智慧环保云平台建设方案
- 格式:docx
- 大小:1003.18 KB
- 文档页数:32
智慧环保一张图建设方案智慧环保是指利用先进技术、互联网、物联网等手段,整合传统环保手段,提高环保工作效率、降低环保成本、提升环境治理效果的环保方式。
通过智慧环保的建设,可以达到科技与环保相互促进、协同发展的目标,更好地保护人民生命健康和生态环境,建立美丽中国。
智慧环保建设是一个系统性工程,需要陆续实施一系列的布局和方案。
下面介绍一张图的智慧环保建设方案。
[智慧环保一张图建设方案]一、数据中心建设数据中心是智慧环保的数据核心,可以集成传感器、监控设备和网络设备等各类设备的数据。
搭建数据中心需要考虑可靠性、安全性和扩展性,针对不同的区域和企业实际情况进行规划。
同时,需要保证数据的共享和可视化,方便各级政府和公众查询和监测环保数据。
二、传感器网络建设传感器网是数据中心的重要组成部分,利用传感器设备实现测量、监测和预警等环保功能,为智能环保提供了重要的数据支撑和指导。
建设传感器网需要考虑到网络覆盖范围、数据的实时性和精确度、以及传感器设备的维护保养等问题。
同时,还需要加强与数据中心的协同和数据共享,形成高质量的环保数据。
三、智能监管平台建设智能监管平台是环保监管的基础,可以实现对环保实时数据的查询和统计,还可以进行数据分析和处理,帮助监管部门及时了解环保情况并采取切实有效的措施。
建设智能监管平台需要完善数据共享机制,实现与传感器网和数据中心的联动,形成一个高效的环保监管系统。
四、环保数据分析与应用环保数据分析是智慧环保的核心手段,可以通过大数据分析和人工智能等技术,深度挖掘环保数据的潜在价值,并为环保决策、环保规划和环保措施等提供科学依据。
建设环保数据分析与应用需要充分利用先进的数据处理技术和专业的环保分析工具,完成数据的提取、清洗和分析等工作。
五、公众参与与互动平台建设智慧环保建设必须注重公众参与和社会化治理,积极开展环保宣传和教育。
建设公众参与与互动平台,可以让公众更好地了解环保情况、参与环保行动、反馈环保问题,促进公众积极参与社会环保治理。
生态环保大数据云平台建设方案智慧环保大数据云平台
建设方案
层次清晰:
一、智慧环保大数据云平台建设背景
1.1环境短板严重
我国自然界环境状况仍存在较大短板,比如空气污染、水污染、噪声污染、土地资源浪费等,影响着普通民众的日常生活,也对生态环境的可持续发展造成极大的威胁。
在此情况下,构建环境管理的智慧体系是实现可持续发展的关键。
1.2智慧管控不足
现有的环境监测和信息管控技术在面对技术进步的发展日新月异时,传统的信息采集、处理技术已经无法满足全程的环境智慧管控需求。
这种情况逐渐加剧,使得对环境管理的准确性、及时性严重受限,需要采用新的技术手段,来提升管控水平,满足环境管理的及时性和精准性。
1.3建设需求日益增长
由于资源短缺、经济结构调整等因素,生态环保领域的建设资源缺口日益明显,而智慧环保大数据云平台能够有效提升管控水平,缩减额外资源成本,所以迫切需要建立这样一个智慧环保大数据云平台。
二、智慧环保大数据云平台建设要求
2.1目标定位。
智慧环保大数据一体化管理平台建设方案I目录第1章前言 (6)1.1、建设背景 (7)1.1.1、相关政策 (7)1.1.2、政策引导:三个说得清 (8)1.2、环境面临问题 (8)1.2.1、全球十大环境问题 (8)1.2.2、国内面临环境问题 (9)1.3、智慧环保发展需求 (9)1.4、建设目标 (10)1.4.1、业务协同化 (10)1.4.2、监控一体化 (11)1.4.3、资源共享化 (11)1.4.4、决策智能化 (11)1.4.5、信息透明化 (11)第2章智慧环保大数据一体化管理平台 (13)2.1、智慧环保大数据一体化平台结构图 (13)2.2、智慧环保大数据一体化管理平台架构图 (15)2.3、智慧环保大数据一体化管理平台解决方案(3721解决方案) (15)2.3.1、一张图:“天空地”一体化地理信息平台 (16)2.3.1.1、领导驾驶舱一张图统一展示 (17)2.3.1.2、一张图监测 (18)2.3.1.3、一张图应急 (21)2.3.1.4、基于一张图的放射源在线监控管理系统 (23)2.3.2、两个中心 (23)2.3.2.1、大数据中心 (23)2.3.2.2、云计算中心 (24)2.3.3、三个体系 (25)I2.3.3.2、安全及运维体系 (25)2.3.3.3、组织和管理体系 (25)2.3.4、七大平台 (25)2.3.4.1、环境政务管理平台 (25)2.3.4.2、环境监测管理平台 (27)2.3.4.3、环境监察管理平台 (29)2.3.4.4、环境风险防控平台 (31)2.3.4.5、辅助决策支持平台 (32)2.3.4.6、环境监管平台 (34)2.3.4.7、公众服务平台 (41)第3章智慧环保大数据一体化管理平台功能特点 (43)3.1、管理平台业务特点 (43)3.1.1、开启一证式管理,创新工作模式 (43)3.1.2、拓展数据应用,优化决策管理 (43)3.1.3、增强预警预报、提速应急防控 (44)3.1.4、完善信息公开、服务公众参与 (45)3.2、管理平台技术特点 (46)3.2.1、技术新 (46)3.2.2、规范高 (47)3.2.3、分析透 (47)3.2.4、功能实 (48)3.2.4.1、数据平台 (48)3.2.4.2、业务平台 (49)3.2.4.3、服务平台 (49)3.2.4.4、政务平台 (50)3.2.4.5、分析平台 (50)3.2.5、检索平台 (53)II3.3、管理平台功能 (54)3.3.1、环境质量监测 (55)3.3.2、动态数据热力图 (55)3.3.3、评价模型 (56)3.3.4、感知终端 (57)第4章智慧环保应用系统 (58)4.1、自动监控系统 (58)4.1.1、系统架构 (59)4.1.2、建设内容 (59)4.1.2.1、污染源在线监测监控系统 (59)4.1.2.2、污染源自动监测设备动态管控系统 (60)4.1.2.3、监测数据质控与审核系统 (60)4.1.2.4、污染源信息发布系统 (60)4.1.2.5、污染源在线监测系统APP、污染源自动监测设备动态管控系统APP (60)4.1.3、系统特色 (61)4.1.3.1、高效可靠的海量数据并发监管 (61)4.1.3.2、智慧研判自动监测数据的真实性 (61)4.1.3.3、规范化、自动化的数据修约审核机制 (61)4.1.3.4、直观化、自动化的数据发布机制 (61)4.1.3.5、随时随地的智慧化监管 (62)4.2、GIS一张图系统 (62)4.2.1、GIS系统架构 (63)4.2.2、建设内容 (63)4.2.2.1、环境质量一张图 (63)4.2.2.2、污染源监测监控一张图 (64)4.2.2.3、执法管理一张图 (64)4.2.2.4、污染源企业监管一张图 (64)III4.3、总量减排系统 (65)4.3.1、系统架构 (66)4.3.2、建设内容 (66)4.3.2.1、排污许可证管理 (66)4.3.2.2、污染物总量减排管理 (67)4.3.2.3、排污权管理 (67)4.3.3、系统特点 (67)4.4、移动应用系统 (68)4.4.1、建设内容 (68)4.4.1.1、移动办公 (68)4.4.1.2、移动监测 (68)4.4.1.3、移动数据中心 (68)4.4.1.4、移动应急 (69)4.4.1.5、移动执法 (69)4.4.1.6、移动发布 (69)4.4.1.7、移动审批 (69)4.4.1.8、移动信访 (69)4.4.2、系统特点 (70)4.5、刷卡排污总量计算系统 (70)4.5.1、系统架构 (71)4.5.2、建设内容 (71)4.5.2.1、现场端 (71)4.5.2.2、平台端 (72)4.5.2.3、移动端 (72)4.6、大气污染防治监督检查随机抽查系统 (72)4.6.1、系统架构 (73)4.6.2、建设内容 (73)4.6.2.1、移动PAD抽查系统 (73)IV4.7、环境网格化管理系统 (74)4.7.1、系统架构 (75)4.7.2、建设内容 (76)4.7.2.1、地理编码子系统 (76)4.7.2.2、监管巡查子系统 (77)4.7.2.3、监管受理子系统 (77)4.7.2.4、协同办公子系统 (77)4.7.2.5、考核评价子系统 (77)4.7.2.6、监管指挥子系统 (78)4.7.2.7、数据交换子系统 (78)4.8、环保云大数据平台 (78)4.8.1、平台架构 (79)4.8.2、基础资源服务 (79)4.8.3、信息资源服务 (80)4.8.4、云应用 (80)V第1章前言以“信息强环保”为发展目标,借助物联网技术,把感应器和装备嵌入到各种环境监控对象(物体)中,通过超级计算机和云计算将环保领域物联网整合起来,实现人类社会与环境业务系统的整合,通过大数据分析,构建一个以电子政务、行政许可、环境综合监管、自动监控监测、生态环境综合管理、决策与应急处置、移动监管、基础设施为核心内容的“互联网+智慧环保”信息化平台,以更加精细和动态的方式实现环境管理和决策的“智慧”。
智慧环保建设方案一、背景介绍随着全球经济的快速发展和人口的不断增长,环境污染问题日益突出。
为了保护生态环境、实现可持续发展,智慧环保建设方案应运而生。
本文将详细介绍智慧环保建设方案的目标、原则、技术应用和预期效果。
二、目标设定1. 提升环境监测能力:通过建设智能化环境监测系统,实现对空气、水质、土壤等环境指标的实时监测和数据采集,提高环境监测的准确性和时效性。
2. 优化资源利用:通过智能化的能源管理系统,实现对能源消耗的监测和控制,优化能源利用效率,降低能源消耗和碳排放。
3. 加强环境管理能力:通过智慧化的环境管理系统,实现对污染源的监测、预警和管理,提高环境管理的效率和精准度。
4. 提高环境教育意识:通过智慧化的环境教育平台,加强环境教育的宣传和普及,提高公众的环保意识和参预度。
三、原则和方法1. 全面覆盖:建设智慧环保系统应覆盖城市、乡村、工业区等各个环境管理单位,实现对各类环境指标的全面监测和管理。
2. 数据共享:建设智慧环保系统应实现数据的共享和交互,提高环境管理部门之间的协同作战能力,实现信息的共享和共治。
3. 技术创新:引入先进的信息技术和人工智能技术,如大数据分析、物联网、云计算等,提高环境监测和管理的效率和精确度。
4. 可持续发展:智慧环保建设方案应注重可持续发展,推动绿色经济的发展,实现经济效益和环境效益的双赢。
四、技术应用1. 智能化环境监测系统:通过部署传感器网络,实时监测空气质量、水质、土壤污染等环境指标,并将数据传输至中央监控中心进行分析和处理。
2. 智能化能源管理系统:通过安装智能电表和能源监测设备,实时监测能源消耗情况,提供能源使用建议,并通过智能控制装置实现能源的自动控制。
3. 智慧化环境管理系统:通过视频监控、遥感技术和无人机等手段,实现对污染源的实时监测和预警,并利用智能化管理设备进行管理和修复。
4. 智慧化环境教育平台:通过建设环境教育网站和挪移应用程序,提供环境知识、案例分享和互动交流平台,提高公众的环保意识和参预度。
智慧环保建设方案一、背景介绍随着全球环境问题的日益严峻,智慧环保建设成为了当今社会发展的重要议题。
智慧环保建设旨在通过运用先进的技术手段和创新的管理模式,提高环境保护的效率和质量,实现可持续发展的目标。
本文将针对智慧环保建设方案进行详细介绍和分析,以期为相关领域的决策者和从业人员提供参考。
二、目标设定1. 提高环境保护效率:通过智慧环保建设方案,实现环境保护工作的高效运行,提高资源利用效率,减少环境污染和生态破坏。
2. 优化环境监测与管理:利用先进的传感器技术和数据分析平台,实现对环境污染源的实时监测和预警,加强环境管理和监管能力。
3. 推动绿色产业发展:通过智慧环保建设,促进绿色技术和绿色产业的发展,推动经济转型升级,实现可持续发展。
三、方案内容1. 智能监测系统建设:a. 部署环境监测传感器网络,实时监测空气质量、水质、噪音等环境指标,建立环境监测数据平台。
b. 利用物联网技术,实现传感器与数据平台的互联互通,实时上传监测数据,提供实时监测和预警功能。
c. 建立智能监测系统,通过数据分析和模型建立,提供环境污染源的溯源和监测结果的可视化展示。
2. 智慧环保管理平台建设:a. 建立环境监管部门的智慧环保管理平台,实现对环境监测数据的集中管理和分析。
b. 利用大数据和人工智能技术,对监测数据进行分析和挖掘,提供环境问题的预测和预警功能。
c. 实现对环境污染源的全生命周期管理,包括准入审批、排污许可、日常监管等环节的信息化管理。
3. 智慧环保技术应用:a. 推广应用环境友好型技术和设备,减少污染物排放和资源浪费。
b. 加强环境管理技术研发,提高管理效果和成本效益。
c. 利用云计算和区块链技术,实现环境数据共享和交易,促进环境保护产业的发展。
四、预期效果1. 环境保护效果显著提升:通过智慧环保建设方案,实现环境监测的全面覆盖和实时监测,提高环境保护的效率和精准度。
2. 环境污染源减排效果明显:通过智慧环保技术的应用,推动企业实施减排措施,减少污染物的排放。
智慧环卫大数据信息化云平台建设和运营综合解决方案一、内容描述随着城市化进程的加速推进,环境卫生管理面临着前所未有的挑战。
为了应对这些挑战,提高环卫工作的效率和质量,智慧环卫大数据信息化云平台的建设和运营综合解决方案应运而生。
数据采集与整合:通过安装各类传感器和监控设备,收集环卫工作中的各类数据,包括垃圾量、作业车辆运行状况、环境质量等。
整合各类环卫管理系统的数据资源,形成一个全面、准确的数据库。
数据分析与挖掘:利用大数据技术和算法,对收集的数据进行深度分析和挖掘,发现环卫工作中的规律和问题,为决策提供支持。
智慧环卫管理:基于数据分析结果,实现智慧化的环卫管理。
包括智能调度作业车辆、优化垃圾处理流程、预测垃圾产生量等,提高环卫工作的效率和质量。
公共服务提升:通过云平台,提供公共服务接口和应用程序,方便公众查询环卫信息,参与环卫工作,提高公众的满意度和参与度。
运营管理与优化:建立专业的运营团队,负责平台的日常运维和管理。
通过监测平台运行状况,不断优化平台功能和服务,提高平台的运行效率和稳定性。
通过这个综合解决方案,可以实现环卫工作的精细化、智能化管理,提高环卫工作的效率和质量,推动城市环境卫生管理的现代化进程。
1. 智慧环卫背景介绍随着城市化进程的加速和人口的不断增长,城市环卫管理面临着越来越大的挑战。
传统的环卫管理方式已无法满足现代城市发展的需求,亟需借助先进的技术手段提升管理效率和服务水平。
智慧环卫作为一种新型的环卫管理模式,正逐渐受到广泛关注。
智慧环卫是借助现代信息技术,如大数据、云计算、物联网等,实现对城市环境卫生管理的智能化、精细化、高效化。
在当前数字化、智能化的时代背景下,智慧环卫已成为城市发展的重要组成部分,为城市环境的持续改善提供有力支撑。
随着信息技术的飞速发展,环卫行业正在经历从传统人工管理向智慧化管理的转变。
智慧环卫的建设不仅有助于提高环卫管理的效率和响应速度,还能为政府决策提供科学依据,为市民提供更加优质的服务。
智慧环保建设方案一、背景介绍随着全球经济的快速发展和人口的不断增长,环境污染问题日益严重,对人类健康和生态系统造成了严重威胁。
为了解决环境问题,智慧环保建设方案应运而生。
本文将详细介绍智慧环保建设方案的概念、目标、关键技术和实施步骤。
二、概念和目标智慧环保建设方案是指利用先进的信息技术手段和智能化设备,对环境进行监测、管理和优化,以实现环境保护和可持续发展的目标。
其主要目标包括:减少污染物排放、提高资源利用效率、改善生态环境质量、推动绿色低碳发展。
三、关键技术1.物联网技术:通过传感器、无线通信和云计算等技术,实现环境数据的实时监测和远程控制,为环境管理和决策提供科学依据。
2.大数据分析:通过对海量环境数据的收集、存储和分析,发现环境问题的规律和趋势,为环境保护决策提供准确的科学依据。
3.人工智能技术:通过机器学习和深度学习等技术,对环境数据进行智能分析和预测,提供个性化的环境保护方案。
4.智能监测设备:包括空气质量监测仪、水质监测仪、噪声监测仪等,能够实时监测环境参数,并将数据传输至中央控制中心。
5.智能控制设备:包括污水处理设备、垃圾处理设备、能源管理系统等,能够自动控制和优化环境管理过程。
四、实施步骤1.环境监测:部署物联网传感器和智能监测设备,对空气质量、水质、噪声等环境参数进行实时监测,并将数据传输至中央控制中心。
2.数据分析:建立大数据平台,对环境数据进行收集、存储和分析,发现环境问题的规律和趋势,为环境保护决策提供科学依据。
3.智能控制:根据环境数据分析结果,制定相应的环境保护方案,并部署智能控制设备,实现对污水处理、垃圾处理、能源管理等环境管理过程的自动控制和优化。
4.信息共享:建立环境保护信息共享平台,将环境数据、监测结果和管理经验进行共享,促进各方共同参与环境保护工作。
5.监督管理:建立智能监督管理系统,对环境保护工作进行监督和评估,及时发现问题并采取相应措施。
五、效益和影响智慧环保建设方案的实施将带来以下效益和影响:1.提高环境管理效率:通过智能化设备和信息技术手段,实现环境数据的实时监测和远程控制,提高环境管理的效率和精度。
智慧环保建设总体架构解决方案ppt智慧环保建设总体架构解决方案随着社会的发展,环境保护已经成为全球性的话题。
但是我们也注意到,在环境保护工作中,还存在管理和技术手段等多方面的问题,因此我们需要一个更全面高效的集成解决方案。
基于此,我们提出一套智慧环保建设总体架构解决方案。
一、总体构想我们通过人工智能技术和大数据、云计算、物联网等先进技术手段,建立一个信息化平台,以数据为中心,整合、分析、处理、核对环境保护数据,实现对环境的实时监测、预测及预警,建立多方联动机制,提高环境监管效率,构建更加合理、高效的环保监督管理体系。
二、技术流程1.数据采集与传输:通过物联网技术实现对环境参数的实时监测,利用各种传感设备等对水质、空气、土壤等环境数据进行采集,实时传输至数据中心。
2.大数据存储与管理:针对多源、多样、海量数据的特点,采用集群存储技术,构建分布式数据库,实现数据的存储、交换及管理。
3.数据处理与分析:采用数据挖掘、人工智能等技术,对数据进行分析处理,发现规律、预测趋势。
4.信息发布与共享:通过互联网、移动终端等多种媒介,传达重要环境信息及政策法规,与公众共享环境信息。
三、技术特点1.实时性:借助物联网技术,实现环境监测数据的实时采集和传输。
2.智能化:引入人工智能技术,实现对环境数据的自动分析和预测,提高监管效率。
3.集成化:通过集成不同技术手段,实现数据的整合、处理和分析,打造全新的环境监管体系。
4.可视化:通过数据可视化技术,将数据呈现为具体的图形、图表等,增强数据呈现效果和决策参考价值。
四、功能模块1.数据采集模块:采用多种物联网设备,实现对环境参数的实时采集。
2.数据管理模块:针对大数据海量存储和管理,构建集群存储系统,实现数据规范化管理。
3.数据分析模块:通过数据挖掘、机器学习等技术,对海量数据进行深入分析,发现潜在问题和趋势。
4.环境监控模块:借助监控设备,实现对环境参数的实时监测和预警,提高监管效率。
智慧环保建设方案一、背景介绍随着全球经济的快速发展和人口的不断增长,环境问题日益突出。
为解决环境污染和资源浪费的问题,智慧环保建设方案应运而生。
本文将详细介绍智慧环保建设方案的定义、目标和关键措施。
二、定义智慧环保建设方案是指利用先进的信息技术和物联网技术,以数据驱动和智能化管理为核心,实现环境保护工作的全面提升和优化。
通过采集、分析和应用大数据,智慧环保建设方案能够实现环境监测、资源管理、污染管理、应急响应等环保领域的智能化运营和决策支持。
三、目标智慧环保建设方案的目标是实现环境保护工作的高效、精准和可持续发展。
具体目标包括:1. 提高环境监测能力:通过建立智能监测网络,实时采集和分析环境数据,提高环境监测的精准度和时效性。
2. 优化资源管理:利用智能化技术,实现资源的精细化管理,提高资源利用效率和节约水、电、气等资源的能力。
3. 加强污染管理:通过智能监控和预警系统,及时发现和处理污染源,提高污染管理的效率和效果。
4. 健全应急响应机制:建立智能化的应急响应系统,能够迅速响应突发环境事件,并采取有效措施进行处置。
四、关键措施为实现智慧环保建设方案的目标,需要采取以下关键措施:1. 建设智能化环境监测系统:通过部署传感器网络和数据采集设备,实现对空气质量、水质等环境指标的实时监测和数据采集。
同时,利用云计算和大数据分析技术,对采集到的数据进行处理和分析,提供准确的环境监测结果。
2. 推广智慧城市概念:将智慧环保建设方案与智慧城市建设相结合,通过建立智能化的城市管理平台,实现环境保护工作与城市规划、交通管理、能源管理等领域的协同运作。
3. 强化环境污染管理:利用物联网技术和人工智能技术,建立智能化的污染源监控和预警系统,能够实时监测和预测污染源的排放情况,并及时采取措施进行管理。
4. 加强公众参预:通过建立智能化的环保宣传平台和公众参预平台,提高公众对环境保护工作的认知和参预度,形成全社会共同参预环境保护的良好氛围。
智慧环保监管平台建设方案智慧环保监管平台是基于互联网、大数据和人工智能等技术手段,对环保监管进行智能化、数据化、精细化管理的一种全新监管手段。
以下是智慧环保监管平台建设方案:一、系统架构设计1.1 系统总体架构设计智慧环保监管平台的总体架构应该包括应用层、数据层和技术支撑层三个层次。
应用层包含数据采集和分析、监测预警、行业管理、公众服务等模块;数据层包含数据仓库和数据服务两个模块;技术支撑层包括安全管理、云计算、大数据、物联网和人工智能等技术支撑模块。
1.2 数据采集和分析模块设计数据采集和分析模块是智慧环保监管平台的核心模块,其主要任务是实时采集所有环保数据,包括空气质量、水质、噪声、固废、排放等数据,并对数据进行实时分析,生成监测报告和分析报告,支撑环保监管决策。
1.3 监测预警模块设计监测预警模块主要基于采集和分析的数据,对环境异常和事故等较大影响进行预警。
在预警后,系统应自动启用相应的预案,并在第一时间通知相关人员,防止或减少环境损害。
1.4 行业管理模块设计行业管理模块主要对各类环保企业进行管理、监控、预警和评估等工作。
该模块可通过对企业的实时监测和分析,提高企业环保意识和行为水平,促进企业的自律管理,强化环保监管的效果。
1.5 公众服务模块设计公众服务模块可提供各类环保信息、智能预警和教育培训服务,引导公众关注环境治理问题,增强公众对环保问题的认知和参与度,共同推动环保工作的落实和推进。
二、技术设计2.1 大数据、云计算和人工智能等先进技术的应用。
2.2 数据安全的保障,包括数据加密、权限控制、入侵检测等措施。
2.3 发展环保监控和信息化应用,保障环境与人民生活的安全和健康。
2.4构建环保金融的新模式,以资本为纽带,将投资与环保结合起来。
2.5 提高智慧环保监管平台的可靠性、可用性和稳定性,确保系统长期稳定运作。
三、平台建设平台建设包括软件和硬件设备的选型、搭建、开发和调试等,并需对平台进行全面测试,确保有较高的稳定性和可靠性。
智慧环保云平台建设方案目录一、背景及意义 (4)二、目标与内容 (4)2.1. 项目目标 (4)2.2主要研发内容 (5)三、思路与方法 (6)3.1总体技术路线 (6)3.1.1业务系统的分析 (6)3.1.2 云存储平台搭建 (7)3.1.3传感器数据分析与处理 (7)3.2 总体技术架构 (7)四、进度安排 (8)五、成果及效益 (10)六、PM2.5云监测系统前端方案 (11)6.1.概述 (11)6.61.1背景 (11)6.1.2意义 (11)6.2.设计 (12)6.2.1 系统架构 (12)6.2.2 传感器 (15)6.2.3 计算 (17)6.2.4 采集部分 (19)6.2.5 通信部分 (20)6.2.6 电源部分 (21)6.3.特点 (22)七、PM2.5云监测系统后端方案 (25)7.1. 概述 (25)1.1背景 (25)1.2意义 (26)7.2. 设计 (27)7.2.1 系统架构 (27)7.2.2系统可靠性与扩展性 (29)7.3.特点 (32)一、背景及意义目前环保局已经拥有包括“阳光政务系统”、“12369 投诉系统”、“排污申报收费系统”、“污染应急指挥控制系统”、“机动车排气监测系统”、“污染源在线监测系统”、“环境空气质量监测系统”、“危险固体废弃物管理系统”、“核与辐射管理系统”在内的多套业务系统,可进行业务审批、意见收集、任务指派、排污申报与收费等各项业务功能。
存在的问题主要是这些系统各自为政,数据无法有效共享与集成,导致同类数据在不同系统中存在冗余和不一致问题,同时这些系统间缺乏统一的数据管理模式,导致数据保存不规范、不完整。
这些数据的冗余、不一致和缺失使得在日常业务工作中,虽然各系统能发挥自己的做用,处理各自业务功能,但各系统中的数据无法进行有效融合,不能支持全局的数据应用、处理和分析功能,导致出现明明有数据可是却无法找到,无法使用的局面。
通过本次项目研究,一方面利用信息网格技术,动态集成现有系统的业务数据,打破各系统间隔阂,解决环保局范围内各系统的数据集成问题,实现全局范围的数据共享、分析与使用。
另一方面,利用云存储和云计算技术,打造一个具有高容量、高可维护性、高性价比、高容错的云平台,支撑海量信息的存储和处理。
二、目标与内容2.1. 项目目标本次课题的研究目标是建立一个集成环保局范围内各在用系统的平台,该平台集成各种环保相关的信息系统的数据库数据、用户投诉数据,以及来至传感器的各种声、光、气、水、温数据。
该平台能在对信息进行分析处理的情况下,利用网络服务器通过电脑、智能手机、平板设备等移动终端提供包括企业信息查询、污染应急指挥控制、污染源在线监控等各类服务,可以形成对信息的全面掌握、实时监测、智能分析、历史积累。
2.2主要研发内容(1)现有信息系统的数据集成对在用的业务系统进行分析,明确需要集成的数据,以及数据间的相互关系后,制定一个统一的数据格式,然后采用信息网格技术实现数据的抽取与集成。
(2)基于物联网技术的信息自动采集与分析利用各类传感器实现环境监测中各种声、光、气、水、温数据的自动采集,并导入到用的分析系统中进行数据分析。
(3)基于云存储的中心数据库的建设在集成业务系统数据和环境监测信息的基础上建设一个基于云存储的、可扩展,具有统一规范数据格式的中心数据库,将各业务系统核心数据抽取到中心数据库进行存储,确保信息的完整和安全可靠。
(4)基于云计算与语义技术的环保数据处理和分析方法利用云计算平台的强大处理能力,结合语义技术进行数据的处理和挖掘,将数据转换为信息;(5)智慧环保云平台的建立在中心数据库上开发建立包括企业信息全寿命管理(即从企业登记开始到企业注销的全程信息管理)、数据精确分析、处置决策、趋势分析等在内的应用,并为其它系统预留数据调用接口,最终建成一个涵盖在用系统数据,支持全局信息管理分析与应用的“智慧环保”系统。
三、思路与方法3.1总体技术路线总体技术路线如图1所示。
可分为三个方面开展。
图1 “智慧环保云”实施技术路线图3.1.1业务系统的分析(1)对在用业务系统的关键流程、关键业务数据、数据间逻辑关系进行分析,确定需要集成的数据为数据集成和建立中心数据库做准备(2)利用信息网格技术实现关键业务数据进行按需提取。
(3)对来自各业务系统的数据进行集成,建立一个面向环保系统的业务数据库。
(4)将传感器数据与业务数据结合,建立中心数据库。
(5)在中心数据库的数据支持下,利用云计算与语义技术进行数据分析,为业务处理、决策提供信息支持。
(6)在中心数据库上开发建立包括企业信息全寿命管理(即从企业登记开始到企业注销的全程信息管理)、数据精确分析、处置决策、趋势分析等在内的应用,并为其它系统预留数据调用接口。
(7)完成“智慧环保云”的部署工作。
3.1.2 云存储平台搭建通过采购存储硬件,在现有的云存储软件的基础上,搭建一套大容量的云存储系统,该系统用于保存业务数据已经运行业务处理平台。
3.1.3传感器数据分析与处理了解目前在用的传感器类型,确定信息接收和分析处理的方法,将传感器数据集成进系统中。
3.2 总体技术架构系统包括三个部分:数据层,中心数据库层及应用层,系统整体架构如图2所示图2 系统体系结构(1)数据层数据层有各业务系统中的关键性业务数据和各类传感器采集的数据组成,它们为整个“智慧环保”系统提供数据来源。
(2)中心数据库层中心数据库层由一个基于云存储的综合数据库构成,在这里对来至数据层的各类数据进行汇总、处理、集成与管理,确保数据的唯一性和确定性,并为上层应用提供数据支持。
(3)应用层应用层包含各类基于全局数据的应用,包括:企业信息的全寿命管理、数据的精确分析、城市物量统计、辅助决策等同时提供一个数据接口,可为其它系统提供按需的数据服务。
四、进度安排五、成果及效益预期成果为是一个集成各种系统的平台,通过网络服务器提供各种信息服务。
集成各种环保相关的信息系统,输入是各种声、光、气、水、温等传感器的数据,各种数据库数据,及用户投诉数据,输出是各种信息服务,通过电脑、移动终端等提供服务。
可以形成全面掌握、实时监测、智能分析、历史积累等能力。
依靠云计算、物联网和信息网格技术,构建“智慧环保云”,做第一家“说得清”的环保管理者,依靠先进技术提升管理水平,在全国做出优质示范。
全面掌握:对各种来源数据进行汇聚,原来散落在不同系统、描述不同内容的局部数据发挥整体作用。
精确分析:可以以某个企业、某个区域、某个时段等作为分析对象,依靠数据的相互印证和补充而实现精确分析。
及时预警:各种物联网传感器、接入系统和人工测量的结果的自动综合可以及时发现环境危险信号,将危险消灭在萌芽状态中。
长效管理:依靠云计算平台的海量存储能力,不断积累历史数据,可以对监测对象和整体环境趋势进行长期的跟踪和分析。
六、PM2.5云监测系统前端方案6.1.概述PM2.5云监测方案,是基于PM2.5测试的辅助测试。
主要是反映局部区域的相关参考值,从而和宏观上反映城市的整体的空气质量的监测站点的监测方式形成互补。
6.61.1背景目前许多城市的环境监测中心站点较少,分布分散,环境监测的数据仅从宏观上反映城市的整体的空气质量,但是不能从微观上反映局部区域、特定区域的空气质量的好坏,这就需要建设更多的环境监测站点,提供更多的实时的环境监测数据。
国外一套PM2.5环境监测系统价格在10万美金,国产价格在10-50万人民币,价格昂贵。
建设更多的环境监测站点需要巨大的资金投入,成本太高。
的PM2.5云监测系统价格大约在1万人民币,非常廉价,能够解决资金投入问题,同时满足一定的测量精度,和现有的空气环境自动监测系统形成互补,为环保部门服务。
目前350米以下都有颗粒污染物,污染程度比较严重,加之信息化工作处于低端水平,以及公众对于PM2.5的关注度不断提升,使得PM2.5的监测重要性日益突出。
廉价的PM2.5环境监测系统与目前的传统监测站点的监测方式形成互补,满足公众环境需求,提升政府形象。
6.1.2意义部署廉价的PM2.5环境监测系统,配合城市现有的环境监测站点,准确、及时、全面地反映环境质量现状及发展趋势,为环境管理、污染源控制、环境规划等提供科学依据,并结合天气状况、城市交通、人口密度、工业产值等元素,进行系统的研究,为保护环境,改善城市的大气环境质量改善起到技术支撑作用。
具体可归纳为:(1) 根据环境质量标准,评价环境质量。
(2) 根据污染分布情况,追踪寻找污染源,为实现监督管理、控制污染提供依据。
(3) 构建云计算海量数据处理平台,存储本区域海量数据,积累长期监测资料,为研究环境容量、实施总量控制、目标管理、预测预报环境质量提供数据。
(4) 为保护人类健康、保护环境、合理使用自然资源、制订环境法规、标准、规划等服务。
6.2.设计6.2.1 系统架构6.2.1.1总体架构前端设备采集到相关的信息,通过GPRS进行无线数据传输,在有公网IP的服务器上进行数据接收和初步的处理,然后数据存入数据立方进行存储和计算,并且通过WEB服务器进行数据的最后处理和公布。
具体的架构详见图1。
图1 PM2.5云监控平台架构PM2.5前端设备主要是由电源模块、采集模块和通信模块组成,前端内部架构具体详见图1。
实际的PM2.5监测设备详见图2。
图2 前端设备的架构图3 前端设备实物图6.2.1.2部署方式在城市的不同区域布局并有效使用PM2.5的监测系统,从而能够比较全面地掌握城市不同区域,在不同时间段、不同气候特点(包括气温、风向、季节)下的PM2.5 的实时监测数据。
PM2.5环境监测系统环境数据采集设备采用先进的传感器、低功耗单片机技术和网络通讯技术相结合,可提供方便的数据查询方式,直接通过浏览器可以直接访问测试数据。
目前环境监测站的监测设备一般部署在离地面高度20m-25m之间,而的PM2.5环境监测系统环境监测设备根据实际的情况来进行部署。
设备小巧,部署方式灵活,可以部署在电线杆等公共设施上。
详细见图4。
图4 部署在电线杆上前端设备6.2.2 传感器根据如下的需求:1)辅助测试PM2.5值,测试不需要太高的精度,主要是用来辅助PM2.5测试曲线;2)超低低成本的需求;选择的传感器详见图5。
图5 DSM501颗粒传感器传感器的特点:PWM脉宽调制输出采用粒子计数原理可灵敏检测直径1微米以上的粒子内置加热器可实现自动吸入空气小尺寸重量轻易安装使用传感器的原理结构图详见图6.图6 传感器的原理结构图模块内置一个加热器,热引起上升气流使外部空气流进模块内部。
空气通过检测通道,利用光的原理、通过光和透镜以及处理模块来进行检测。
具体的检测方法和通道如图7所示。