALSE;}break;case '+':case '-':if (state_int == TRUE)suffix[j++] = ' ';state_int = FALSE;while(!isEmptyStack_seq(ps)){c2 = top_seq(ps);if (c2 == '+' || c2 == '-' || c2 == '*' || c2 == '/'){pop_seq(ps);suffix[j++] = c2;}else if(c2=='(') break;}push_seq(ps, c);break;case '*':case '/':if (state_int == TRUE)suffix[j++] = ' ';state_int = FALSE;while (!isEmptyStack_seq(ps)){c2 = top_seq(ps);if (c2 == '*' || c2 == '/'){pop_seq(ps);suffix[j++] = c2;}else if(c2=='+'||c2=='-'||c2=='(') break;}push_seq(ps, c);break;default:free(ps);suffix[j++] = '\0';return FALSE;}}if (state_int == TRUE) suffix[j++] = ' ';while (!isEmptyStack_seq(ps)){c2 = top_seq(ps);pop_seq(ps);if (c2 == '('){free(ps);suffix[j++] = '\0';return FALSE;}suffix[j++] = c2;}free(ps);suffix[j++] = '\0';return TRUE;} int calculateSuffix(const char * suffix, int * presult) {int state_int = FALSE;PSeqStack ps = createEmptyStack_seq();int num = 0, num1, num2;int i;char c;for (i = 0; suffix[i] != '\0'; i++) {c = suffix[i];switch (c){case '0':case '1':case '2':case '3':case '4':case '5':case '6':case '7':case '8':case '9':if (state_int == TRUE)num = num * 10 + c - '0'; else num = c - '0';state_int = TRUE;break;case ' ':case'\t':case '\n':if (state_int == TRUE){push_seq(ps, num);state_int = FALSE;}break;case '+':case '-':case '*':case '/':if (state_int == TRUE){push_seq(ps, num);state_int = FALSE;}if (isEmptyStack_seq(ps)) {free(ps);return FALSE;}num2 = top_seq(ps);pop_seq(ps);if (isEmptyStack_seq(ps)){free(ps);return FALSE;}num1 = top_seq(ps);pop_seq(ps);if (c == '+')push_seq(ps, num1 + num2);if (c == '-')push_seq(ps, num1 - num2);if (c == '*')push_seq(ps, num1 * num2);if (c == '/')push_seq(ps, num1 / num2);break;default:free(ps);return FALSE;}}*presult = top_seq(ps);pop_seq(ps);if (!isEmptyStack_seq(ps)){free(ps);return FALSE;}free(ps);return TRUE;} void getline(char * line, int limit){char c;int i = 0;while (i < limit - 1 && (c = getchar()) != EOF && c != '\n') line[i++] = c;line[i] = '\0';} void main(){ char c, infix[MAXNUM], suffix[MAXNUM];int result;int flag = TRUE;while (flag == TRUE){printf("请输入表达式:\nInput:");getline(infix, MAXNUM);if(infixtoSuffix(infix, suffix) == TRUE)printf("suffix:%s\n", suffix);else{printf("输入有错误!\n");printf("\nContinue? (y/n)");scanf("%c", &c);if (c == 'n' || c == 'N') flag = FALSE;while (getchar() != '\n');printf("\n");continue;}if(calculateSuffix(suffix, &result) == TRUE)printf("Result:%d\n", result);elseprintf("输入有错误!\n");printf("\n是否继续? (y/n)");scanf("%c", &c);if (c == 'n' || c == 'N') flag = FALSE;while (getchar() != '\n');printf("\n");}}四.调试分析(1) 用栈的结构来解决表达式的求值,首先要解决的问题是如何将人们习惯书写的中缀表达式转换成计算机容易处理的后缀表达式。