如何求异面直线的距离
- 格式:doc
- 大小:194.00 KB
- 文档页数:16
异面直线的距离确定和计算两条异面直线间的距离,关键在于实现两个转化:一是转化为一条异面直线和另一条异面直线所在而与它平行的平面之间的距离;二是转化为两条异面直线分别所在的两个平行平面之间的距离。
1.直接法根据定义,找出或作出异面直线的公垂线段,再计算此公垂线段的长。
例:正四棱锥S-ABCD中,底面边长为a,侧棱长为b(b>a).求:底面对角线AC与侧棱SB间的距离.解:作SO⊥面ABCD于O,则点O是正方形ABCD的中心.∵SO⊥AC,BO⊥AC,∴AC⊥面SOB.在△SOB中,作OH⊥SB于H①,根据①、②可知OH是AC与SB的距离.∵OH·SB=SO·OB,2.转化法把所求的异面直线间的距离转化为线面间的距离或转化为面面间的距离.例:在等边圆锥(轴截面为等边三角形的圆锥叫做等边圆锥)S-ABC中,母线长为a,底面圆的直径为AC,∠CAB=60°.求:异面直线SA与BC的距离.解:如图L2-17,易知SA与BC不垂直,可考虑过SA作一个平面与BC平行,转化为求直线与平面间的距离.作AD∥BC交底面圆⊙O于D点.∵BC∥AD,∴BC∥平面SAD,取AD、BC的中点E、F,则平面ADS⊥平面SEF,过F点作FH⊥SE于H,则FH⊥平面SAD.所以FH为直线BC与平面SAD间的距离,也就是异面直线SA与BC 的距离.在△SEF中,由FH·SE=EF·SO,3.等积法不用作出异面直线间的距离,利用同一个几何体的体积为定值,布列方程来求异面直线间的距离.例如上面的例2,在求SA与BC间的距离时,我们转化为求平行的BC与平面SAD间的距离,可由同一个三棱锥换取不同的底面来计算.设BC与平面SAD间的距离为d,则以B为顶点,△SAD为底面的三棱锥的体积为而以S为顶点,△ABD为底面的三棱锥的体积为4.极值法不必作出异面直线间的距离,利用异面直线上两点间距离的最小值的性质,适当列出函数式,求此函数的最小值.还是以例2来说,在求异面直线SA与BC间的距离时,可先在SA任取一点D,作DE⊥直径AC于E,则DE⊥底面圆.再作EF⊥BC于F,则有DF⊥BC,于是DF的最小值就是SA与BC间的距离.。
异面直线间的距离求异面直线之间的距离是立体几何重、难点之一。
常有利用图形性质,直接找出该公垂线,然后求解;或者通过空间图形性质,将异面直线距离转化为直线与其平行平面间的距离,或转化为分别过两异面直线的平行平面间的距离,或转为求一元二次函数的最值问题,或用等体积变换的方法来解。
常用方法有: 1、 定义法2、 垂直平面法〔转化为线面距〕3、 转化为面面距4、 代数求极值法5、 公式法6、 射影法7、 向量法8、 等积法1 定义法 就是先作出这两条异面直线的公垂线,然后求出公垂线的长,即异面直线之间的距离。
例1 :边长a 为的两个正方形ABCD 和CDEF 成1200的二面角,求异面直线CD 与AE 间的距离。
思路分析:由四边形ABCD 和CDEF 是正方形,得CD ⊥AD ,CD ⊥DE ,即CD ⊥平面ADE ,过D 作DH ⊥AE 于H ,可得DH ⊥AE ,DH ⊥CD ,所以DH 是异面直线AE 、CD 的公垂线。
在⊿ADE 中,∠ADE=1200,AD=DE=a ,DH=2a 。
即异面直线CD 与AE 间的距离为2a 。
2 垂直平面法:转化为线面距离,假设a 、b 是两条异面直线,过b 上一点A 作a 的平行线a /,记a /与b 确定的平面α。
从而,异面直线a 、b 间的距离等于线面a 、α间的距离。
例1 如图,BF 、AE 两条异面直线分别在直二面角P-AB-Q 的两个面内,和棱分别成α、β角,又它们和棱的交点间的距离为d ,求两条异面直线BF 、AE 间的距离。
思路分析:BF 、AE 两条异面直线分别在直二面角P-AB-Q 的两个面内,∠EAB=α,∠FAB=β,AB=d ,在平面Q 内,过B 作BH ‖AE ,将异面直线BF 、AE 间的距离转化为AE 与平面BCD 间的距离,即为A 到平面BCD 间的距离,又因二面角P-AB-Q 是直二面角,过A 作AC ⊥AB 交BF 于C ,即AC ⊥平面ABD ,过A 作AD ⊥BD 交于D ,连结CD 。
异面直线间的距离公式假设有两条异面直线L1和L2,我们需要找到一个平面P1与L1垂直,并且找到一个平面P2与L2垂直。
然后可以求得P1与P2之间的距离,再分别求取L1与P1、L2与P2之间的距离,最后将这三段距离相加就得到了异面直线L1和L2之间的距离。
首先,我们需要找到与直线L1垂直的平面P1、直线与平面垂直的条件是直线方向向量与平面的法向量垂直。
假设直线L1的方向向量为a,平面P1的法向量为n1,那么这两个向量的点积为零:a·n1=0将方程a·n1=0展开,可以得到一个方程组。
通过求解这个方程组,我们可以得到平面P1的方程。
具体求解的方法可以参考数学线性代数的相关知识。
同样地,我们也需要找到与直线L2垂直的平面P2、直线L2的方向向量为b,平面P2的法向量为n2,那么这两个向量的点积为零:b·n2=0通过求解方程组b·n2=0,我们可以得到平面P2的方程。
现在,我们已经找到了与直线L1和L2垂直的平面P1和P2的方程。
接下来,我们需要计算P1和P2之间的距离。
对于平面P1的方程a·n1=0,我们可以将平面P1的点P(x1,y1,z1)带入方程中,得到:a·(x1,y1,z1)=0将方向向量a展开,得到:(a1,a2,a3)·(x1,y1,z1)=0根据点积的定义,可以得到以下方程:a1*x1+a2*y1+a3*z1=0类似地,我们可以得到平面P2的方程:b1*x2+b2*y2+b3*z2=0现在,我们需要找到平面P1和P2之间的最短距离。
设平面P1上的一点为Q(x,y,z),平面P2上的一点为R(u,v,w)。
则Q到平面P1的距离,即点Q到平面P1的法向量n1的投影与平面P1的法向量n1的模的商,可以表示为:d1=,n1·(Q-P1),/,n1同样地,R到平面P2的距离d2可以表示为:d2=,n2·(R-P2),/,n2接下来,我们需要计算两个平面P1和P2之间的距离d3、假设平面P1和P2的法向量分别为n1=(n11,n12,n13)和n2=(n21,n22,n23),则P1和P2之间的距离可以表示为:d3=,(P2-P1)·(n1×n2),/,n1×n2其中×表示向量的叉乘,·表示向量的点积。
向量法求异面直线的距离公式
异面直线之间的距离公式可以通过向量法来求解。
假设有两条异面直线,它们的方向向量分别为a和a,直线上的一点分别为a和a。
则异面直线的距离可以通过以下步骤来计算:
1.首先,我们计算两条直线上的一点,记为aa和aa,它们为两条直线的最近点。
2.然后,我们计算直线上的向量,记为a=aa−aa,它表示从一条直线上的点到另一条直线上的点的向量。
3.最后,我们计算异面直线的距离,记为a,它等于向量a在两条直线的法向量上的投影长度。
根据以上步骤,异面直线的距离公式可以表示为:
a=|a⋅(a×a)|/|a×a|
其中,⋅表示向量的内积,×表示向量的叉积,|a⋅(a×a)|表示向量a在向量(a×a)上的投影长度,|a×a|表示向量(a×a)的模长。
需要注意的是,如果向量a和a不垂直,则上述公式给出的结果为两条直线之间的最短距离。
如果向量a和a垂直,则它们之间的夹角为a/2,此时两条直线之间的距离为0。
这就是使用向量法求解异面直线的距离公式。
通过计算两条直线之间的最短距离,我们可以更好地理解两条异面直线之间的关系。
求异面直线的距离的若干方法本文将通过一道例题的多种解法向大家介绍求异面直线的距离的若干方法,希望对同学们的学习能够有所帮助。
例1 已知正方体ABCD 1111A B C D -的棱长为1,求异面直线1A D 与AC 的距离。
一、直接利用定义求解如图1,取AD 中点M ,连1MD 、MB 分别交1A D 、AC 于E 、F ,连1BD ,由平面几何知识,易证1ME MD =,13MF MB =,1MD MB =,则1BD EF 。
由11A D AD =,1A D AB ⊥得1A D ⊥平面1ABD ,则11A D BD ⊥,同理AC ⊥1BD ,所以,EF ⊥1A D ,EF ⊥AC ,即EF 为异面直线与AC 的距离,故有EF=1133BD =。
评注:此法的关键是作出异面直线的公垂线段。
二、转化为线面距离求解如图2,连11A C 、1C D ,则AC ∥平面11AC D 。
设AC 、BD 交于O ,11A C 、11B D 交于1O ,连1O D ,作OE ⊥1O D 于E ,由11A C ⊥平面11BB D D 知11A C OE ⊥,故OE ⊥平面11AC D 。
所以OE 为异面直线1A D 与AC 的距离。
在△中,,则。
所以异面直线与AC 的距离为。
三、转化为面面距离求解如图3,连1AB 、1CB 、11A C 、1DC 、1BD ,易知平面11//A C D 平面ACB ,则异面直线1A D 与AC 的距离就是平面11//A C D 与平面1ACB 的距离,易证1BD ⊥平面1ACB 、1BD ⊥平面11AC D ,且1BD 被平面1ACB 和平面11AC D 三等分,又1BD。
所以异面直线1A D 与AC的距离为3。
四、构造函数求解如图4,在1A D 上任取一点E ,作EM ⊥AD 于M ,再作MF ⊥AC 于F ,连EF ,则∠EMF=。
设MD=,则ME=,AM,在中,∠FAM=,则)MF x =-所以EF ==3=,当且仅当13x =时,EF所以异面直线1A D 与AC的距离为3。
异面直线距离的求法“哎呀,这异面直线距离可真是个让人头疼的问题啊!”异面直线距离的求法呢,主要有这么几种常见的方法。
一种是直接法,就是找出或作出异面直线的公垂线段,然后计算其长度。
比如说,在一个正方体中,面对角线和体对角线就是异面直线,我们可以通过一些几何关系找到它们的公垂线段。
再比如,看这个例子,有一个三棱锥,其中两条异面直线,我们可以通过仔细观察和分析,找到与这两条异面直线都垂直的线段,这就是公垂线段啦,然后利用一些已知条件去算出它的长度。
还有定义法,根据异面直线距离的定义,转化成求两平行平面之间的距离。
就好像有两个平行的平面,异面直线分别在这两个平面上,那这两个平面之间的距离就是异面直线的距离。
另外,还有一种叫转化法。
可以把异面直线的距离问题转化为线面距离或面面距离问题来求解。
比如把异面直线中的一条放到一个平面内,另一条直线和这个平面平行,那就把求异面直线距离转化成了求线面距离。
向量法也是常用的。
通过建立空间直角坐标系,利用向量的方法来求异面直线的距离。
这个方法对于一些复杂的图形很有效。
总之呢,求异面直线距离的方法要根据具体的题目情况来选择,灵活运用这些方法,多做一些题目,就能更好地掌握啦。
“嘿,小王啊,你看这个图形,用哪种方法求异面直线距离比较好呢?”“我觉得可以用直接法先试试。
”“对,先观察一下,看看能不能找到公垂线段。
”在实际解题过程中,一定要认真分析图形的特点和条件,选择最合适的方法来求解异面直线距离,这样才能又快又准确地得出答案。
就像上次给学生们讲的那道题,乍一看好像挺复杂,但仔细分析后,发现用定义法就能很轻松地解决。
所以啊,遇到问题不要慌,静下心来好好分析,肯定能找到解决办法的。
希望这些解释能让你对异面直线距离的求法有更清楚的认识和理解,以后遇到这类问题就不会再犯难啦!。
异面直线的距离公式推导过程是根据向量积的值等于一向量在另一向量上的投影值来确定的。
在异面直线上各取两点,则此两点构成两个向量,则其有一条直线垂直且穿过此两条直线,其向量与两条直线向量的向量积为零,因而可求得此重直向量的值。
然后根据两直线两点间的连线所构成向量与垂线向量的向量积除以模就是异面空间距离公式。
两异面直线的距离公式是d=【AB*n】/【n】(AB表示异面直线任意2点的连线,n表示法向量)。
异面直线的距离,确定和计算两条异面直线间的距离,关键在于实现两个转化:一是转化为一条异面直线和另一条异面直线所在而与它平行的平面之间的距离。
二是转化为两条异面直线分别所在的两个平行平面之间的距离。
用于两条异面直线互相垂直情况,若已知两条异面直线互相垂直,可以寻找一个辅助平面,使它过其中一条直线且垂直于另一条直线,在辅助平面上,过垂足引前一条直线的垂线,就得到这两条异面直线的公垂线,并求其长度。
距离:异面直线的距离:l1、l2为异面直线,l1,l2公垂直线的方向向量为n、C、D 为l1、l2上任意一点,l1到l2的距离为|AB|=|CD*n|/|n|。
点到平面的距离:设PA为平面的一条斜线,O是P点在a内的射影,PA和a 所成的角为b,n为a的法向量。
|PO|=|PA|sinb=|PA|*|cos|=|PA|*(|PA*n|/|PA||n|)=|PA*n|/|PA|。
直线到平面的距离为在直线上一点到平面的距离。
点到直线的距离:A∈l,O是P点在l上的射影,PA和l所成的角为b,s为l 的方向向量。
异面直线是既不相交,又不平行的直线。
因为两条直线如果相交或平行,则它们必在同一平面上。
若无特别的说明,所说的空间直线,都是指异面直线。
[1] 不同在任何一个平面内的两条直线叫做异面直线。
空间两条直线的位置关系有三种,即相交和平行,这两种情况的两条直线在同一平面内。
另外一种情况就是不相交也不平行称为异面直线。
异面直线距离求法异面直线指的是在三维空间中,不在同一个平面上的两条直线。
计算异面直线之间的距离是很有实际意义的,比如在计算机图形学中,可以用来确定两条直线之间的最短距离,以便进行图像渲染和碰撞检测等操作。
我们需要明确两条异面直线的定义和特点。
异面直线可以由它们的方程表示,一般形式为:L1: A1x + B1y + C1z + D1 = 0L2: A2x + B2y + C2z + D2 = 0其中,A1、B1、C1和D1是L1的系数,A2、B2、C2和D2是L2的系数。
对于异面直线,它们的方向向量不平行,这意味着它们在三维空间中不会相交或重合。
接下来,我们介绍一种常用的方法来计算异面直线之间的距离,即利用点到直线的距离公式。
假设我们要计算L1上的一点P1到L2的距离,可以通过以下步骤进行计算:步骤1:首先,我们需要找到L2上离P1最近的点P2。
我们可以利用向量和点的关系来求解。
将L2的方程代入P1的坐标,得到方程组:A2x + B2y + C2z + D2 = 0x = x1y = y1z = z1通过求解这个方程组,我们可以得到P2的坐标。
步骤2:计算P1和P2之间的距离。
我们可以利用点到直线的距离公式来计算,即:d = |(P2 - P1)·n| / |n|其中,·表示向量的点积运算,n是L2的方向向量。
通过这种方法,我们可以计算出异面直线L1和L2之间的距离。
需要注意的是,如果两条直线平行或重合,它们之间的距离是不存在的。
除了上述方法,还有其他一些求解异面直线距离的方法,比如利用向量的投影和参数方程等。
这些方法各有特点,可以根据具体的情况选择使用。
总结起来,异面直线距离的计算是一项基础的几何计算,对于三维空间中的各种问题都有着重要的应用价值。
通过合适的方法,我们可以准确地计算出异面直线之间的距离,从而解决实际问题。
希望本文可以对读者理解异面直线距离的计算方法有所帮助。
空间异面直线距离公式一、引言在数学中,空间异面直线距离公式是一个重要的概念。
它可以帮助我们计算两条异面直线之间的距离,是解决空间几何问题的重要工具。
本文将详细介绍空间异面直线距离公式的定义、推导和应用。
二、定义空间异面直线是指不在同一个平面内的两条直线。
它们的交点称为异面直线的垂足。
空间异面直线距离公式是指计算两条异面直线之间距离的公式。
三、推导假设有两条异面直线L1和L2,它们的方程分别为:L1: A1x + B1y + C1z + D1 = 0L2: A2x + B2y + C2z + D2 = 0其中,A1、B1、C1、D1、A2、B2、C2、D2均为常数。
我们可以通过以下步骤推导出空间异面直线距离公式:1. 求出两条直线的方向向量L1的方向向量为(a1, b1, c1),L2的方向向量为(a2, b2, c2)。
2. 求出两条直线的法向量L1的法向量为(A1, B1, C1),L2的法向量为(A2, B2, C2)。
3. 求出两条直线的垂足设两条直线的垂足为P,P点坐标为(x0, y0, z0)。
由于P点在L1上,所以有:A1x0 + B1y0 + C1z0 + D1 = 0同理,由于P点在L2上,所以有:A2x0 + B2y0 + C2z0 + D2 = 0解得:x0 = (B1C2D2 - B2C1D1) / (A1B2 - A2B1)y0 = (A2C1D1 - A1C2D2) / (A1B2 - A2B1)z0 = (A1B2D2 - A2B1D1) / (A1B2 - A2B1)4. 求出两条直线之间的距离两条直线之间的距离为P点到L1和L2的距离之和。
L1到P点的距离为:d1 = |A1x0 + B1y0 + C1z0 + D1| / √(A1² + B1² + C1²)L2到P点的距离为:d2 = |A2x0 + B2y0 + C2z0 + D2| / √(A2² + B2² + C2²)两条直线之间的距离为:d = d1 + d2综上所述,空间异面直线距离公式为:d = |A1x0 + B1y0 + C1z0 + D1| / √(A1² + B1² + C1²) + |A2x0 + B2y0 + C2z0 + D2| / √(A2² + B2² + C2²)其中,x0、y0、z0分别为两条异面直线的垂足坐标。
异面直线间的距离(高中全部8种方法详细例题)百度文库中可以查到。
求异面直线之间距离的常用策略:求异面直线之间的距离是立体几何重、难点之一。
常有利用图形性质,直接找出该公垂线,然后求解;或者通过空间图形性质,将异面直线距离转化为直线与其平行平面间的距离,或转化为分别过两异面直线的平行平面间的距离,或转为求一元二次函数的最值问题,或用等体积变换的方法来解。
常用方法有:1、定义法2、垂直平面法(转化为线面距)3、转化为面面距4、代数求极值法5、公式法6、射影法7、向量法8、等积法1. 定义法就是先作出这两条异面直线的公垂线,然后求出公垂线的长,即异面直线之间的距离。
例1 已知:边长a为的两个正方形ABCD和CDEF成1200的二面角,求异面直线CD与AE间的距离。
思路分析:由四边形ABCD 和CDEF是正方形,得CD⊥AD,CD⊥DE,即CD⊥平面ADE,过D作DH⊥AE于H,可得DH⊥AE,DH⊥CD,所以DH是异面直线AE、CD的公垂线。
在⊿ADE中,∠ADE=1200 ,AD=DE=a,DH= 2 a。
即异面直线CD与AE间的距离为2 a。
2 .垂直平面法:转化为线面距离,若a、b是两条异面直线,过b上一点A作a的平行线a/,记a/与b确定的平面α。
从而,异面直线a、b间的距离等于线面a、α间的距离。
例1 如图,BF、AE两条异面直线分别在直二面角P-AB-Q的两个面内,和棱分别成α、β角,又它们和棱的交点间的距离为d,求两条异面直线BF、AE间的距离。
思路分析:BF、AE两条异面直线分别在直二面角P-AB-Q的两个面内,∠EAB=α,∠FAB=β,AB=d,在平面Q内,过B作BH‖AE,将异面直线BF、AE间的距离转化为AE与平面BCD间的距离,即为A到平面BCD间的距离,又因二面角P-AB-Q是直二面角,过A作AC⊥AB交BF于C,即AC⊥平面ABD,过A作AD⊥BD交于D,连结CD。
设A到平面BCD的距离为h。