工程材料钢的淬透性资料
- 格式:ppt
- 大小:946.00 KB
- 文档页数:29
(3)钢的淬透性淬透性是钢的主要热处理工艺性能,它对合理选用材料及正确制定热处理工艺,具有十分重要的意义。
1)淬透性的概念淬透性,从组织上讲,是指钢淬火时全部或部分地获得马氏体组织的难易程度;从硬度上讲,是指钢淬火时获得较深淬硬层或中心被淬硬(淬透)的能力。
淬硬层越深,表明钢的淬透性越好。
从理论上讲,淬硬层深度应是工件整个截面上全部淬成马氏体的深度。
但实际上,一般规定从工件表面向里至半马氏体区(马氏体与非马氏体组织各占一半处)的垂直距离作为有效淬硬层深度。
用半马氏体处作淬硬层界限,只要测出截面上半马氏体硬度值的位置,即可确定出淬硬层深图 3-22 工件淬透层深度与冷却速度的关系示意图度。
零件淬火所能获得的淬硬层深度是变化的,随钢的淬透性、零件尺寸和形状以及工艺规范的不同而变化。
实际淬火工作中,如果整个截面都得到马氏体,即表明工件已淬透。
但大的工件经常是表面淬成了马氏体,而心部未得到马氏体,这是因为淬火时,表层冷却速度大于临界冷却速度V而K心部小于V的缘故,如图3-22所示。
K2)注意区分两对易混淆的概念?淬透性与淬硬性的区别淬透性:表明钢淬火时获得马氏体的能力。
过过冷奥氏体越稳定,C曲线越向右移,马氏体临界冷却速度V越小,钢的淬透性越好(越高)。
它主要取决于奥氏体合金含量。
k淬硬性:表示钢淬火后能达到最高硬度的能力。
淬火后硬度越高,淬硬性越好(越高)。
它主要取决于马氏体碳的质量分数,合金元素含量对淬硬性没有显著影响。
所以说,淬透性好的钢,其淬硬性不一定高。
例题1:比较T10 、20CrMnTi 、40Cr 三种钢的淬透性和淬硬性的高低。
请选择: 最高较高最低T10 20CrMnTi 40Cr最低最高较高淬透性最高最低较高淬硬性?淬透性和具体条件下具体零件的淬透层深度的区别在同样奥氏体条件下,同一种钢的淬透性是相同的,但不能说同一种钢水淬与油淬时的有效淬透层深度相同。
钢的淬透层深度与钢的临界冷却速度、工件的截面尺寸和介质的冷却能力有关。
实验一:钢的淬透性测定实验学时:3实验类型:综合性实验实验要求:必修一、实验目的(一)掌握钢的淬透性的实验方法,重点末端淬火法。
(二)了解化学成分、奥氏体化温度及晶粒度对钢的淬透性的影响。
二、实验内容、实验原理、方法和手段(一)淬透性的概念及其影响因素在实际生产中,零件一般通过淬火得到马氏体,以提高机械性能。
钢的淬透性是指钢经奥氏体化后在一定冷却条件下淬火时获得马氏体组织的能力。
常用淬透性曲线、淬硬层深度或临界淬透直径来表示。
淬透性与淬硬性不同,它是淬硬层深度的尺度而不是获得的最大的硬度值。
它决定淬火后从表面到心部硬度分布的情况。
一般规定“由钢的表面至内部马氏体占50%(其余的50%为珠光体类型组织)的组织处的距离”为淬硬层深度。
淬硬层越深,就表明该钢的淬透性越好。
如果淬硬层尝试达到心部,则表明该钢全部淬透。
影响淬透性的因素很多,最主要的是钢的化学成分,其次为奥氏体化温度、晶粒度等等。
钢的淬透性与过冷奥氏体稳定性有密切的关系。
当奥氏体向珠光体转变的速度越慢,也就是等温转变开始曲线越向右移,钢的淬透性越大,反之就越小,可见影响淬透性的因素与影响奥氏体等温转变的因素是相同的。
溶入奥氏体的大多数合金元素除Co以外,都增加过冷奥氏体的稳定性,使曲线右移,降低临界冷却速度,提高钢的淬透性。
钢中含碳量对临界冷却速度的影响为:亚共析钢随含碳量的增加,临界冷却速度降低,淬透性增加;过共析钢随含碳量的增加,临界冷却速度增高,淬透性下降。
含碳量超过1.2%~1.3%时,淬透性明显降低。
(二)淬透性的测定方法淬透性的测定可以大致分为计算法和实验法两类。
目前使用的方法还是实验法,它主要是通过测定标准试样来评价钢的淬透性。
具体的试验方法有多种,现将其中通常采用的四种方法概述如下。
1、断口检验法根据GB227—63《炭素工具钢淬透性试验法》(低合金工具钢也可参照此标准)的规定,在退火钢棒截面中部截取2~3个试样,方形试样的横截面尺寸为20mm×20mm(±0.2),圆形截面为φ22~33mm,长度为100±5mm,试样中间一侧开一个深度为3~5mm的V形槽,以利于淬火后打断观察断口。
淬透性名词解释
淬透性是指一种材料或物质在经历一定的处理(如加热、冷却、淬火等)后,其结构或性质发生变化,从而使其具有透射光线的能力或特性。
淬透性广泛应用于材料科学、物理学、化学工程等领域。
在材料科学中,淬透性是指材料经过淬火等处理过程后的硬度和强度提高,同时仍然保持一定的韧性和弹性。
例如,钢材经过淬火处理后,其碳化物形成、晶粒细化等结构变化,使得钢具有了较高的硬度和强度,从而成为一种具有淬透性的材料。
在物理学中,淬透性是指材料或物质在经过特定处理后的光学特性发生变化。
比如,晶体材料的淬透性是指在一定的温度下,通过控制光束的透射方向和角度,使其在晶体内发生全反射或折射现象。
这种淬透性在激光、光纤通信等领域具有重要的应用价值。
在化学工程中,淬透性被用来描述一种物质的透明度或透光性。
例如,饮用水中的悬浮物或杂质会影响其淬透性,进而影响其可观察性和安全性。
因此,在水处理、污水处理等领域中,淬透性的评价和监测是非常重要的。
总体而言,淬透性是一种材料或物质在经历一定的处理过程后,其结构或性质发生变化,使之具有透射光线的能力或特性。
该概念在材料科学、物理学和化学工程等领域具有重要的研究和应用价值,对于提高材料性能、光学器件研发和环境监测等方面起着重要的作用。
第1篇一、实验目的本次淬透性实验旨在探究不同合金元素对钢淬透性的影响,通过对比实验结果,分析合金元素对淬透性的作用机理,为钢铁材料的性能优化提供理论依据。
二、实验原理淬透性是指钢材在淬火过程中,其内部组织转变和硬度分布的特性。
淬透性好的钢材,在淬火后心部硬度较高,表面硬度较低,有利于提高零件的耐磨性和使用寿命。
淬透性主要受钢材化学成分、组织结构、冷却速度等因素的影响。
三、实验材料与仪器1. 实验材料:- 纯铁板- 钢铁合金材料(C钢、T钢、M钢、B钢)2. 实验仪器:- 淬火炉- 真空炉- 金相显微镜- 硬度计- 金属拉力试验机四、实验步骤1. 钢板准备:- 将纯铁板和钢铁合金材料分别加工成尺寸相同的试样。
- 对试样进行表面处理,确保实验结果的准确性。
2. 淬火工艺:- 将试样分别放入淬火炉和真空炉中,按照预定的淬火温度和时间进行淬火。
- 淬火过程中,严格控制冷却速度,确保试样内部组织均匀。
3. 组织观察:- 使用金相显微镜观察淬火后的试样组织,分析不同合金元素对淬透性的影响。
- 记录试样心部和表面的硬度值,分析合金元素对硬度分布的影响。
4. 性能测试:- 对淬火后的试样进行金属拉力试验,测试其抗拉强度、屈服强度和延伸率等性能指标。
五、实验结果与分析1. 金相组织观察:- 随着合金元素的增加,试样心部的珠光体组织逐渐减少,马氏体组织逐渐增多。
- C钢和T钢的淬透性较好,心部硬度较高;M钢和B钢的淬透性较差,心部硬度较低。
2. 硬度分布:- 淬火后,C钢和T钢的表面硬度较低,心部硬度较高;M钢和B钢的表面硬度较高,心部硬度较低。
- 合金元素的增加,使试样表面硬度降低,心部硬度升高。
3. 性能测试:- C钢和T钢的抗拉强度、屈服强度和延伸率等性能指标均优于M钢和B钢。
- 合金元素的增加,使试样的抗拉强度、屈服强度和延伸率等性能指标得到提高。
六、结论通过本次淬透性实验,得出以下结论:1. 合金元素对钢的淬透性有显著影响,增加合金元素可以改善钢材的淬透性。
淬透性与淬硬性淬硬性和淬透性是表征钢材接受淬火能力大小的两项性能指标,它们也是选材、用材的重要依据。
1.淬硬性与淬透性的概念淬硬性是钢在理想条件下进行淬火得到马氏体后硬化所能达到的最高硬度的能力。
决定钢淬硬性高低的主要因素是钢的含碳量,更确切地说是淬火加热时固溶在奥氏体中的含碳量,含碳量越高,钢的淬硬性也就越高。
而钢中合金元素对淬硬性的影响不大,但对钢的淬透性却有重大影响。
淬透性表示钢在一定条件下淬火时获得淬透层深度的能力,主要受奥氏体中的碳含量和合金元素的影响,指在规定条件下,决定钢材淬硬深度和硬度和硬度分布的特性,钢材淬透性好与差,常用淬硬层深度来表示,淬硬层深度越大,则钢的淬透性越好,钢的淬透性主要取决于它的化学成分,淬透性好的钢材,可使钢件整个截面获得均匀性一致的力学性能以及可选用钢件淬火应力小的淬火介质,以减少变形和开裂另外,由于淬透性和淬硬性是两个概念,因此淬火后硬度髙的钢,不一定淬透性就高;而硬度低的钢也可能具有很髙的淬透性。
2.淬硬性评价方法热处理行业目前通用认可的方法是采用瑞典IVF公司的HP-IVF方法,该方法是由瑞典IVF的Dr.SorenSegerberg先生开创性的提出这一方法2.1用于ISO9950标准淬火油淬硬性的计算公式:HP-IVF(oil)=91.5+1.34Tvp+10.88CR550a-3.85Tcp备注:Tvp为蒸汽膜向沸腾阶段的转换温度(特性温度)CR550a为600-500℃之间的平均冷速(可以通过IVF软件直接得出)Tcp为沸腾向对流阶段的转换温度(intedforunalloyedsteels用于非合金钢)2.2用于ASTM标准的淬火液淬硬性的计算公式:HP-IVF(polymer)=3.54CR550+12.3CR325b-168备注:CR550表示的是550摄氏度的CR值CR325b表示的是325摄氏度的CR值(intedforunalloyedsteels用于非合金钢)3.影响淬透性的因素钢的淬透性取决于奥氏体的稳定性。
实验七钢的淬透性测定一、实验目的1.熟悉应用末端淬火法测定钢的淬透性的原理及操作;2.绘制淬透性曲线,掌握它的应用。
二、实验原理在实际生产中,零件一般通过淬火得到马氏体,以提高机械性能。
钢的淬透性是指钢经奥氏体化后在一定冷却条件下淬火时获得马氏体组织的能力,它的大小可用规定条件下淬透层的深度表示。
通常,将淬火件的表面至半马氏体区(50%M体+其余的50%为珠光体类型组织)间的距离称为淬透层深度。
淬透层的深度大小受到钢的淬透性、淬火介质的冷却能力、工件的体积,工件的表面状态等所影响,所以测定钢的淬透性时,要将淬火介质、工件的尺寸等都规定下来,才能通过淬透层深度以确定钢的淬透性。
三、实验内容末端淬火法(GB225-63)规定试样尺寸,长100mm,直径25mm,并带有“台阶”,直径30mm,台高3mm。
淬火在特定的试验装置上进行如图1,在试验之前应进行调整,使水柱的自由喷出高度为65mm,水的温度为20-30℃,试样放入试验装置时,冷却端与喷嘴距离为12.5 mm。
图1 末端淬透性实验示意图试验时,要将待测的一定钢号的试样,加热到奥氏体化温度,保温30分钟后由炉中取出,在5秒内迅速放入淬火的试验装置。
这时,试样的淬火端被喷水冷却15分钟,冷却速度约为100℃/秒,而离开淬火端冷却速度逐渐降低,到另一端时约为3~4℃/秒。
试样冷却后,取出,在试样两侧各磨去0.2~0.5mm,得到互相平行的沿纵向的两个狭长的平行平面。
在其中的一个平面上,从淬火端开始,每隔1.5mm 测一次硬度(HRC ),并做出淬透性曲线(HRC-X 关系曲线)。
再由半马氏体硬度曲线,根据钢的含碳量确定半马氏体硬度,并据此在淬透性曲线上找出半马氏体区至水冷却端的距离d ,即是末端淬火法确定的该钢淬透性,(图2)表示为J d HRC ,如J 1044即该钢半马氏体硬度为HRC44,半马氏体区距水冷端距离为10mm ,此即该钢的淬透性。
图2 端淬曲线四、实验设备及材料1. 设备:箱式电阻炉、末端淬火设备、洛氏硬度试验机、砂轮机、铁钳子、游标卡尺;2. 材料:40Gr 钢试样。
§6-6 钢的淬透性
定义:钢接受淬火时形成马氏体的能力叫做钢的淬透性。
即同等条件下,得到M层深度(淬透层)的能力。
一、影响淬透性的因素
钢的成分决定了C曲线的位置,C曲线越右,淬透层越深。
二、淬透性的测定及其表示方法
1、淬透性的测定
将标准试样加热奥氏体化后, 迅速放入末端淬火试验机的冷却孔中, 喷水(水温20-30℃)冷却。
在试样测面沿长度方向每隔一定距离测量一个硬度值, 即可测得试样沿长度方向上的硬度变化, 所得曲线称为淬透性曲线。
2、淬透性曲线的应用
在实际生产中,规定淬透层深度即是从试样表面至半马氏体区的 距离。
在同样淬火条件下, 淬透层深度越大,则钢的淬透性越好。
利用半马氏体硬度曲线和淬透性曲线,找出钢的半马氏体区所 对应的距水冷端距离。
该距离越大,淬透性越好。
图中可知 40Cr 钢的淬透性比45钢要好。
3、淬透性的表示方法
①用淬透性曲线表示
钢的淬透性值用 d HRC J 表示。
其中:J 表示末端淬火的淬透性; d 表示距水冷端的距离;
HRC 为该处的硬度。
例如, 淬透性值5
42J ,即表示距水冷端5mm 试样硬度为42HRC 。
②用临界淬透直径D 0表示
奥氏体化的钢在一定介质中淬透的最大直径。
钢的淬透性的测定端淬试验机测定钢淬透性的方法一、试验要求1.了解测定淬透性的一般方法;2.熟悉并利用端淬试验法测定钢的淬透性;3.建立淬透性的概念及对热处理工艺的作用。
二、试验原理钢的淬透性是表示钢获得马氏体的能力,是钢本身所固有的属性。
淬透性与淬硬性是两个概念,淬硬性是钢的表面由于马氏体转变所能得到最大硬度,它与钢的含碳量有关。
在生产实践中人们通常把工件表面到半马氏体组织区域的深度作为淬透层深度。
钢的淬透性与淬火临界冷却速度有着密切的关系,而淬火临界冷却速度的大小又取决于钢的过冷奥氏体的稳定性,因此,凡是影响过冷奥氏体稳定性的诸因素,都会影响钢的淬透性。
淬透性的大小对钢材热处理的机械性能有很大的影响。
如果工件被淬透了,则表里的组织和性能均匀一致,能充分发挥钢的机械性能的潜力,如工件未淬透,则表面的组织和性能存在差异,经回火后的屈服强度和冲击韧性较低。
造成这种差别的重要原因在于:在淬火时,中心未淬透部分形成了非马氏体组织,回火后仍保持其片状组织特性;而在表面获得马氏体的部分,经回火后为粒状碳化物分布在铁素体基体上的混合组织,综合性能较好。
由上所述,淬透性的大小对钢材的合理选用及热处理工艺的正确制定都是十分重要的。
目前,测定钢的淬透性方法很多,常用的方法有两种:三、淬透性的测定1.断口法:从淬透层和未淬透层的宏观断口观察,可以较明显的分成两部分,淬透层呈暗黑色。
从硬度分布来看,因为碳钢的半马氏体区的硬度与碳含量有关(合金钢的半马氏体硬度一般比碳钢略高一些)见表1不同含碳量半马氏体区硬度表一含碳量, 半马氏体区硬度HRC 含碳量, 半马氏体区硬度HRC0.1 — 0.6 470.2 32 0.7 510.3 35 0.8 530.4 39 0.9 540.5 44 1.0 —在同样尺寸同样冷却条件下,通过硬度测定,可以测出不同钢由表层至至中心的硬度分布情况,比较它们截面上硬度分布曲线,就可以知道它们淬透层的深度及淬透性的好坏,图1为φ50毫米的40Cr钢与40,钢水淬后的截面硬度分布曲线。
钢的淬透性测定实验⼀:钢的淬透性测定实验学时:3实验类型:综合性实验实验要求:必修⼀、实验⽬的(⼀)掌握钢的淬透性的实验⽅法,重点末端淬⽕法。
(⼆)了解化学成分、奥⽒体化温度及晶粒度对钢的淬透性的影响。
⼆、实验内容、实验原理、⽅法和⼿段(⼀)淬透性的概念及其影响因素在实际⽣产中,零件⼀般通过淬⽕得到马⽒体,以提⾼机械性能。
钢的淬透性是指钢经奥⽒体化后在⼀定冷却条件下淬⽕时获得马⽒体组织的能⼒。
常⽤淬透性曲线、淬硬层深度或临界淬透直径来表⽰。
淬透性与淬硬性不同,它是淬硬层深度的尺度⽽不是获得的最⼤的硬度值。
它决定淬⽕后从表⾯到⼼部硬度分布的情况。
⼀般规定“由钢的表⾯⾄内部马⽒体占50%(其余的50%为珠光体类型组织)的组织处的距离”为淬硬层深度。
淬硬层越深,就表明该钢的淬透性越好。
如果淬硬层尝试达到⼼部,则表明该钢全部淬透。
影响淬透性的因素很多,最主要的是钢的化学成分,其次为奥⽒体化温度、晶粒度等等。
钢的淬透性与过冷奥⽒体稳定性有密切的关系。
当奥⽒体向珠光体转变的速度越慢,也就是等温转变开始曲线越向右移,钢的淬透性越⼤,反之就越⼩,可见影响淬透性的因素与影响奥⽒体等温转变的因素是相同的。
溶⼊奥⽒体的⼤多数合⾦元素除Co以外,都增加过冷奥⽒体的稳定性,使曲线右移,降低临界冷却速度,提⾼钢的淬透性。
钢中含碳量对临界冷却速度的影响为:亚共析钢随含碳量的增加,临界冷却速度降低,淬透性增加;过共析钢随含碳量的增加,临界冷却速度增⾼,淬透性下降。
含碳量超过1.2%~1.3%时,淬透性明显降低。
(⼆)淬透性的测定⽅法淬透性的测定可以⼤致分为计算法和实验法两类。
⽬前使⽤的⽅法还是实验法,它主要是通过测定标准试样来评价钢的淬透性。
具体的试验⽅法有多种,现将其中通常采⽤的四种⽅法概述如下。
1、断⼝检验法根据GB227—63《炭素⼯具钢淬透性试验法》(低合⾦⼯具钢也可参照此标准)的规定,在退⽕钢棒截⾯中部截取2~3个试样,⽅形试样的横截⾯尺⼨为20mm×20mm(±0.2),圆形截⾯为φ22~33mm,长度为100±5mm,试样中间⼀侧开⼀个深度为3~5mm的V形槽,以利于淬⽕后打断观察断⼝。
科学与信息化2021年6月下
a )亚共析碳钢时间(s )
时间(s )时间(s )b )共析碳钢
c )过共析碳钢
图1 非共析钢和共析钢的TTT图比较
奥氏体化温度的影响
提高奥氏体化温度将使奥氏体晶粒长大,奥氏体成分更均匀,从而抑制珠光体或贝氏体的形核率,降低了临界淬火速度,可适当提高钢的淬透性。
钢种未溶第二项的影响钢中未溶入奥氏体的碳化物、氮化物及其他非金属夹杂物,由于促进珠光体、贝氏体等相变形核,从而使钢的淬透性钢的原始组织的影响
钢的原始组织中,由于珠光体的类型(片状或粒状)及弥散度的不同,在奥氏体化时,将会影响到奥氏体的均匀性,从而影响到钢的淬透性。
碳化物愈细小,溶入奥氏体愈迅速,从而有利于提高钢的淬透性,粗大的奥氏体晶粒能使等温冷却TTT 曲线右移,降低了钢的临界冷却速度。
但晶粒粗大将增大钢在淬火时的变形、开裂倾向和降低韧性。
在相同冷却速度条件下,奥氏体成分越均匀,珠光体的形核率就越低,转变的孕育期增长,等温冷却TTT 曲线右移,临界冷却速度减慢,钢的淬透性越高[1]。
图2 淬火试样断面上马氏体量和硬度的变化
钢的淬透性取决于其临界冷却速度的高低,而淬硬性主要取决于钢的含碳量,它们之间没有必然关系。
但淬硬性与淬透性成正比关系,淬硬性低的钢其淬透性差。
参考文献
[1] 程正翠.钢淬透性和淬硬性的教学实践[J].教育教学论坛,2019 (30):155-156.。
3.3 钢的淬透性一:定义:钢的淬透性——指钢材被淬透的能力,或者说钢的淬透性是指表征钢材淬火时获得马氏体的能力的特性。
应该注意,钢的淬透性与可硬性两个概念的区别。
淬透性系指淬火时获得马氏体难易程度。
它主要和钢的过冷奥氏体的稳定性有关,或者说与钢的临界淬火冷却速度有关,可硬性指淬成马氏体可能得到的硬度,因此它主要和钢中含碳量有关。
二:淬透性影响因素1:钢的化学成分:a):当加热温度低于Acm点时,含C量低于1%以下,随含碳量增加,临界冷却速度下降,淬透性提高,含C量高于1%时,则相反,当加热温度高于Ac3或Acm时,则随含碳量增加,临界冷却速度下降。
b):合金元素除Ti,Zr,和Co外所有元素提高淬透性。
2:奥氏体晶粒度:奥氏体晶粒尺寸增大,淬透性提高。
3:奥氏体化温度:提高奥氏体化温度,不仅使奥氏体晶粒粗大,促使碳化物及其它非金属夹杂物流入,并使奥氏体成分均匀化,提高过冷奥氏体稳定性,从而提高淬透性。
4:第二相及其分布:奥氏体中未溶的非金属夹杂物和碳化物的存在以及其大小和分布,影响过冷奥氏体的稳定性,从而影响淬透性。
三:淬透性的实验测定方法有两种方法,一种是临界直径法,另一种是端淬法。
1.临界直径法一组由被测钢制成的不同直径的圆形棒按规定淬火条件(加热温度,冷却介质)进行淬火,然后在中间部位垂直于轴线截断,经磨光,制成粗晶试样后,沿着直径方向瞄定自表面至心部的硬度分布曲线。
发现随着试样直径增加,心的出现暗色易腐蚀区,表面为亮圈,且随着直径的继续增大,暗区愈来愈大,亮圈愈来凶小。
若与硬度分布曲线对应地观察,则该二区的分界线正好是硬度变化最大部位;若观察金相组织,则正好是50%马氏体和非马氏体的混合组织区,愈向外靠近表面,马氏体愈多,向里则马氏体急剧减少。
分界线上的硬度代表马氏体区的硬度,格罗斯曼(Gmssmann)将此硬度(请观看动画演示)称为临界硬度或半马氏体硬度。
亮区就是淬硬层,暗区就是未淬硬层,把未出现暗区的最大试样直径称为淬火临界直径,则其含义为该种钢在该种淬火介质中能够完全淬透的最大直径。