课多环芳烃污染生态毒理学演示文稿
- 格式:ppt
- 大小:6.15 MB
- 文档页数:28
多环芳烃的毒理学特征多环芳烃(Polycyclic Aromatic Hydrocarbons PAHs)是指由两个或两个以上苯环以线状、角状或簇状排列的中性或非极性碳氢化合物,可分为芳香稠环型。
芳香稠环型是指分子中相邻的苯环至少有两个共用碳氢化合物,如萘、蒽、菲、芘等;芳香非稠环型是指分子中相邻的苯环之间只有一个碳原子相连的化合物,如联苯、三联苯等。
多环芳烃化合物被证实是具有致癌、致畸、致突变的作用,而且由于其物理化学性质稳定,在自然界中难以降解,是自然环境中持久性有机污染物的主要代表,受到国际上科学界的广泛关注。
多环芳烃的性质多环芳烃大都是无色或淡黄色的结晶,个别颜色较深,具有蒸汽压低、疏水性强、辛醇-水分配系数高、易溶于苯类芳香性溶剂中等特点。
它的分子中含有两个以上苯环的碳氢化合物,包括萘、蒽、菲、芘等150余种化合物。
有些多环芳烃还含有氮、硫和环戊烷,常见的具有致癌作用的多环芳烃多为四到六环的稠环化合物。
多环芳烃的来源和分布环境中存在的PAHs主要有天然和人为两种来源。
天然来源(1)某些细菌、藻类和植物的生物合成产物;(2)森林、草原燃起的野火及火山喷发物;(3)从化石燃料、木质素、底泥等散发出的PAHs是长期地质年代中由生物降解再合成的产物。
人为来源(1)废物焚烧和化工燃料不完全燃烧产生的烟气(包括汽车尾气);(2)工厂(特别是炼焦、炼油、煤气厂)排出物。
(3)水体中的PAHs主要来源于工业废水、大气降落物、表面敷沥青道路的径流及污染土壤的沥滤流。
与地下水、湖水相比,河水更易受污染,其中多被吸附在悬浮粒子上,仅少量呈溶解态。
(4)室内PAHs则来源于取暖、烹饪以及吸烟等,由含碳氢化合物不完全燃烧产生。
特别是有研究报道,从香烟中已检测到300种以上的PAHs。
分布人类在工农业生产,交通运输和日常生活中大量使用的煤炭,石油,汽油,木柴等燃料,可产生多环芳烃的污染.每公斤燃料燃烧所排出的苯并[α]芘量分别约为:煤炭67~137mg,木柴61~125mg,原油40~68mg,汽油12~50.4.因此,人类的外环境如大气,土壤和水中都不同程度地含有苯并[α]芘等多环芳烃.多环芳烃在大气的污染为其直接进入食品—落在蔬菜,水果,谷物和露天存放的粮食表面创造了条件.食用植物也可以从受多环芳烃污染的土壤及灌溉水中聚集这类物质,多环芳烃污染水体,可以使之通过海藻,甲壳类动物,软体动物和鱼组成的食物链向人体转移,最终都有可能聚集在人体中.多环芳烃的毒性和致癌性多环芳烃的致癌性已被人们研究了200多年.早在1775年,英国医生波特就确认烟囱清洁工阴囊癌的高发病率与他们频繁接触烟灰(煤焦油)有关.然而直到1932年,最重要的多环芳烃—苯并[α]芘才从煤矿焦油和矿物油中被分离出来,并在实验动物中发现有高度致癌性.多环芳烃的种类很多,其致癌活性各有差异. 苯并[α]芘是一种较强的致癌物,主要导致上皮组织产生肿瘤,如皮肤癌,肺癌,胃癌和消化道癌.用含25μg/k g苯并[α]芘的饲料饲喂小鼠140d,除使小鼠产生胃癌外还可诱导其白血球增多和产生肺腺瘤.每周三次摄入100mg的苯并[α]芘,有超过60%的大鼠发生皮肤肿瘤;当剂量降为3mg时,大鼠皮肤肿瘤的发生率下降到约20%;当剂量恢复到10mg后,皮肤肿瘤的发生率又可急剧上升至近100%.因此,大鼠皮肤肿瘤与苯并[α]芘有明显的量效关系.1973年,沙巴特等人的研究表明,苯并[α]芘除诱导胃癌和皮肤癌外,还可引起食管癌,上呼吸道癌和白血病,并可通过母体使胎儿致畸. 随食物摄入人体内的苯并[α]芘大部分可被人体吸收,经过消化道吸收后,经过血液很快遍布人体,人体乳腺和脂肪组织可蓄积苯并[α]芘.人体吸收的苯并[α]芘一部分与蛋白质结合,另一部分则参与代谢分解.与蛋白质结合的苯并[α]芘可与亲电子的细胞受体结合,使控制细胞生长的酶发生变异,使细胞失去控制生长的能力而发生癌变.参与代谢分解的苯并[α]芘在肝组织氧化酶系中的芳烃羟化酶(Aryl hydrocarbon hydroxylase,AHH导致癌的发生. 鉴于种种原因,FAO/WHO对食品中的PAHs允许含量未作出)介导下生成其活化产物—7,8-苯并[α]芘环氧化物,该物质可在葡萄糖醛酸和谷胱甘肽结合,或在环氧化物水化酶催化下生成二羟二醇衍生物随尿排出.但苯并[α]芘二羟二醇衍生物经细胞色素P450进一步氧化可产生最终的致癌物—苯并[α]芘二醇环氧化物(Benzo[α] pyrene diolepoxide).该物质不可被转化且具有极强的致突变性,可以直接和细胞中不同成分(包括DNA)反应,形成基因突变,从而规定.有人估计,成年人每年从食物中摄取的PAHs总量为1~2mg,如果累积摄入PAHs超过80mg即可能诱发癌症,因此建议每人每天的摄入总量不可超过10μg.多环芳烃的毒理学特征目前已知多种PAHs具有DNA损伤、诱导有机体基因突变以及染色体畸变等毒性作用,能引发呼吸、消化、生殖等多系统癌变,而且还具有肝脏毒性和神经毒性。
大气颗粒物中多环芳烃的污染特征及毒理学效应研究近年来,随着工业化和城市化的迅猛发展,大气污染已成为全球范围内关注的重点问题之一。
其中,大气颗粒物作为主要的污染源之一,对人体健康造成了不可忽视的影响。
而其中的多环芳烃(PAHs)更是备受关注,因其具有强烈的毒性和致癌性。
首先,我们来了解一下多环芳烃的污染特征。
多环芳烃是一类由若干个苯环组成的有机化合物,主要来源于燃烧过程和工业排放。
石化、化工、机动车尾气等都是多环芳烃的重要污染源。
由于多环芳烃在大气中具有较长的半衰期,因此在大气中往往能够长时间存在,导致其对人体的危害不容忽视。
其次,我们来探讨一下多环芳烃的毒理学效应。
多环芳烃具有多种毒性,如致突变性、致畸变性、致致癌性等。
它们可以通过空气道吸入到人体内部,进而沉积在肺部。
这些颗粒物不仅会引发急性呼吸道病症,还会诱发慢性呼吸系统疾病,如支气管炎、肺癌等。
此外,多环芳烃还可通过血液循环进入到其他器官,例如心脏、肝脏和肾脏等,对这些器官的正常功能造成损害。
当前,有关大气颗粒物中多环芳烃的研究主要集中在以下几个方面。
一是监测和分析多环芳烃的污染水平和来源,以了解其在不同环境中的分布情况和污染程度。
二是研究多环芳烃在大气中的迁移和转化规律,揭示其在大气环境中的行为特征。
三是探究多环芳烃对生态系统的影响,包括对植物和土壤的毒害效应,并研究其对生物多样性的影响。
四是开展人体健康风险评估研究,评估多环芳烃对公众健康的潜在危害。
针对多环芳烃的污染特征和毒理学效应,我们应当采取积极的防治措施。
一方面,要加强环境监测与评价,及时掌握多环芳烃的污染状况,为制定有效的治理措施提供数据支持。
另一方面,要加强对污染源的治理,如加强工业废气的治理、促进清洁能源的开发和使用等。
此外,也需要加强公众的环保意识,推动绿色生产和消费,减少对大气环境的污染。
总之,大气颗粒物中多环芳烃的污染已成为一个严重的环境问题,对人体健康产生了不可忽视的影响。
多环芳烃的毒理学特征及其对人群暴露的危害摘要持久性有机污染物(Persistent Organic Pollutants,简称POPs)是指高毒、持久、生物蓄积性的对人类健康和环境具有严重危害的有机污染物质,其持久性、富集性及对包括人类在内的生物产生的“三致”(致癌、致畸、致异变)效应和环境激素效应,对全球环境和人体健康造成严重危害正日益显著。
多环芳烃类化合物(PAHs)不但象其他POPs一样具有潜在的巨大危害性、持久性和普遍性,并且随着人口膨胀及工业化的进展,PAHs通过各种渠道进入环境的速度有增无减。
因此PAHs已成为POPs研究领域的一个新热点,越来越受到各国科学家的重视。
本文综述了多环芳烃的毒理学特征,简要分析了目前国内的多环芳烃的污染状况及对多环芳烃对人群暴露的危害风险进行评价。
关键词多环芳烃;毒理学;人群暴露多环芳烃(PAHs)是一类广泛存在于环境中的持久性有机污染物,主要来源于化石燃料的不完全燃烧。
美国环保署公布的16种优先控制PAHs中,不少化合物对人体和生物体具有“致癌、致畸和致基因突变”作用。
近期执行的由联合国环境规划署(UNEP)和全球环境基金(GEF)共同组织的持久性污染物(PTS)区域评价计划,在包括我国在内的中亚和东北亚国家(第VII工作区,共11个国家和地区)筛选出的持久性污染物中,PAHs位列第四,在优先级上仅次于二恶英/呋喃类和多氯联苯(PCBs)[1]。
PAHs成为地球化学和环境毒理领域的研究热点主要有以下几个原因:①PAHs的来源较多,主要有热解成因、石油和成岩成因;②化石燃料燃烧过程中产生的PAHs同时还伴随着炭黑,石油源的PAHs是包含无数芳烃和脂肪烃类的混合物,这些不同进而影响它们的持久性和生物有效性;③与其它环境中POPs相比,PAHs的构型非常多;而且其它许多有害物质可通过禁用和控制排放来达到削减的目的,而PAHs由于成因非常广泛很难控制。
1多环芳烃的性质及其在气固相间的分配1979年美国环保局(EPA)颁布了129种优先监测污染物,它们是有害,有毒或已知对人体健康有严重影响的物质。