6磨削精度与表面质量
- 格式:ppt
- 大小:401.50 KB
- 文档页数:26
磨削原理讨论磨具与工件在磨削加工过程中的各种物理现象及其内在联系的一门学科。
磨削原理的讨论内容重要包括磨屑形成过程、磨削力和磨削功率、磨削热和磨削温度、磨削精度和表面质量、磨削效率等,目的在于深入了解磨削的本质,并据以改进或制造磨削方法。
磨削原理的讨论始于1886年,美国的C.H.诺顿和C.艾伦合作讨论砂轮和磨削过程,20年之后订立出正确选择砂轮类别和砂轮速度的原则;同时发觉为了提高磨削效率和精度,必需对砂轮进行平衡,并在磨削过程中正确地修整砂轮(见砂轮修整)和使用切削液。
1914~1915年,英国的J.格斯特和美国的G.奥尔登对磨削用量、磨屑大小和选择砂轮等问题又作了进一步的讨论。
此后,磨削原理的讨论不断深入。
在磨屑形成方面,德国的K.克鲁格对砂轮上磨粒与工件的接触弧长和影响单颗磨粒的切深的因素进行了几何计算和讨论在1925年提出了讨论报告。
德国的M.库莱恩和G.施勒辛格尔以及日本的关口八重吉等人对磨削力作了讨论,在20时代末至30时代先后提出了磨削过程中影响磨削力的诸因素,并使磨削力的测量技术不断进展。
从30时代起,随着测量磨削表面温度试验技术的进展推动了有关磨削热的理论讨论。
对于砂轮磨削性能的理论讨论导致一系列新型高速砂轮的显现进展了砂带磨削。
由于金刚石和立方氮化硼磨料的应用,磨削原理又得到新的进展。
70时代以来,应用扫描电子显微镜对磨削的微观过程和超精密磨削的机理作了深入的分析。
磨屑形成过程磨粒在磨具上排列的间距和高处与低处都是随机分布的,磨粒是一个多面体,其每个棱角都可看作是一个切削刃,顶尖角大致为90~120,尖端是半径为几微米至几十微米的圆弧。
经精细修整的磨具其磨粒表面会形成一些微小的切削刃,称为微刃。
磨粒在磨削时有较大的负前角(见刀具),其平均值为—60左右。
磨粒的切削过程可分3个阶段。
①滑擦阶段:磨粒开始挤入工件,滑擦而过,工件表面产生弹性变形而无切屑。
②耕犁阶段:磨粒挤入深度加大,工件产生塑性变形,耕犁成沟槽,磨粒两侧和前端堆高隆起;③切削阶段:切入深度连续增大,温度达到或超过工件材料的临界温度,工件材料明显地沿剪切面滑移而形成磨屑。
各种加工方法的加工精度一:车削车削中工件旋转,形成主切削运动.刀具沿平行旋转轴线运动时,就形成内、外园柱面。
刀具沿与轴线相交的斜线运动,就形成锥面。
仿形车床或数控车床上,可以控制刀具沿着一条曲线进给,则形成一特定的旋转曲面。
采用成型车刀,横向进给时,也可加工出旋转曲面来。
车削还可以加工螺纹面、端平面及偏心轴等。
车削加工精度一般为IT8-IT7,表面粗糙度为6。
3—1。
6μm。
精车时,可达IT6—IT5,粗糙度可达0。
4—0。
1μm。
车削的生产率较高,切削过程比较平稳,刀具较简单.二:铣削主切削运动是刀具的旋转。
卧铣时,平面的形成是由铣刀的外园面上的刃形成的。
立铣时,平面是由铣刀的端面刃形成的。
提高铣刀的转速可以获得较高的切削速度,因此生产率较高.但由于铣刀刀齿的切入、切出,形成冲击,切削过程容易产生振动,因而限制了表面质量的提高。
这种冲击,也加剧了刀具的磨损和破损,往往导致硬质合金刀片的碎裂。
在切离工件的一般时间内,可以得到一定冷却,因此散热条件较好。
按照铣削时主运动速度方向与工件进给方向的相同或相反,又分为顺铣和逆铣.顺铣铣削力的水平分力与工件的进给方向相同,工件台进给丝杠与固定螺母之间一般有间隙存在,因此切削力容易引起工件和工作台一起向前窜动,使进给量突然增大,引起打刀。
在铣削铸件或锻件等表面有硬度的工件时,顺铣刀齿首先接触工件硬皮,加剧了铣刀的磨损。
逆铣可以避免顺铣时发生的窜动现象。
逆铣时,切削厚度从零开始逐渐增大,因而刀刃开始经历了一段在切削硬化的已加工表面上挤压滑行的阶段,加速了刀具的磨损。
同时,逆铣时,铣削力将工件上抬,易引起振动,这是逆铣的不利之处.铣削的加工精度一般可达IT8—IT7,表面粗糙度为6.3-1.6μm。
普通铣削一般只能加工平面,用成形铣刀也可以加工出固定的曲面.数控铣床可以用软件通过数控系统控制几个轴按一定关系联动,铣出复杂曲面来,这时一般采用球头铣刀。
数控铣床对加工叶轮机械的叶片、模具的模芯和型腔等形状复杂的工件,具有特别重要的意义。
JIS磨床验收标准一、型号与规格1. 本次验收的磨床型号为xxxx,规格符合要求。
2. 磨床的主要参数,如砂轮尺寸、最大磨削直径、最大磨削厚度等,均符合设计要求。
二、尺寸精度1. 磨床的床身导轨直线度误差不大于0.01mm/500mm。
2. 工作台面纵向移动直线度误差不大于0.01mm/500mm。
3. 工作台横向移动直线度误差不大于0.01mm/500mm。
4. 砂轮主轴轴向窜动不超过0.01mm。
5. 砂轮径向圆跳动不超过0.01mm。
三、表面粗糙度1. 磨削表面的粗糙度应符合设计要求,一般要求Ra不大于0.8μm。
2. 表面粗糙度的检测方法采用轮廓仪测量。
四、磨削精度1. 磨削工件的尺寸精度应符合设计要求,一般要求尺寸偏差不超过±0.01mm。
2. 磨削工件的几何形状精度应符合设计要求,如圆度、圆柱度等。
3. 磨削工件的表面粗糙度应符合设计要求。
4. 磨削工件的精度检测方法可采用千分尺、测微仪、轮廓仪等工具进行测量。
五、重复定位精度1. 磨床的重复定位精度应不大于0.01mm。
2. 重复定位精度的检测方法可采用激光干涉仪进行测量。
六、电气系统1. 磨床的电气系统应符合设计要求,运行稳定可靠。
2. 电气系统的元件和部件应符合相关标准,如电压、电流、绝缘电阻等。
3. 电气系统的安全保护装置应有效可靠。
七、液压系统1. 磨床的液压系统应符合设计要求,运行稳定可靠。
2. 液压系统的元件和部件应符合相关标准,如压力、流量、密封性等。
3. 液压系统的安全保护装置应有效可靠。
八、外观质量1. 磨床的外观质量应符合设计要求,表面光滑平整,无明显划痕和磕碰痕迹。
2. 外观质量的检测方法可采用目视观察和手感触摸等方法进行检测。
磨削生产工艺流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!磨削生产工艺流程磨削生产工艺流程磨削生产工艺流程包括磨削准备、磨削加工、磨削后处理等步骤。
磨削加工中的磨削精度是指在磨削过程中所能达到的精度程度。
磨削加工是一种高精度的加工方法,可以制造出高精度零件,能够满足不同的制造需求。
磨削加工由于其高精度,广泛应用于航空、汽车、机床、电子、仪器仪表等领域,并成为制造业中不可或缺的工艺。
我国在磨削技术方面有着悠久的历史,早在汉代就已经出现了磨轮,磨削技术的发展可以追溯到数千年前。
随着工业的迅速发展,磨削技术也不断地得到提高、完善。
从最初的手工磨削,到机械化磨削,再到电脑化磨削,每一步的发展都提高了磨削加工的精度。
在实际的磨削加工中,要提高磨削精度,需要从多个方面入手。
首先,选择合适的磨削机床非常重要,不同类型的机床适用于不同的磨削任务。
其次,磨削工具的选择也是决定磨削精度的一个重要因素。
以磨削刃磨为例,磨削刃磨是指在磨削过程中利用磨削工具对刃口进行磨削,这要求磨削工具具有高精度、高效率、高耐磨性等特点。
此外,还需要注意磨削工具的材质选择,不同的材质对磨削效果会有很大的影响。
除了选择合适的磨削机床和磨削工具,磨削精度还与磨削的过程参数密切相关。
磨削的过程参数包括切削速度、进给速度、磨削深度、磨削力、冷却液等方面,这些参数的优化能够显著影响磨削加工质量。
例如在切削速度选择方面,通常情况下磨削速度越高,磨削效率越高,但是同时也会增加磨削热量,导致磨削过程变形和表面质量下降,因此需要根据实际情况,选择适当的切削速度。
此外,正确调整磨削加工中的磨削参数也是提高磨削精度的关键。
在实际工作中,可以采用计算机模拟的方法对磨削过程进行模拟和优化,这可以帮助工程师更好地了解磨削过程中的物理和化学机制,同时可以帮助工程师查找和解决磨削中可能遇到的问题。
总之,对零部件的质量和性能有着重要的影响,提高磨削精度是制造高精度零部件和产品的关键。
在磨削加工中要选择适当的机床和磨削工具,同时优化磨削过程参数和磨削参数的调整,这些都可以帮助工程师提高磨削精度,生产出更好质量的产品,使制造业在市场中更具竞争力。
磨削加工基础知识磨削加工是一种高精度的加工方法,具有高效、精度高、表面质量好等优点,被广泛应用于机械制造、航空航天、光学、电子、仪器仪表、医疗器械等领域。
磨削加工的基础知识对于理解磨削加工的工艺特点和实现高精度、高效加工具有重要意义。
第一、磨削加工的原理与工艺特点磨削加工是利用磨削工具对工件进行高速旋转运动和相对移动,通过对工件表面的撞击和摩擦作用,使工件表面物质逐渐脱落,同时形成较高的表面质量。
磨削工具是一个至关重要的部分,其轮廓、材料、粒度、硬度等参数会直接影响磨削效果。
同时,磨削加工具有高效、高精度、表面质量好的特点。
磨削加工时,磨削工具旋转高速,加工效率非常高。
同时,由于磨削加工的切削深度非常小,可以实现高精度加工。
此外,通过加工工艺优化,还可以获得高精度的工件表面质量。
第二、磨削加工的工具与磨削方法磨削工具是磨削加工的核心之一。
常用的磨削工具有磨石、磨轮、砂布轮、抛光布轮等,它们由不同的材料和制造工艺制成,具有不同的加工能力。
常见的磨削方法有平面磨削、圆柱磨削、内圆磨削、外圆磨削、表面磨削等。
通过选择合适的磨削工具和磨削方法,可以实现不同形状和精度要求的工件加工。
第三、磨削加工的加工参数在进行磨削加工时,需要设置一系列加工参数,包括磨削工具的转速、磨削深度、进给量、磨削液的类型和流量等。
这些参数直接影响着工件的加工效果和工具的使用寿命。
例如,在选择磨削工具的时候,需要考虑工件的材料、精度和表面质量要求等因素,选择合适的材料、形状、粒度磨削工具。
在设置磨削深度和进给量时,需要根据工件材料是否易碎、磨削强度等因素进行综合考虑。
第四、磨削加工的提高磨削加工的加工精度和表面质量程度是衡量磨削加工质量的重要指标。
为了提高磨削加工的质量和效率,可以从以下方面进行优化。
首先是磨削工具的性能提升,如开发新型材料、制造工艺等。
其次是加工参数的优化,通过对加工深度、进给量和磨削液的改进,可以进一步提高加工效果和工具的使用寿命。
磨床主要磨削精度和各部件安装指标指标磨床是一种专门用于金属材料的磨削加工设备,广泛应用于机械加工行业。
磨床的主要磨削精度和各部件安装指标是决定磨床加工质量和性能的重要参数。
下面将详细介绍磨床的主要磨削精度和各部件安装指标。
第一、磨床的主要磨削精度指标包括以下几个方面:1.平行度:平行度是指磨削面与床身导轨的平行度,主要影响磨削的垂直度和平行度。
要求加工的工件表面平行度高,需要床身导轨与磨削面之间的平行度保证在规定范围内。
2.垂直度:垂直度是指磨削面与工作台面的垂直度,主要影响磨削表面的垂直度和平面度。
磨床的磨削面与工作台面之间的垂直度需要高精度控制,以保证磨削表面的平整度和垂直度。
3.平面度:平面度是指工件表面平坦的程度,主要影响磨削表面的平整度和垂直度。
磨床的平面度要求较高,可以通过对磨床的床身导轨、工作台面等关键部件的加工和磨削精度进行控制。
4.圆度:圆度是指磨削的圆形工件表面的几何形状偏差,主要影响磨削的圆形度和直线度。
磨床对工件表面的圆度要求较高,需要通过对磨床主轴、工作台面等关键部件的加工和调试来保证。
第二、磨床的各部件安装指标包括以下几个方面:1.导轨安装:导轨是磨床的关键部件之一,直接影响磨床的稳定性和加工精度。
导轨的安装准确度包括导轨直线度、垂直度和水平度等。
2.主轴安装:主轴是磨床的关键部件之一,直接影响磨削表面的质量和精度。
主轴的安装准确度包括主轴与床身导轨的平行度、主轴与工作台面的垂直度等。
3.进给系统安装:进给系统是磨床实现精确进给运动的关键部件之一,直接影响磨削的平直度和表面粗糙度。
进给系统的安装准确度包括进给导轨的平行度、进给导轨与工作台面的垂直度等。
4.电气系统安装:磨床的电气系统是实现磨床各功能和动作的关键部件之一,直接影响磨床的控制精度和稳定性。
电气系统的安装准确度包括电机的定位准确度、传感器的安装位置和精度等。
综上所述,磨床的主要磨削精度和各部件安装指标是决定磨床加工质量和性能的重要参数。
磨盘的加工精度验收标准与方法摘要:磨盘加工精度是评估加工质量的重要指标。
本文通过介绍磨盘加工精度的意义和影响因素,详细阐述了磨盘加工精度验收标准的制定和常用的验收方法。
同时,还提供了提高磨盘加工精度的建议,以确保加工过程的质量和效率。
关键词:磨盘加工精度;验收标准;验收方法;提高精度1. 引言磨盘是一种用于对工件进行磨削加工的工具,被广泛应用于机械制造、汽车工业、航空航天等领域。
磨盘加工精度是评估加工质量的重要指标,直接影响到工件的尺寸精度、表面质量和加工效率。
因此,建立科学合理的磨盘加工精度验收标准和方法,对于保证加工质量和提高生产效率具有重要意义。
2. 磨盘加工精度的影响因素磨盘加工精度受到多个因素的影响,主要包括磨盘材料、磨削参数、磨盘形状、工件材料和加工方式等。
2.1 磨盘材料磨盘材料的选择直接关系到磨盘的耐磨性、刚性和热稳定性。
优质的磨盘材料能够保证磨盘加工精度的稳定性和一致性。
2.2 磨削参数磨削参数包括进给速度、转速、磨削深度和磨削时间等,直接影响磨盘与工件的接触力和磨削量。
合理选择和控制磨削参数对于提高磨盘加工精度非常重要。
2.3 磨盘形状磨盘形状对于加工效果和精度有着重要影响。
磨盘的波纹度、平面度和圆度等需要根据具体的加工要求来选择和控制。
2.4 工件材料工件材料的硬度、韧性和热稳定性等特性也会对磨盘加工精度产生影响。
不同材料的工件需要针对性地选择合适的磨盘材料和加工参数。
2.5 加工方式磨盘加工有手工磨削、精密机床磨削、超高速磨削等多种方式,不同的加工方式对磨盘加工精度有不同的要求和适应性。
3. 磨盘加工精度验收标准的制定制定科学合理的磨盘加工精度验收标准是保证加工质量的重要手段。
以下是常见的磨盘加工精度验收标准指标:3.1 圆度圆度是评价磨盘加工精度的重要指标之一。
磨盘加工的工件应具有符合规范要求的圆度,通常以一个标准圆度值进行验收标准的设定。
3.2 平面度平面度是指工件与参考平面之间的偏差大小。
《金属切削原理》第十二章:磨削加工详解磨削用于加工坚硬材料及精加工、半精加工内圆磨削外圆磨削平面磨削普通平面磨削圆台平面磨削超精磨削加工第一节砂轮的特性及选择砂轮由磨料、结合剂、气孔组成特性由磨料、粒度、结合剂、硬度、组织决定一、磨料分为天然磨料和人造磨料人造磨料氧化物系刚玉系(Al2O3)碳化物系碳化硅系碳化硼系超硬材料系人造金刚石系立方氮化硼系二、粒度表示磨粒颗粒尺寸的大小>63µm号数为通过筛网的孔数/英寸(25.4mm)机械筛分一般磨粒<63µm号数为最大尺寸微米数(W)显微镜分析法微细磨粒精磨细粒降低粗糙度粗磨粗粒提高生产率高速时、接触面积大时粗粒防烧伤软韧金属粗粒防糊塞硬脆金属细粒提高生产率国标用磨粒最大尺寸方向上的尺寸来表示三、结合剂作用:将磨料结合在一起,使砂轮具有必要的强度和形状1、陶瓷结合剂(A)常用由黏土等陶瓷材料配成特点:粘结强度高、耐热、耐酸、耐水、气孔率大、成本低、生产率高、脆、不能承受侧向弯扭力2、树脂结合剂(S)切断、开槽酚醛树脂、环氧树脂特点:强度高、弹性好、耐热性差、易自砺、气孔率小、易糊塞、磨损快、易失廓形、与碱性物质易反应、不易长期存放3、橡胶结合剂(X)薄砂轮、切断、开槽、无心磨导轮人造橡胶特点:弹性好、强度好、气孔小、耐热性差、生产率低4、金属结合剂(Q)磨硬质合金、玻璃、宝石、半导体材料青铜结合剂(制作金刚石砂轮)特点:强度高、自砺性差、形面成型性好、有一定韧性四、硬度在磨削力作用下,磨粒从砂轮表面脱落的难易程度分为超软、软、中软、中、中硬、硬、超硬工件材料硬砂轮软些防烧伤工件材料软砂轮硬些充分发挥磨粒作用接触面积大软砂轮精度、成形磨削硬砂轮保持廓形粒度号大软砂轮防糊塞有色金属、橡胶、树脂软砂轮防糊塞五、组织磨粒、气孔、结合剂体积的比例关系分为:紧密(0~3)、中等(4~7)、疏松(8~14)(磨粒占砂轮体积%↘)气孔、孔穴开式(与大气连通)占大部分,影响较大闭式(与大气不连通)尺寸小、影响小开式空洞型蜂窝型前两种构成砂轮内部主要的冷却通道管道型5~50µm六、砂轮的型号标注形状、尺寸、磨料、粒度号、硬度、组织号、结合剂、允许最高圆周线速度P300x30x75WA60L6V35外径300,厚30,内径75第二节磨削运动一、磨削运动1、主运动砂轮外圆线速度 m/s2、径向进给运动进给量fr 工件相对砂轮径向移动的距离间歇进给 mm/st 单行程mm/dst 双行程连续进给 mm/s3、轴向进给运动进给量fa 工件相对砂轮轴向的进给运动圆磨 mm/r平磨 mm/行程4、工件速度vw线速度 m/s二、磨削金属切除率ZQ=Q/B=1000·vw·fr·fa/B mm^3/(s·mm)ZQ:单位砂轮宽度切除率Q:每秒金属切除量用以表示生产率B:砂轮宽度三、砂轮与工件加工表面接触弧长lc=sqrt(fr·d0)影响参加磨削磨粒数目及磨粒负荷,容屑,冷却条件四、砂轮等效直径将外圆(内圆)砂轮直径换算成接触弧长相等的假想平面磨削的砂轮直径结论:对砂轮耐用度影响内圆>平面>外圆第三节磨削的过程一、单个磨粒的磨削过程磨粒的模型锐利120°圆锥钝化半球实际磨粒:大的负前角,大的切削刃钝圆半径滑擦、耕犁、切削滑擦:(不切削,不刻划)产生高温,引起烧伤裂纹耕犁:(划出痕迹)磨粒钝或切削厚度小于临界厚度,工件材料挤向两侧隆起切削:切削厚度大于临界厚度,形成切屑v↑→隆起↓(线性)塑性变形速度<磨削速度二、磨削的特点1、精度高、表面粗糙度小高速、小切深、机床刚性2、径向分力Fn较大多磨粒切削3、磨削温度高磨粒角度差、挤压和摩擦、砂轮导热差4、砂轮的自砺作用三、磨削的阶段1、初磨阶段实际磨深小于径向进给量2、稳定阶段实际磨深等于径向进给量3、清磨阶段实际磨深趋向于0提高生产率缩短1、2提高质量保证3第四节磨削力及磨削功率一、磨削力的特征分解成三个分力Ft切向力 Fn法向力 Fa轴向力特征:1、单位切削力k很大磨粒几何形状的随机性和参数的不合理性7000~20000kgf/mm^2 其他切削方式k<700kgf/mm^22、Fn值最大Fn/Ft 通常2.0~2.5工件塑性↓、硬度↑→Fn/Ft↑切深小,砂轮严重磨损 Fn/Ft 可达5~103、磨削力随磨削阶段变化初磨、稳定、光磨二、磨削力及磨削功率摩擦耗能占相当大的比例(70~80%)切向力(N):Ft=9.81·(CF·(vw·fr·B/v)+µ·Fn)径向力(N):Fn=9.81·CF·(vw·fr·B/v)·tan(α)·(π/2) vw:工件速度v:砂轮速度fr:径向进给量B:磨削宽度CF:切除单位体积切屑所需的能 kgf/mm^2µ:工件-砂轮摩擦系数α:假设粒度为圆锥时的锥顶半角磨削功率P=Ft·v/1000 Kw理论公式精度不高,常用实验测定(顶尖上安装应变片)第五节磨削温度耕犁、滑擦和形成切屑的能量全部转化成热,大部分传入工件一、磨削温度砂轮磨削区温度θA:砂轮与工件接触区的平均温度影响:烧伤、裂纹的产生磨粒磨削点温度θdot:磨粒切削刃与切屑接触部分的温度温度最高处,是磨削热的主要来源影响:表面质量、磨粒磨损、切屑熔着工件温升:影响:工件尺寸、形状精度受影响二、影响磨削温度的因素切削液为降温的主要途径1、工件速度对磨粒磨削点温度的影响大于砂轮速度vw↑→acgmax↑→F↑→θdot↑大v↑→acgmax↓→θdot↑小→摩擦热↑↗acgmax:单个磨粒最大切削厚度 mm假设:磨粒前后对齐,均匀分不在砂轮表面平面磨:acgmax=(2·vw·fa/(v·m·B))sqrt(fr/dt)外圆磨:acgmax=(2·vw·fa/(v·m·B))sqrt((fr/dt)+(fr/dw))dt:砂轮直径m:每毫米周长磨粒数用于定性分析2、径向进给量Frfr↑→acgmax↑→θdot↑fr↑→接触区↑→同时参加切削磨粒数↑→θA↑3、其他因素fa↑→θdot↑、θA↑工件材料硬度↑、强度、↑韧性↑→θdot↑、θA↑θA↑→工件温升↑vw↑→被磨削点与砂轮接触时间↓→工件温升↗三、磨削温度的测量(热电偶)第六节砂轮的磨损及表面形貌一、砂轮的磨损类型磨耗磨损磨粒磨损破碎磨损磨粒或结合剂破碎(取决于磨削力与磨粒、结合剂强度)破碎磨损消耗砂轮多磨耗磨损通过磨削力影响破碎磨损阶段初期磨损磨粒破碎磨损(个别磨粒受力大,磨粒内部应力与裂纹)二期磨损磨耗磨损三期磨损结合剂破碎磨损二、砂轮的耐用度T砂轮相邻两次修整期间的加工时间 s各因素通过平均切削厚度来影响T经验公式:T=6.67·(dw^0.6)·km·kt/(10000·(vw·fa·fr)^2)dw:工件直径kt:砂轮直径修正系数km:工件材料修正系数粗磨时间常用单位时间内磨除金属体积与砂轮磨耗体积之比来选择砂轮三、砂轮的修整作用去除钝化磨粒或糊塞住的磨粒,使新磨粒露出来增加有效切削刃,提高加工表面质量工具单颗金刚石、单排金刚石、碳化硅修整轮、电镀人造金刚石滚轮、硬质合金挤压轮等使用单颗金刚石:导程小于等于磨粒平均直径,每颗磨粒都能修整深度小于等于磨粒平均直径,提高砂轮寿命四、表面形貌单位面积上磨粒数目越多→acgmax↓→磨粒受力↓→磨粒寿命↑→T↑磨粒高度分布越均匀→粗糙度↓磨粒间距均匀性越好→粗糙度↓第七节磨削表面质量与磨削精度一、表面粗糙度比普通切削小小于 Ra2~4µmvw↓、v↑、R工↑、R砂↑、细粒度→粗糙度↓细粒度→m↑→粗糙度↓B↑→acgmax↓→粗糙度↓磨粒等高性好→粗糙度↓二、机械性能1、金相组织变化烧伤:C↑、合金元素↑→导热性↓→易烧伤高温合金↑→磨削功率↑→θA↑→易烧伤影响:破坏工件表层组织,产生裂纹,影响耐磨性和寿命2、残余应力原因:相变引起金相组织体积变化温度引起热胀冷缩和塑性变形的综合结果光磨10次残余应力减少2~3倍光磨15次残余应力减少4~5倍fa↓、fr↓→拉应力↓3、磨削裂纹磨削速度垂直方向上的裂纹(局部高温急冷造成热应力)三、磨削精度1、磨床与工件的弹性变形2、磨床与工件的热变形3、砂轮磨损导致形状尺寸变化3、磨床与工件振动研磨加工是应用较广的一种光整加工。