L-丝氨酸的酶法合成及分析
- 格式:pptx
- 大小:218.41 KB
- 文档页数:23
丝氨醇(L-Serine)是一种重要的非必需氨基酸,具有多种生物学功能。
在工业上,丝氨醇的合成主要采用以下几种方法:1. 生物合成法:以甘氨酸和甲醇为原料,通过羟甲基转移酶(HMT)催化合成L-丝氨酸。
这种方法具有环保、条件温和、副产物少等优点,但反应速度较慢,催化剂活性不易控制。
2. 化学合成法:以丙烯酸甲酯为原料,通过多步反应合成丝氨酸。
首先,丙烯酸甲酯经过氢化反应得到甲酸甲酯,然后甲酸甲酯与氨气反应生成甲酰胺,最后甲酰胺经过水解、酸化等步骤得到丝氨酸。
这种方法反应速度快,但需要多步反应,且部分步骤可能产生副产物。
3. 化学酶法:将化学合成法与生物合成法相结合,利用酶催化特定的化学反应,提高合成效率。
例如,利用醇脱氢酶催化醇的脱氢反应,再通过其他化学反应步骤得到丝氨酸。
这种方法可以在较温和的条件下进行,具有环保和高效等优点。
4. 重组酶法:利用基因工程技术,构建一种能催化特定反应的酶,从而实现丝氨酸的合成。
这种方法具有高度专一性,可以在较温和的条件下进行,且副产物较少。
但需要通过基因工程操作,技术要求较高。
5. 直接发酵法:利用微生物直接发酵生产丝氨酸。
通过筛选和改造具有高产丝氨酸能力的微生物,优化发酵条件,提高丝氨酸产量。
这种方法具有环保、成本较低等优点,但发酵过程需要严格控制条件,且产量受到微生物性能的限制。
6. 萃取法:从天然蛋白质水解物中提取丝氨酸。
通过将蛋白质水解成氨基酸,然后利用丝氨酸与其他氨基酸的溶解度差异,通过萃取、结晶等步骤分离得到丝氨酸。
这种方法适用于资源丰富、对纯度要求不高的场合,但提取效率较低,可能存在杂质问题。
综合上述方法,可以根据实际需求、资源和技术条件选择合适的丝氨酸合成工艺。
在工业生产中,为了提高丝氨酸的产量和质量,可能需要将多种方法相互结合,实现优化生产。
中科院科技成果——微生物直接发酵法生产L-丝氨酸
项目简介
L-丝氨酸(L-Serine,L-Ser)作为一种组成蛋白的基本氨基酸广泛应用于医药、食品、化妆品等行业。
此外,以L-Ser为原料还可以合成具有抗癌、抗艾滋、调节人体神经系统等不同效用的药物20余种。
目前L-Ser的全球市场需求量为10000吨/年以上,市场潜力巨大。
但与不断增大的L-Ser市场需求相比,L-Ser的生产技术较为落后。
目前,L-Ser的工业生产方法主要有蛋白水解法、化学合成法和酶转化法等,其中蛋白水解法存在工艺复杂、分离精制困难等缺点;化学合成法存在污染重、成本高、D-Ser与L-Ser分离困难等缺点;酶转化法存在转化率过低、前体物昂贵等难题。
因此尽快开发污染小、成本低、效率高的微生物直接发酵法生产L-Ser,显得极为重要。
中科院上海高等研究院生物炼制实验室经过近些年的研究积累,在微生物直接发酵法生产L-Ser关键技术上取得了重大突破,主要成果有:(1)通过分子改造大肠杆菌合成L-Ser的代谢途径,构建了L-Ser 的基因工程菌;(2)对该基因工程菌进行发酵培养基及发酵条件的优化;最终在发酵约40h后,L-Ser的产量达到30g/L以上,可用于工业化生产。
该项目具有自主知识产权。
(10)申请公布号 CN 102220389 A(43)申请公布日 2011.10.19C N 102220389 A*CN102220389A*(21)申请号 201110099457.9(22)申请日 2011.04.20C12P 13/06(2006.01)C07C 229/22(2006.01)C07C 227/40(2006.01)(71)申请人横店集团家园化工有限公司地址322118 浙江省金华市东阳市横店工业区(72)发明人姚苏 吕立获 何春 李平袁志友 彭宏涛 徐新良(74)专利代理机构浙江杭州金通专利事务所有限公司 33100代理人周希良 徐关寿(54)发明名称一种L-丝氨酸的合成方法(57)摘要本发明公开L-丝氨酸的合成方法,包括A 、底物浓度转化:生物反应器中加入底物甘氨酸和占重3%~8%的丝氨酸羟甲基转移酶;当40~50℃时流加37%的甲醛水溶液,转化为L-丝氨酸转化液;B 、超滤膜纯化:将A 步的L-丝氨酸转化液在25~35℃,进口压力0.4~0.8MPa ,出口压力0.1~0.3MPa 下通过超滤膜纯化;C 、离子交换树脂吸附、洗脱:将B 步的渗透液调至pH 值4.5~5.5,后通过离子交换树脂将L-丝氨酸转化液交换至树脂上,再用0.8~1.5mol/L 盐酸洗脱;D 、纳滤膜浓缩:将C 步的L-丝氨酸洗脱液在25~35℃,进口压力0.4~0.8MPa ,出口压力0.1~0.3MPa 下通过纳滤膜浓缩;浓缩后得到L-丝氨酸成品。
本发明操作简单、生产周期短、成本低、收率高、环保压力小,适合大规模的工业化生产。
(51)Int.Cl.(19)中华人民共和国国家知识产权局(12)发明专利申请权利要求书 1 页 说明书 4 页1.一种L-丝氨酸的合成方法,其特征是按如下步骤:A、底物浓度转化:底物为甘氨酸,在生物反应器中加入所述的底物和丝氨酸羟甲基转移酶,丝氨酸羟甲基转移酶为底物重量百分比的3%~8%;控制温度40~50℃,流加37%的甲醛水溶液,转化为L-丝氨酸转化液;B、超滤膜纯化:将所述转化后的L-丝氨酸转化液在温度25~35℃,进口压力为0.4~0.8Mpa,出口压力为0.1~0.3Mpa的条件下通过超滤膜纯化;C、离子交换树脂吸附、洗脱:将所述经过超滤膜纯化的渗透液调至pH值为4.5~5.5,然后通过离子交换树脂将超滤膜纯化后的L-丝氨酸转化液交换至树脂上,再采用0.8~1.5mol/L的盐酸溶液洗脱;D、纳滤膜浓缩:将所述经过盐酸洗脱后的L-丝氨酸洗脱液在温度25~35℃,进口压力为0.4~0.8Mpa,出口压力为0.1~0.3Mpa的条件下通过纳滤膜浓缩;浓缩后得到L-丝氨酸成品。
氨基酸组成中的丝氨酸
丝氨酸,也被称为β-羟基丙氨酸,是一种非必需氨基酸,其化学式为C3H7NO3。
这种氨基酸最初是从蚕丝中分离出来的,因此得名。
丝氨酸在生物体内发挥着多种重要作用,包括参与脂肪和脂肪酸的新陈代谢、肌肉的生长,以及在细胞膜的制造加工、肌肉组织和包围神经细胞的鞘的合成中发挥作用。
丝氨酸是构成蛋白质的基本单位之一,属于生糖氨基酸,可以在人体内通过蛋白质水解得到。
此外,丝氨酸也可以通过发酵法、化学合成法、生物酶法等多种方法进行生产。
丝氨酸的一个重要衍生物是D-丝氨酸,它是一种重要的神经递质,与N-甲基-D-天冬氨酸(NMDA)受体有密切关系,两者在中枢系统中发挥重要作用。
D-丝氨酸的合成代谢主要发生在高等动物体内,通过丝氨酸消旋酶(SR)将L-丝氨酸(L-Ser)消旋转化而来。
总的来说,丝氨酸在生物体内发挥着重要的生理作用,是维持人体健康所必需的氨基酸之一。
酶促转化产物L-丝氨酸的分析鉴定一、知识准备按氨基酸具有的酸性和碱性基团的多少分类:中性氨基酸、碱性氨基酸、酸性氨基酸,丝氨酸属于中性氨基酸氨基酸分子中都具有氨基和羧基,因此它们都能产生氨基与羧基的一般反应。
如脂化、甲基化、乙酰化以及酸碱的中和作用等。
丝氨酸(serine)学名:2-氨基-3羟基丙酸。
一种脂肪族极性α-氨基酸,非必需氨基酸,有助于免疫血球素和抗体的产生,维持健康的免疫系统。
丝氨酸在细胞膜的制造加工、肌肉组织和包围神经细胞的鞘的合成中都发挥着作用。
L-丝氨酸L-Serine缩写:L-Ser,分子式:C3H7NO3 等电点5.68结构式:CH2OHCH(NH2)COOH 分子量:105.09 。
是组成蛋白质的常见20种氨基酸中的一种,是哺乳动物的非必需氨基酸,也是生酮氨基酸。
性状:六面形片状结晶或棱柱形晶体,味微甜,易溶于水和甲酸,不溶于乙醇和乙醚。
可从大豆、酿酒发酵剂、乳制品、鸡蛋、鱼、乳白蛋白、豆荚、肉、坚果、海鲜、种子、乳清和全麦获取。
有必要的话,人体会从甘氨酸中合成丝氨酸。
L-丝氨酸虽属于非必需氨基酸但具有许多重要的生理功能和作用,因此 ,在医药、食品、化妆品中均有较为广泛的应用。
主要功能:1.合成嘌呤、胸腺嘧啶、胆碱的前体;2. L-丝氨酸羟基经磷酸化作用后能衍生出具重要生理功能的磷丝氨酸,是磷脂的主要成分之一;3. 具有稳定滴眼液pH值的作用,且滴眼后无刺激性;重要的自然保湿因子(NMF)之一,皮肤角质层保持水分的主要角色,高级化妆品中的关键添加剂。
应用: 1. 医药原料:L-丝氨酸广泛用于配置第三代复方氨基酸输液和营养增补剂,并用于合成多种丝氨基酸衍生物,如心血管、抗癌、爱滋病新药及基因工程用保护氨基酸等;2.食品:L-丝氨酸用于运动饮料、氨基酸减肥饮料等;3.饲料:L-丝氨酸用于动物饲料,可促进动物生长发育;氨基酸分析法是指用于测定蛋白质、肽及其他药物制剂的氨基酸组成或含量的方法。
大肠杆菌L-丝氨酸吸收途径的改造及代谢分析大肠杆菌L-丝氨酸吸收途径的改造及代谢分析概述:大肠杆菌(Escherichia coli)是一种常见的肠道菌,也是一类重要的研究模式微生物。
该菌株的代谢途径及调控机制在科学界引起了广泛的关注。
其中,L-丝氨酸(L-serine)是一种重要的氨基酸,参与多种生物合成和代谢过程。
本文将探讨大肠杆菌L-丝氨酸吸收途径的改造以及其代谢分析。
一、L-丝氨酸在代谢途径中的重要性L-丝氨酸在生物体内发挥着重要的功能。
例如,在蛋白质合成中,L-丝氨酸是蛋白质的重要组成部分之一。
此外,L-丝氨酸还参与核酸和同型半胱氨酸等物质的生物合成过程。
因此,研究L-丝氨酸吸收途径的改造以及其代谢分析对于理解大肠杆菌的基础生物学以及其应用具有重要意义。
二、L-丝氨酸吸收途径的改造大肠杆菌能够通过L-丝氨酸转运蛋白(SerT)吸收外源性的L-丝氨酸。
基因工程技术的发展为改造大肠杆菌的吸收途径提供了便利。
以SerT基因为靶点,科研人员通过改造其表达量以及结构来提高菌株对L-丝氨酸的吸收效率。
首先,通过引入多个复制子,增加SerT基因的拷贝数,可以提高蛋白的表达量。
研究表明,增加SerT的拷贝数能够显著提高大肠杆菌对L-丝氨酸的吸收速率。
此外,经过多次筛选,科研人员也获得了对L-丝氨酸吸收能力更强的突变株。
这些突变株中的SerT蛋白结构发生了变化,使得其对L-丝氨酸具有更高的亲和力。
另一方面,通过改造L-丝氨酸转运蛋白以外的相关代谢途径,也能够影响大肠杆菌对L-丝氨酸的吸收能力。
例如,在L-丝氨酸生物合成途径中的关键酶或调控相关基因的突变,会导致大肠杆菌细胞内L-丝氨酸的浓度发生变化。
这进一步影响到大肠杆菌对L-丝氨酸的吸收。
三、L-丝氨酸代谢分析为了更好地了解大肠杆菌对L-丝氨酸的代谢过程,科研人员进行了代谢分析。
基于代谢工程学的理论和方法,研究人员通过测定L-丝氨酸的吸收速率、细胞内代谢物的浓度以及相关酶活性,揭示了大肠杆菌在L-丝氨酸代谢中的动态变化。
中 国 药 科 大 学 学 报Journa l of China Pharmaceutical University 2000,31(2):135~138酶法合成L-丝氨酸及反应液中氨基酸的分离孙 进 吴梧桐 吴 震1 高剑光1(中国药科大学微生物学教研室,南京210009)摘 要 含g ly A的基因工程菌所表达的SHM T可催化甲醛和甘氨酸特异地合成L-丝氨酸。
对酶法合成的部分条件进行了优化,并根据甲醛滴定的原理,确定了通过检测p H变化控制甲醛流加速度的方案,最终的反应液中L-丝氨酸浓度达0.2mo l/L。
反应结束后的酶反应液中同时含有甘氨酸和丝氨酸,利用国产717树脂获得较为理想的分离效果,丝氨酸的收率达77%,高效液相分析表明其中不含甘氨酸等杂质。
关键词 酶法合成;L-丝氨酸;甲醛;717树脂;分离 L-丝氨酸(L-Ser)在医药、化工、化妆品工业上有广泛的用途,它的生产方法有丝胶水解法、前体发酵法、化学合成法和酶法。
其中酶法系利用丝氨酸羟甲基转移酶(serine hydrom ethyltransferase, SHM T,EC.2.1.2.1)催化甲醛和甘氨酸(Gly)可逆地合成L-Ser,反应过程中SHM T需PLP和四氢叶酸(T HFA)作为其辅因子。
由于主要原料来源广泛、价格低廉,并可合成高浓度的产物,因此该法是目前最有应用前景的L-丝氨酸生产方法。
本文利用自行构建的含gly A的基因工程菌所表达的SHM T,对酶法合成L-丝氨酸的反应条件作了进一步优化。
反应结束后的酶反应液中含有甘氨酸和L-丝氨酸,由于这两种氨基酸等电点相近(pI G ly= 5.96, pI Ser= 5.69)、溶解度在L-丝氨酸稳定的温度范围内相差不大,所以两者的分离较一般的两种中性氨基酸分离要困难得多[1],我们利用国产717树脂研究了分离条件。
1 材 料1.1 菌种和培养基含g ly A的基因工程菌,中国药科大学微生物学教研室构建[2];LB培养基。
丝氨酸调研报告目录丝氨酸调研报告 (1)1 概述 (5)2 理化性质 (6)3 用途 (6)3.1 在医药方面的应用 (7)3.2 抗衰老的作用 (7)3.3. 医药原料 (8)3.4 食品 (8)3.5 饲料 (8)4 国家标准 (8)5 生产方法 (9)5.1 蛋白质水解法 (10)5.2 发酵法 (11)5.2. 1 添加前体的发酵法 (11)5.2. 2 采用甲基营养型由甘氨酸生产L- 丝氨酸 (11)5.3 化学合成法 (11)5.4 酶法制备L- 丝氨酸 (12)6 丝氨酸的生产原料构成 (13)7市场情况 (13)7.1国内市场情况 (13)(1)产能 (14)(2)行业企业发展情况 (15)(3)国内市场消费和需求情况 (16)(4)国外市场消费和需求情况 (17)(5)丝氨酸产品国内市场份额 (18)8 国内丝氨酸生产企业概况 (18)8.1 八峰药化股份有限公司 (18)9丝氨酸行业在建、拟建项目统计 (19)摘要丝氨酸作为一种重要的氨基酸, 最初是从丝胶的硫酸水解液中分离得到的, 目前被广泛用于食品、医药及化妆品中。
Jav itt的研究表明, D-丝氨酸能够作为一种辅助药物有效地改善精神分裂症患者的阳性症状、阴性症状和认知障碍。
此外, 丝氨酸也是第三代氨基酸输液的主要成分。
随着人们对丝氨酸认识的不断深入, 丝氨酸的应用范围不断增大, 用量逐年增加。
同时, 丝氨酸是世界氨基酸生产中工业化生产难度最大的氨基酸之一, 其生产工艺的开发倍受关注。
国家经济与信息化委员会将其列入 外商投资产业指导目录中, 鼓励投资生产。
1 丝氨酸生产工艺丝氨酸的合成途径主要有发酵法、酶法、蛋白质水解提取法和化学合成法。
蛋白质水解法得到的氨基酸通常为混合氨基酸,还需要进一步分离精制,难于用于工业化生产。
发酵法操作简单,但对设备要求较高,且生产周期长,收率低。
酶法制备L-丝氨酸具有收率高、成本低、生产周期短、能源消耗少等优点,有广阔的应用前景。
四川理工学院毕业设计(论文)氨基酸Schiff碱配合物的合成及其催化PNPA水解的研究学生:蒋聪学号:06131010109专业:化学班级:2006.1指导教师:蒋维东四川理工学院化学与制药工程学院二O一O年六月四川理工学院毕业论文(设计)中文摘要氨基酸Schiff碱配合物的合成及其催化PNPA水解的研究摘要氨基酸Schiff碱及其金属配合物具有良好的抗炎、抗菌、抗癌等生物活性而有望成为高效、低毒、可供临床使用的新药物而引起人们的极大关注。
目前,这类配合物被作为模拟水解酶应用于催化酯水解领域还相当少见。
本文合成了一系列L-丝氨酸Schiff碱金属配合物并进行表征,考察了其中七种配合物对对硝基苯酚乙酸酯(PNPA)水解的催化性能。
研究结果表明,这些氨基酸Schiff碱金属配合物表现出较好的催化性能和酸碱稳定性。
关键词:L-丝氨酸;氨基酸Schiff碱;PNPA;水解;人工水解酶I四川理工学院毕业论文(设计) 英文摘要 IISynthesis of Amino acids Schiff Base Metal complex ed Compounds and Studies on p -nitrophenyl Acetate (PNPA) Cleavage by itsABSTRACTAmino acid Schiff base and corresponding metal complex have been attracted more and more attention because they possess some favorable anti-inflammation, antibacterial, and anticancer activities, furthermore, they have great potential application in the field of new drugs for clinical medicine due to their properties including efficient and low toxicity. However, there is less report that evaluates the catalytic activity of various transition metal complexes with amino acid Schiff base.In this thesis, a series of L-serine Schiff base metal complexes were synthesized and characterized. Moreover, seven synthetic Schiff base metal complexes were employed as mimic hydrolytic enzyme models catalyzing p -nitrophenyl acetate (PNPA) hydrolysis. The observations indicate that these complexes have higher activity and acid-base stability toward the hydrolysis of PNPA.Key words : L-serine, amino acid Schiff base, PNPA, hydrolysis, artificial hydrolases四川理工学院毕业论文(设计)目录目录中文摘要.. (Ⅰ)英文摘要.. (Ⅱ)1绪论 (1)前言 (1)1.1 Schiff碱的概述 (1)1.2氨基酸类Schiff碱金属配合物的作用 (2)1.3人工酶和天然酶 (4)1.4水解金属酶 (4)1.5 Schiff碱配合物模拟水解酶 (5)1.6研究构想 (6)2实验部分 (8)2.1 仪器与试剂 (8)2.1.1 实验仪器 (8)2.1.2实验试剂 (9)2.2原料的合成 (9)2.2.1 5-氯水杨醛的合成 (9)2.2.2 5-溴水杨醛的合成 (9)2.3四种氨基酸Schiff碱(L1~L4)的合成 (9)2.3.1 L-丝氨酸与水杨醛Schiff碱(L1)的合成 (9)2.3.2 L-丝氨酸与5-氯水杨醛Schiff碱(L2)的合成 (10)2.3.3 L-丝氨酸与5-溴水杨醛Schiff碱(L2)的合成 (10)2.3.4 L-丝氨酸与2-羟基萘甲醛Schiff碱(L4)的合成 (10)2.4氨基酸Schiff碱金属配合物的合成 (11)2.4.1 L-丝氨酸与水杨醛Schiff碱(L1)金属配合物的合成 (11)2.4.2 L-丝氨酸与5-氯水杨醛Schiff碱(L2)金属配合物的合成 (11)2.4.3 L-丝氨酸与5-溴水杨醛Schiff碱(L3)金属配合物的合成 (12)2.4.4 L-丝氨酸与2-羟基萘甲醛醛Schiff碱(L4)金属配合物的合成 (13)2.5 PNPA水解反应动力学测定 (13)2.5.1缓冲化的金属配合物溶液的配制 (13)2.5.2 PNPA水解反应动力学测定 (13)2.5.3 光谱扫描 (14)3结果与讨论 (15)3.1实验数据记录和光谱扫描 (15)III四川理工学院毕业论文(设计)目录3.1.1水解速率数据记录 (15)3.1.2 光谱扫描分析 (15)3.2 PNPA水解的机理及动力学 (16)3.3反应体系pH对金属配合物催化PNPA水解的影响 (17)3.4催化剂结构对金属配合物催化PNPA水解的影响 (18)3.5 底物浓度对金属配合物催化PNPA水解的影响 (18)4结论与展望 (19)4.1 主要结论 (19)4.3 后续研究工作的展望 (19)参考文献 (20)致谢 (22)IV四川理工学院毕业论文(设计)绪论1 绪论前言在我们的地球上,生活着形形色色、千姿百态的生物。