最优化问题的数学模型及其分类
- 格式:pdf
- 大小:142.20 KB
- 文档页数:5
第六章 最优化数学模型§1 最优化问题1.1 最优化问题概念 1.2 最优化问题分类1.3 最优化问题数学模型 §2 经典最优化方法 2.1 无约束条件极值 2.2 等式约束条件极值 2.3 不等式约束条件极值 §3 线性规划 3.1 线性规划 3.2 整数规划§4 最优化问题数值算法 4.1 直接搜索法 4.2 梯度法 4.3 罚函数法§5 多目标优化问题 5.1 多目标优化问题 5.2 单目标化解法 5.3 多重优化解法 5.4 目标关联函数解法 5.5 投资收益风险问题第六章 最优化问题数学模型 §1 最优化问题1.1 最优化问题概念 (1)最优化问题在工业、农业、交通运输、商业、国防、建筑、通信、政府机关等各部门各领域的实际工作中,我们经常会遇到求函数的极值或最大值最小值问题,这一类问题我们称之为最优化问题。
而求解最优化问题的数学方法被称为最优化方法。
它主要解决最优生产计划、最优分配、最佳设计、最优决策、最优管理等求函数最大值最小值问题。
最优化问题的目的有两个:①求出满足一定条件下,函数的极值或最大值最小值;②求出取得极值时变量的取值。
最优化问题所涉及的内容种类繁多,有的十分复杂,但是它们都有共同的关键因素:变量,约束条件和目标函数。
(2)变量变量是指最优化问题中所涉及的与约束条件和目标函数有关的待确定的量。
一般来说,它们都有一些限制条件(约束条件),与目标函数紧密关联。
设问题中涉及的变量为n x x x ,,,21 ;我们常常也用),,,(21n x x x X 表示。
(3)约束条件在最优化问题中,求目标函数的极值时,变量必须满足的限制称为约束条件。
例如,许多实际问题变量要求必须非负,这是一种限制;在研究电路优化设计问题时,变量必须服从电路基本定律,这也是一种限制等等。
在研究问题时,这些限制我们必须用数学表达式准确地描述它们。
最优化问题数学模型在我们的日常生活和各种实际应用中,最优化问题无处不在。
从生产线上的资源分配,到物流运输中的路径规划,从金融投资中的资产配置,到工程设计中的参数选择,都需要找到最优的解决方案,以实现效率最高、成本最低、效益最大等目标。
而数学模型就是帮助我们解决这些最优化问题的有力工具。
那么,什么是最优化问题数学模型呢?简单来说,它是将实际问题转化为数学语言和表达式的一种方式,通过建立数学关系式,来描述问题中的各种约束条件和目标函数,然后运用数学方法和算法求解,找到最优的决策变量取值。
举个简单的例子,假设一家工厂要生产两种产品 A 和 B,生产 A 产品每件需要消耗 2 个单位的原材料和 3 个小时的工时,生产 B 产品每件需要消耗 3 个单位的原材料和 2 个小时的工时。
工厂共有 100 个单位的原材料和 80 个小时的工时可用,每件 A 产品的利润是 5 元,每件 B 产品的利润是 4 元。
那么,如何安排生产才能使工厂的总利润最大呢?为了建立这个问题的数学模型,我们首先定义决策变量:设生产 A 产品的数量为 x 件,生产 B 产品的数量为 y 件。
然后,我们确定目标函数,即要最大化的总利润:Z = 5x + 4y 。
接下来,考虑约束条件。
原材料的限制可以表示为:2x +3y ≤ 100 ;工时的限制可以表示为:3x +2y ≤ 80 ;还有非负约束:x ≥ 0 ,y ≥ 0 。
这样,我们就建立了一个简单的最优化问题数学模型。
通过求解这个模型,就可以得到最优的生产方案,即 x 和 y 的取值,使得总利润Z 最大。
最优化问题数学模型的类型多种多样,常见的有线性规划、非线性规划、整数规划、动态规划等。
线性规划是最简单也是应用最广泛的一种模型。
它的目标函数和约束条件都是线性的,就像我们上面的例子。
线性规划问题可以通过单纯形法等有效的算法在较短的时间内求解。
非线性规划则是目标函数或约束条件中至少有一个是非线性的。
优化问题中的数学规划模型优化问题中的数学规划模型1.优化问题及其一般模型优化问题是人们在工程技术、经济管理和科学研究等领域中最常遇到的问题之一。
例如:设计师要在满足强度要求等条件下选择材料的尺寸,使结构总重量最轻;公司经理要根据生产成本和市场需求确定产品价格,使所获利润最高;调度人员要在满足物质需求和装载条件下安排从各供应点到需求点的运量和路线,使运输总费用最低;投资者要选择一些股票、债券下注,使收益最大,而风险最小等等。
一般地,优化模型可以表述如下:minz?f(x)s.t.gi(x)?0,i=1,2,?,m (1.1)这是一个多元函数的条件极值问题,但是许多实际问题归结出的这种优化模型,其决策变量个数n和约束条件个数m一般较大,并且最优解往往在可行域的边界上取得,这样就不能简单地用微分法求解,数学规划就是解决这类问题的有效方法。
2.数学规划模型分类“数学规划是运筹学和管理科学中应用及其广泛的分支。
在许多情况下,应用数学规划取得的如此成功,以致它的用途已超出了运筹学的范畴,成为人们日常的规划工具。
”[H.P.Williams.数学规划模型的建立]。
数学规划包括线性规划、非线性规划、整数规划、几何规划、多目标规划等,用数学规划方法解决实际问题,就要将实际问题经过抽象、简化、假设,确定变量与参数,建立适当层次上的数学模型,并求解。
3.建立数学规划模型的步骤当你打算用数学建模的方法来处理一个优化问题的时候,首先要确定寻求的决策是什么,优化的目标是什么,决策受到那些条件的限制(如果有限制的话),然后用数学工具(变量、常数、函数等)表示它们,最后用合适的方法求解它们并对结果作出一些定性、定量的分析和必要的检验。
Step 1. 寻求决策,即回答什么?必须清楚,无歧义。
阅读完题目的第一步不是寻找答案或者解法,而是…… Step 2. 确定决策变量第一来源:Step 1的结果,用变量固定需要回答的决策第二来源:由决策导出的变量(具有派生结构)其它来源:辅助变量(联合完成更清楚的回答) Step 3. 确定优化目标用决策变量表示的利润、成本等。
数学建模第三章第三章⾮线性最优化⽅法§3.1 最优化问题与建模⼀. 基本概念:因为⼈类所从事的⼀切⽣产或社会活动均是有⽬的的,其⾏为总是在特定的价值观念或审美取向的⽀配下进⾏的,经常⾯临求解⼀个可⾏的甚⾄是最优的⽅案的决策问题。
可以说,最优化思想是数学建模的灵魂。
⽽最优化⽅法作为⼀门特殊的数学学科分⽀有着⼴泛的实际应⽤背景。
典型的最优化模型可以被描述为如下形式:其中表⽰⼀组决策变量,通常在实数域内取值,称决策变量的函数为该最优化模型的⽬标函数;为维欧⽒空间的某个⼦集,通常由⼀组关于决策变量的等式或不等式刻画,形如:这时,称模型中关于决策变量的等式或不等式、为约束条件,⽽称满⾜全部约束条件的空间中的点为该模型的可⾏解,称,即由所有可⾏解构成的集合为该模型的可⾏域。
称为最优化模型的(全局)最优解,若满⾜:对均有,这时称处的⽬标函数值的为最优化模型的(全局)最优值;称为最优化模型的局部最优解,若存在,对,均有。
(全局)最优解⼀定是局部最优解,但反之不然,其关系可由下图得到反映:上图为函数在区间上的⼀段函数曲线(由Mathematica绘制),如果考察最优化问题,从图中发现它有三个局部最优解、、,其中是全局最优解,最优值为“”。
⼆. 最优化问题的⼀些典型的分类:优化⽅法涉及的应⽤领域很⼴,问题种类与性质繁多,根据不同的原则可以给出不同的分类。
从数学建模的⾓度,对最优化问题的⼀些典型分类及相关概念的了解是有益的。
根据决策变量的取值类型,可分为函数优化问题与组合优化问题,称决策变量均为连续变量的最优化问题为函数优化问题;若⼀个最优化问题的全部决策变量均离散取值,则称之为组合优化问题。
⽐⽅⼀些最优化问题的决策变量被限定只能取整数值,即为组合最优化问题,这类优化问题通常被称为整数规划问题,另外⼤多⽹络规划问题属于组合最优化问题。
当然,也有许多应⽤问题的数学模型表现为混合类型的,即模型的部分决策变量为连续型的,部分决策变量为离散型的;另外当谈论⼀个最优化问题是函数优化问题还是组合优化问题时,还需结合我们对这⼀问题的思考⽅式来进⾏确定,⽐⽅后⾯介绍的线性规划问题的求解,既有将其作为⼀个组合优化问题⽽开发的算法,也有将其作为⼀个函数优化问题⽽开发的算法;另外的⼀种分类⽅式是根据问题中⽬标、约束条件函数的形式或性质来加以划分的:若⼀个最优化问题的⽬标、约束条件函数均为决策变量的线性函数,则称之为线性规划问题,否则称之为⾮线性最优化问题。
《最优化方法》1一、填空题:1 •最优化问题的数学模型一般为:_____________________________ ,其中___________ 为目标函数, _____________ 为约束函数,可行域D可以表示为 _______________________________ ,若 _______________________________ ,称x*为问题的局部最优解,若 _________________________________________ 称X*为问题的全局最优解。
2 •设f(x)= 2x1 2x1X2 X i 5X2 ,则其梯度为_______________________ ,海色矩阵___________ ,令x (1,2)T,d (1,0)T,则f(x)在x处沿方向d的一阶方向导数为___________ 几何意义为________________________________________ 二阶方向导数为 ____________________ ,几何意义为_____________________________3 •设严格凸二次规划形式为:min f (x) 2x; 2x| 2x1x2s.t. 2x1x21x10x20则其对偶规划为4•求解无约束最优化问题:min f(x), x R n,设x k是不满足最优性条件的第k 步迭代点,则:用最速下降法求解时,搜索方向d k= ___________用Newton法求解时,搜索方向d k= ____________用共轭梯度法求解时,搜索方向 d k= ________________二.(10分)简答题:试设计求解无约束优化问题的一般下降算法。
三.(25分)计算题1. (10分)用一阶必要和充分条件求解如下无约束优化问题的最优解:3 2min f (x) 2x! 3为6x^2(^ x21).2. ( 15分)用约束问题局部解的一阶必要条件和二阶充分条件求约束问题:min f (x) x1x22 2s.t. c(x) % X2 1 0的最优解和相应的乘子。
第一章最优化问题及数学预备知识最优化分支:线性规划,整数规划,几何规划,非线性规划,动态规划。
又称规划论。
应用最优化方法解决问题时一般有以下几个特点:1. 实用性强2. 采用定量分析的科学手段3. 计算量大,必须借助于计算机4. 理论涉及面广应用领域:工业,农业,交通运输,能源开发,经济计划,企业管理,军事作战……。
§1.1 最优化问题实例最优化问题:追求最优目标的数学问题。
经典最优化理论:(1) 无约束极值问题:),,,(opt 21n x x x f(),,,(m in 21n x x x f 或),,,(m ax 21n x x x f )其中,),,,(21n x x x f 是定义在n 维空间上的可微函数。
解法(求极值点):求驻点,即满足⎪⎪⎩⎪⎪⎨⎧='='='0),,(0),,(0),,(11121n x n x n x x x f x x f x x f n并验证这些驻点是否极值点。
(2) 约束极值问题:),,,(opt 21n x x x fs.t. )(,,2,1,0),,,(21n l l j x x x h n j <==解法:采用Lagrange 乘子法,即将问题转化为求Lagrange 函数),,(),,,(),,;,,,(1121121n j j lj n l n x x h x x x f x x x L λλλ∑=+=的无约束极值问题。
近代最优化理论的实例:例1 (生产计划问题) 设某工厂有3种资源B 1,B 2,B 3,数量各为b 1,b 2,b 3,要生产10种产品A 1,…,A 10 。
每生产一个单位的A j 需要消耗B i 的量为a ij ,根据合同规定,产品A j 的量不少于d j ,再设A j 的单价为c j 。
问如何安排生产计划,才能既完成合同,又使总收入最多?(线性规划问题)数学模型:设A j 的计划产量为 j x ,z 为总产值。
最优化问题的数学模型《最优化问题的数学模型》嘿,同学们!你们知道什么是最优化问题的数学模型吗?这可真是个超级有趣又有点复杂的东西呢!就好像我们玩游戏,想要用最少的时间通过最多的关卡,这就是在找一种最优的方法,对吧?那最优化问题的数学模型就像是我们玩游戏时的攻略秘籍!有一次,我们数学老师在课堂上给我们出了一道题。
她说:“假如你要去商店买东西,手里只有20 块钱,商店里有铅笔1 块钱一支,笔记本3 块钱一本,橡皮5 毛钱一块,那怎么买才能让这20 块钱花得最值?” 这就是一个小小的最优化问题呀!我当时就想,哎呀,这可咋办?要是都买铅笔,能买20 支,可要是都买笔记本,只能买6 本还多2 块钱。
这就好像是在选择走不同的路,哪条路能让我们到达更好的地方呢?同桌小明凑过来跟我说:“我觉得多买点笔记本好,能记好多笔记呢!” 我摇摇头说:“可是铅笔也很有用呀,能写好多字。
” 这时候,学习委员小红发言了:“咱们得算算,怎么搭配才能让买的东西又多又有用。
” 我们大家都纷纷点头,觉得她说得有道理。
然后我们就开始算呀算,就像一群小数学家。
最后发现,如果买5 本笔记本,5 支铅笔,20 块橡皮,这样就能把20 块钱花得刚刚好,而且东西也都很实用。
这只是一个小小的例子,其实在生活中,最优化问题的数学模型无处不在呢!比如说,工厂生产东西,怎么安排生产计划能让成本最低、产量最高?物流公司送货,怎么规划路线能最快最省钱地把货物送到目的地?这难道不像我们在玩拼图游戏,要找到最合适的那块拼图,才能拼出最完美的图案吗?再想想,如果没有最优化问题的数学模型,那得多乱呀!就像做饭没有菜谱,不知道放多少盐多少油,做出来的饭能好吃吗?所以呀,最优化问题的数学模型真的超级重要!它能帮助我们在各种各样的情况中找到最好的解决办法,让我们的生活变得更有条理,更有效率。
我觉得,我们一定要好好学数学,掌握这个神奇的工具,这样才能在生活这个大舞台上,跳出最精彩的舞步!。
数学建模常用算法模型在数学建模中,常用的算法模型包括线性规划、整数规划、非线性规划、动态规划、图论算法以及遗传算法等。
下面将对这些算法模型进行详细介绍。
1.线性规划:线性规划是一种用于求解最优化问题的数学模型和解法。
它的目标是找到一组线性约束条件下使目标函数取得最大(小)值的变量取值。
线性规划的常用求解方法有单纯形法、内点法和对偶理论等。
2.整数规划:整数规划是一种求解含有整数变量的优化问题的方法。
在实际问题中,有时变量只能取整数值,例如物流路径问题中的仓库位置、设备配置问题中的设备数量等。
整数规划常用的求解方法有分支界定法和割平面法等。
3.非线性规划:非线性规划是一种求解非线性函数优化问题的方法,它在实际问题中非常常见。
与线性规划不同,非线性规划的目标函数和约束函数可以是非线性的。
非线性规划的求解方法包括牛顿法、拟牛顿法和全局优化方法等。
4.动态规划:动态规划是一种用于解决决策过程的优化方法。
它的特点是将问题划分为一系列阶段,然后依次求解每个阶段的最优决策。
动态规划常用于具有重叠子问题和最优子结构性质的问题,例如背包问题和旅行商问题等。
5.图论算法:图论算法是一类用于解决图相关问题的算法。
图论算法包括最短路径算法、最小生成树算法、网络流算法等。
最短路径算法主要用于求解两点之间的最短路径,常用的算法有Dijkstra算法和Floyd-Warshall算法。
最小生成树算法用于求解一张图中连接所有节点的最小代价树,常用的算法有Prim算法和Kruskal算法。
网络流算法主要用于流量分配和问题匹配,例如最大流算法和最小费用最大流算法。
6.遗传算法:遗传算法是一种借鉴生物进化原理的优化算法。
它通过模拟生物的遗传、变异和选择过程,不断优化问题的解空间。
遗传算法适用于对问题解空间有一定了解但难以确定最优解的情况,常用于求解复杂的组合优化问题。
总结起来,数学建模中常用的算法模型包括线性规划、整数规划、非线性规划、动态规划、图论算法以及遗传算法等。
最优化问题的数学模型及其分类
例1.1.1 产品组合问题
某公司现有三条生产线用来生产两种新产品,其主要数据如表1-1所示。
请问如何生产可以让公司每周利润最大? 表1-1
设每周生产的产品一和产品二 的产量分别为1x 和2x ,则每周的生产利润为:2153x x z +=。
由于每周的产品生产受到三条生产线的可用时间的限制,因此1x ,2x 应满足以下条件:
⎪⎪⎩⎪⎪⎨
⎧≥≤+≤≤0,
18231224212121
x x x x x x 故上述问题的数学模型为
2153max
x x z +=
.
.t s ⎪⎪⎩⎪⎪⎨
⎧≥≤+≤≤0,
18231224212121
x x x x x x 其中max 是最大化(maximize )的英文简称,⋅⋅t s 是受约束于(subject to )的简写。
例1.1.2 把一个半径为1的实心金属球熔化后,铸成一个 实心圆柱体,问圆柱体取什么尺寸才能使它的表面积最小? 设圆柱体的底面半径为r ,高为h ,则该问题的数学模型为:
⎪⎩⎪
⎨⎧=⋅
⋅+=ππππ3
422min
22
h r t s r rh S 其中min 是最小化(minimize )的简写。
通过以上二例,可以看出最优化问题的数学模型具有如下结构:
(1) 决策变量(decision variable ):即所考虑问题
可归结为优选若干个被称为参数或变量的量
n x x x ,,,21 ,它们都取实数值,它们的一组值构
成了一个方案。
(2) 约束条件(constraint condition ):即对决策
变量n x x x ,,,21 所加的限制条件,通常用不等式或等式表示为: ()(),,,2,1,
0,,,,,2,1,
0,,,2121l j x x x h m i x x x g n
j n i ===≥
(3) 目标函数(objective function )和目标:如使
利润达到最大或使面积达到最小,通常刻划为极大化(maximize )或极小化(minimize )一个实值函数()n x x x f ,,21
因此,最优化问题可理解为确定一组决策变量在满足约束条件下,寻求目标函数的最优。
注意到极大化目标函数()n x x x f ,,21相当于极小化
()n x x x f ,,21-,因此,约束最优化问题的数学模型一般可
表示为:
()
()()()⎪⎩
⎪
⎨⎧===≥⋅⋅l
j x x x h m i x x x g t s x x x f n j n i n ,,2,1,0,,,1.1.1,,2,1,0,,,,,min 212121
若记()T
n x x x x
,,21=,则(1.1.1)又可写成:
()()()
()⎪⎪⎩
⎪
⎪⎨⎧=='
=≥⋅⋅l
j x h m i x g t s x f j i ,,2,1,01.1.1,,2,1,0min
其中
()()
m i x g i ,2,10
=≥称为不等式约束;
()()l j x h j ,,2,10 ==称为等式约束。
()()m i x g i ,,2,1 =与
()()l j x h j ,,2,10 ==称约束函数(constraint function )。
* 当目标函数和约束函数均为变量x 的线性函数时,问题(1.1.1)称为线性规划问题(linear programming problem )。
* 当目标函数和约束函数中至少有一个函数是x 的非线性函数时。
问题(1.1.1)称为非线性规划问题(nonlinear programming problem )
* 当目标函数为x 的二次函数,约束函数均为x 的线性函数时,问题(1.1.1)称为二次规划问题(guadratic programming problem )
* 如果要求某些决策变量或全部决策变量取非负整数值时,问题(1.1.1)称为整数规划问题(integer programming problem ) * 若目标函数不止一个,即
()()()()()2,,,21≥=p x f x f x f x f T
p ,
* 则问题()'1.1.1为多目标规划问题(multiobjective
programming problem )
*此外,根据决策变量、目标函数和约束函数的不同特点,最优化问题还可以划分为许多其它分支。
例如:动态规划(dynamical programming)
网络规划(network programming)
几何规划(geometric programming)
非光滑优化 (non-smooth optimization )
随机规划(stochastic programming)
目标规划(goal programming)
模糊规划(fuzzy programming)。