丙烷制冷系统
- 格式:ppt
- 大小:9.70 MB
- 文档页数:42
丙烷制冷螺杆压缩机过热度【摘要】丙烷制冷螺杆压缩机过热度是制冷系统中一个重要的参数,影响着系统的运行稳定性和效率。
本文首先介绍了过热度的定义和在制冷系统中的重要性。
接着分析了丙烷制冷螺杆压缩机过热度的影响因素,并详细介绍了测量方法、优化措施、异常处理以及监控与维护方法。
通过对过热度的全面控制,可以提高系统的运行效率和节能效果。
最后探讨了丙烷制冷螺杆压缩机过热度对系统稳定性的重要性,并提出了未来研究方向,为进一步理解和改进丙烷制冷螺杆压缩机过热度提供了参考。
这篇文章系统地介绍了丙烷制冷螺杆压缩机过热度的相关内容,对于制冷系统的设计和运行具有一定的指导意义。
【关键词】丙烷, 制冷螺杆压缩机, 过热度, 制冷系统, 影响因素, 测量方法,优化措施, 异常处理, 监控与维护, 系统稳定性, 研究方向1. 引言1.1 丙烷制冷螺杆压缩机过热度的定义丙烷制冷螺杆压缩机过热度是指在制冷系统中,蒸发温度与凝结温度之间的温差。
具体来说,过热度是指高于饱和蒸发温度的蒸汽所含的热量,这是在蒸发器内液体蒸发后蒸汽的温度增加的现象。
过热度通常用摄氏度或华氏度来表示。
在制冷系统中,丙烷制冷螺杆压缩机过热度的控制非常重要。
适当的过热度可以确保蒸汽在压缩机内充分压缩,提高系统效率和性能。
过高或过低的过热度都会导致系统运行不稳定,甚至可能损坏压缩机和其他系统组件。
了解丙烷制冷螺杆压缩机过热度的定义以及如何正确控制和调节过热度至关重要。
只有确保过热度在适当的范围内,制冷系统才能稳定运行,提高效率,延长设备寿命。
在后续的内容中,我们将更深入地探讨丙烷制冷螺杆压缩机过热度的影响因素、测量方法、优化措施、异常处理、监控与维护,以及其对系统稳定性的重要性和未来的研究方向。
1.2 过热度在制冷系统中的重要性过热度是指高于饱和蒸汽温度的冷凝气体温度,是衡量制冷系统运行状态的重要参数之一。
在制冷系统中,过热度的控制对系统的性能和稳定性起着至关重要的作用。
一、基本结构和工作原理通常所称的螺杆压缩机即指双螺杆压缩机。
螺杆压缩机的基本结构:在压缩机的机体中,平行地配置着一对相互啮合的螺旋形转子。
通常把节圆外具有凸齿的转子,称为阳转子或阳螺杆。
把节圆内具有凹齿的转子,称为阴转子或阴转子。
一般阳转子与原动机连接,由阳转子带动阴转子转动。
转子的长度和直径决定压缩机排气量(流量)和排气压力,转子越长,压力越高;转子直径越大,流量越大。
螺旋转子凹槽经过吸气口时充满气体。
当转子旋转时,转子凹槽被机壳壁封闭,形成压缩腔室,当转子凹槽封闭后,润滑油被喷入压缩腔室,起密封。
冷却和润滑作用。
当转子旋转压缩润滑剂+气体(简称油气混合物)时,压缩腔室容积减小,向排气口压缩油气混合物。
当压缩腔室经过排气口时,油气混合物从压缩机排出,完成一个吸气——压缩——排气过程。
在压缩机机体的两端,分别开设一定形状和大小的孔口。
一个供吸气用,称为进气口;另一个供排气用,称作排气口。
工作原理:螺杆压缩机的工作循环可分为进气,压缩和排气三个过程。
随着转子旋转,每对相互啮合的齿相继完成相同的工作循环。
1、进气过程:转子转动时,阴阳转子的齿沟空间在转至进气端壁开口时,其空间最大,此时转子齿沟空间与进气口的相通,因在排气时齿沟的气体被完全排出,排气完成时,齿沟处于真空状态,当转至进气口时,外界气体即被吸入,沿轴向进入阴阳转子的齿沟内。
当气体充满了整个齿沟时,转子进气侧端面转离机壳进气口,在齿沟的气体即被封闭。
2、压缩过程:阴阳转子在吸气结束时,其阴阳转子齿尖会与机壳封闭,此时气体在齿沟内不再外流。
其啮合面逐渐向排气端移动。
啮合面与排气口之间的齿沟空间渐渐件小,齿沟内的气体被压缩压力提高。
3、排气过程:当转子的啮合端面转到与机壳排气口相通时,被压缩的气体开始排出,直至齿尖与齿沟的啮合面移至排气端面,此时阴阳转子的啮合面与机壳排气口的齿沟空间为0,即完成排气过程,在此同时转子的啮合面与机壳进气口之间的齿沟长度又达到最长,进气过程又再进行。
某天然气处理厂丙烷制冷系统能耗研究与分析摘要:天然气处理工艺中对原料天然气的脱油脱烃脱水处理是很有必要的。
天然气具有反凝析的特点,随着压力、温度的变化会析出液体,因而导致产品天然气水露点及烃露点不合格。
在脱烃脱水技术工艺进行天然气处理过程中,丙烷则就充当了制冷剂,起到制冷降温的作用,进而析出液烃和除水,如果MR系统使用不当,可能会引起能耗过高等问题。
本文针对MR系统存在的问题作了原因分析,并提出了丙烷制冷系统节能降耗的改造方案,对改造前后的效果进行了对比评价。
关键词:丙烷压缩机;节能改造;效果评价一、丙烷制冷系统(MR)概述目前,某天然气处理厂用的丙烷制冷机组[1]-[3]采用的工艺流程为丙烷蒸发器中的气态丙烷由丙烷压缩机进行压缩,在压缩机出口油分离器中分离出机油后,去水冷冷凝器冷凝成液态丙烷,冷凝后高压液态丙烷经节流膨胀后进入经济器。
经济器中的气态丙烷返回压缩机中段进一步进行压缩;液态丙烷经过控制蒸发器液位的调节阀进入蒸发器,气化变成气态丙烷,吸收天然气的热量;丙烷在制冷系统内部如此反复循环,不断吸收天然气的热量,从而达到制冷的目的。
其中丙烷压缩机是丙烷压缩制冷系统的主要能耗设备。
如果忽略管线和静设备压降,压缩制冷循环在压焓图上如图1所示。
1-2线段表示气态冷剂在压缩机中的压缩过程,近似地沿等熵线进行;2-2′-3′-3线段表示冷剂在冷凝器中的冷凝过程,为等压过程;3-4线段表示冷剂节流膨胀过程,为等焓过程;4-1线段表示冷剂在蒸发器中的蒸发过程,为等压过程[4]。
图1丙烷压缩制冷循环流程及压焓图二、丙烷制冷系统高电耗根因分析(一)电机选型过大,负载过低、电耗过高1.电机选型过大该天然气处理厂应用的丙烷压缩机电机选用1600kW的大功率电机,单套系统制冷能力5400kw,压缩机在正常工作中能量负载只能达到5%-15%,存在“大马拉小车”现象。
2.电机负载低压缩机在低负荷运转时,轴功率将增大,耗电量增加。
天然气处理中丙烷制冷工艺的探讨摘要:原材料天然气本身带有反凝析的现象,在下游温度和压力下降,会析出轻烃,在管线内堆积,造成上游外输压力上升,就得进行管线通球,最频繁时,每20天就要进行通球,存在管线运行的安全隐患。
因此在上游进行脱烃处理。
每天管输天然气60万米。
现代人们在进行天然气处理的时候引入了丙烷制冷工艺,且在投入运行一段时间以后,也取得了很不俗的成绩。
我们针对天然气处理中丙烷制冷工艺现状与出现的问题进行分析,进而提出了一些参考性的建议。
关键词:天然气处理;丙烷制冷工艺;现状探讨前言在输送天然气的时候,伴随压力与温度逐渐降低,输配管线当中的天然气会出现反凝析且在地势低的地方形成积液的现象,会对正常输气造成影响,严重时甚至会导致管线的堵塞。
这在很大程度上对管道的输送能力打了折扣,外输产品的天然气也不符合国家对于二类气质的鉴定标准。
结合这样的现状,我们在工作中引入了丙烷制冷工艺,对天然气做集中脱水等的处理,同一时间,经此过程回收的产品也有较高的经济与使用价值。
1.天然气处理现状伴随科技的不断发展进步,社会的日益强盛,石油这种不能再生的能源,它的储量却在加速降低。
天然气这种绿色能源就随之应运而生了,勘探开发、应用与其他多个方面,它如雨后春笋般逐渐发展壮大,到现如今已经形成了相当大的规模,极大限度的影响了人们的日常生活与生产[1]。
天然气主要由C4H10 C3H8 C2H6 CH4与C5H12+共同组成,这当中CH4是构成天然气的最主要的成分,一般情况下含量在百分之八十五到百分之九十五之间,C2H6 C3H8这些含量在百分之五到百分之十五之间,CH4现如今被城市燃气大量使用,C2H6 C3H8 C4H10这些成分作为有机化工必要原料,它们的价格要比CH4高出很多,假使不把这些成分从天然气当中剥离出来,它们也只能是被当成燃料气被不必要的浪费掉了,所以所谓的天然气处理指的就是把C2H6 C3H8 C4H10这些成分从天然气当中抽离出来,最终的目的是使经济效益大幅度提升。
丙烷制冷的实际能效比丙烷制冷的实际能效比分析与探讨一、引言在如今能源紧缺和环境保护的背景下,能效比的概念越来越受到人们的重视。
能效比通常是指使用单位能量所能产生的实际有效输出,对于各种制冷设备尤其重要。
丙烷(C3H8)是一种常见的烃类气体,广泛用于家庭和商业用途的制冷设备中,如冰箱和空调。
了解丙烷制冷的实际能效比有助于我们更好地利用这一制冷技术。
二、丙烷制冷的基本原理1. 丙烷制冷原理丙烷制冷是一种基于蒸发冷却和压缩的制冷技术。
它利用丙烷气体在蒸发过程中吸收热量,将环境中的热量转移到冷却剂上,然后通过压缩使其升温,最终释放热量到环境中。
2. 蒸发和压缩的关系蒸发是丙烷制冷中的关键步骤。
通过降低丙烷的压力,使其在蒸发器中蒸发,吸收环境中的热量。
压缩机将蒸发的丙烷气体压缩,增加其温度和压力,并将其传输到冷凝器中。
在冷凝器中,丙烷气体通过释放热量而冷却,并转变为液体状态。
三、丙烷制冷的实际能效比了解丙烷制冷的实际能效比对于我们正确选择制冷设备和有效使用能源至关重要。
1. 实际能效比的定义实际能效比是制冷设备所能产生的实际制冷量与其所耗能量之比。
在丙烷制冷中,实际能效比一般以制冷量或制冷剂的耗能度量。
2. 影响实际能效比的因素实际能效比受到多种因素的影响,包括气候条件、制冷设备的设计和性能等。
在炎热的环境下,实际能效比可能会下降,因为制冷设备需要更多的能量来保持低温。
制冷设备的设计和性能也会直接影响其能效比。
3. 提高实际能效比的方法提高丙烷制冷的实际能效比是一个复杂的过程,需要从多个方面入手。
选择高效能的制冷设备是关键。
定期清洁和维护制冷设备,以确保其正常运行。
减少制冷需求和合理使用制冷设备也是提高实际能效比的重要手段。
四、丙烷制冷的优势和挑战1. 优势丙烷制冷相比于其他制冷技术具有多个优势。
丙烷是一种清洁能源,不会产生温室气体和有害物质。
丙烷的能效比相对较高,能够提供稳定而高效的制冷效果。
丙烷制冷设备经济实惠,易于维护和操作。
天然气处理厂丙烷制冷系统节能改造摘要:多数天然气处理厂都应用了丙烷制冷系统,但是该系统在运行过程中存在高能耗、低能效等问题。
这一问题主要是由多种因素造成的,例如电机问题、经济器问题都会加大系统能耗。
为了降低系统能耗,应当对系统进行节能改造,科学选择改造方案,从而达到节能的目的。
关键词:天然气;丙烷制冷系统;节能前言:天然气处理厂在人们的生活中发挥着重要作用,但是传统的丙烷制冷系统加大了处理厂的能耗,不仅降低了处理厂的经济效益,也造成了资源浪费。
因此,天然气处理厂应针对系统高能耗的成因对系统进行节能改造,减少资源浪费。
1.丙烷制冷系统概述1.1工艺丙烷制冷系统即丙烷压缩循环制冷单元,主要是由满液蒸发器、压缩机以及蒸发式空冷器共同构成的,可以通过提供冷量的方式降低天然气的温度,将原料天然气的温度降低至-25℃以下,从而通过低温分离的方式实现天然气脱油脱水【1】。
在制冷过程中,压缩机会对丙烷蒸发器处理形成的蒸汽进行压缩,之后将蒸汽输送至油分离器当中,分离蒸汽中的润滑油,再将蒸汽输送至蒸发式冷凝器中,将蒸汽转变为丙烷液体,将液体输送至满液蒸发器的底部,进行冷却处理,最后经过换热形成低压丙烷蒸汽。
1.2运行参数丙烷制冷系统中有两台压缩机,其中一台是主用压缩机,一台是备用压缩机,压缩机的功率都是900kW,转速是2950r/min。
2.影响丙烷制冷系统能耗的因素2.1电机因素丙烷制冷系统能耗较高是由多种因素造成的,其中就包括电机因素。
若天然气处理厂选择的电机存在选型过大、负载过低等问题就会加大系统能耗。
首先,若电机选型过大就会降低压缩机的能量负载,造成“大马拉小车”的问题。
其次,压缩机在低负荷运转过程中,轴功率将会加大,能耗就会加大。
从系统运行情况来看,当压缩机的负载率在70-90%这个范围内时,压缩机的制冷效率最高【2】。
但是,当压缩机的负载率处于10-20%这个范围内时,电机的轴功率就会加大。
此外,若压缩机长期处于低负荷运行状态中将会影响到压缩机的机械性能,继而加大系统能耗。
丙烷制冷系统蒸发器液位调节技术及改进方案丙烷制冷系统蒸发器是丙烷制冷循环中的重要组件,负责吸收外部热量并将制冷剂蒸发,从而提供制冷效果。
蒸发器液位的调节对于蒸发器的正常运行和长久稳定性至关重要。
本文将针对丙烷制冷系统蒸发器液位调节技术进行分析,并提出改进方案。
一、传统蒸发器液位调节技术存在的问题传统的丙烷制冷系统蒸发器液位调节技术主要采用浮球阀调节液位的高低。
但是这种技术存在以下问题:1.浮球阀调节精度低:浮球阀的调节范围较窄,只能在一定范围内自动调节蒸发器液位。
当外部条件变化较大时,无法进行及时的调节,导致液位偏离目标值。
2.浮球阀易堵塞:丙烷制冷系统中会存在一定的杂质或沉淀物,这些杂质会造成浮球阀的堵塞,降低调节的效果。
3.蒸发器液位变化缓慢:浮球阀的调节反应时间较长,当液位发生变化时,需要一定时间才能达到新的平衡位置。
二、改进方案针对以上问题,可以通过以下几个方面提出改进方案,来提高丙烷制冷系统蒸发器液位的调节精度和稳定性。
1.采用电动阀门调节:电动阀门可以根据实时测量的液位信号进行自动调节,调节精度高,能够及时响应外部条件的变化。
同时,电动阀门的结构也比较简单,易于维护和清洁,减少堵塞的风险。
2.引入反馈控制机制:在蒸发器液位调节过程中,引入合适的反馈控制机制,可以根据当前的液位与目标值之间的差异,自动调整阀门的开启程度,以达到液位稳定的目标。
常用的反馈控制策略有PID控制和模糊控制等。
3.设计合理的传感器布局:合理布置液位传感器,能够准确测量蒸发器不同位置的液位,并实时反馈给控制系统。
传感器的布局要避免冷凝水的干扰,确保测量的准确性。
4.利用先进的控制算法:利用先进的控制算法,对蒸发器液位进行精确控制。
例如,可以采用模型预测控制算法,根据蒸发器的动态模型,预测液位变化,并根据预测结果进行调节,提高液位控制的精度和响应速度。
5.定期维护和清洁:定期对液位调节系统进行维护和清洁,确保阀门的灵活性和流通性,避免堵塞和漏水的问题,保证系统的长期稳定运行。
丙烷制冷脱水、脱烃工艺原理及流程xxx气田、xxx气田的井口天然气中含有少量重烃,为了使进入长输管道气体的烃、水露点符合要求,天然气处理厂采用丙烷制冷脱水、脱烃工艺。
该工艺具有以下特点:●丙烷作为制冷介质,蒸发温度低,对人体毒性小。
●丙烷制冷工艺适用于天然气重烃组分较少的情况,经济性好。
xxx天然气处理厂的主要生产单元可分为天然气处理单元、丙烷制冷单元和凝液回收单元。
1、天然气处理单元以xxx第一处理厂为例,原料天然气进入集气总站,经卧式重力分离器进行预分离后进入天然气压缩机,压力升高至5MPa左右进入原料气预冷器的管程,与产品干气进行换热,预冷至-3℃,为防止天然气预冷后水合物的生成,在原料气预冷器入口注入甲醇。
预冷后的原料天然气经满液蒸发器降温至-15 ℃(冬季-15 ℃,夏季-5 ℃),进入低温分离器分离出凝析液,产品干气进入原料气预冷器壳程,与原料天然气逆流换热,换热后的干气输送至外输用户。
流程示意图见图2.7。
图2.7 xxx第一处理厂天然气处理单元工艺流程2、丙烷制冷单元液体丙烷在满液蒸发器中吸收天然气的热量变为丙烷蒸汽,同时原料天然气温度降至-15℃。
丙烷蒸汽经压缩机压缩后(70℃、1.0MPa)进入油分离器分离出夹带的油滴,丙烷气体经蒸发式冷凝器冷凝为30℃的液体,经过热虹吸储罐进入丙烷储罐,丙烷液体再经节流后(约-15℃、0.2MPa)进入满液蒸发器,在蒸发器中吸收天然气的热量,蒸发为丙烷蒸汽(-15℃、0.2MPa,从而完成整个制冷过程的循环。
工艺流程见图2.8。
图2.8 xxx第一处理厂丙烷制冷单元工艺流程(三)凝液回收单元从气体过滤分离器、低温分离器分离出来的醇烃混合液经醇烃加热器加热至45℃,压力降至1.0 MPa左右,进入三相分离器进行气、液分离,自三相分离器顶部排出的闪蒸气去燃料气系统,底部排出的重相含醇污水和轻相凝析油分别进入原料水储罐和凝析油储罐。
工艺流程见图2.9。
丙烷制冷影响天然气处理工艺分析摘要:针对丙烷制冷影响轻烃回收工艺的问题,对丙烷制冷工艺进行简单介绍,通过生产运行的方式,对丙烷制冷系统的影响进行现场生产作业分析,提供实际生产指导。
通过本次研究可以发现,丙烷蒸发后的温度、冷却器后的温度以及经济器后的温度都会对压缩机运行过程中能耗产生重要影响,但是,丙烷蒸发后温度对于压缩机运行的能耗影响较为敏感,冷却器后温度对于压缩机运行的能耗影响最不敏感。
关键词:丙烷压缩机;循环水冷却器;丙烷制冷影响分析所谓的丙烷制冷主要指的是将R290(丙烷)作为制冷剂,对天然气进行低温处理,通过热交换的基本原理,使得天然气在较低温度下进行脱水处理。
丙烷制冷工艺的流程相对较为简单,能耗相对较低,可以满足天然气脱水的基本目的。
但是在使用丙烷制冷工艺的过程中,多种温度因素会对其产生影响,最终影响压缩机的能耗,如果可以对丙烷制冷的影响进行分析,以此找出温度影响强弱的问题,则必然会给现场生产作业提供指导。
丙烷制冷工艺简介在使用丙烷制冷工艺对天然气进行脱水处理的过程中,首先使用低温丙烷将天然气的温度降低,然后将低温状态下的天然气输送到分离器中,将天然气中的凝液脱离出来,然后将丙烷蒸发器中吸热后的丙烷挥发气进入口分离器输送到压缩机组内,对丙烷进行压缩,由于压缩做功产生热量,需输送到出口冷却器后,再进入丙烷储罐,此时丙烷将恢复到液态状态,通过经济器预冷后低温状态,再由调节阀来节流制冷输送到丙烷蒸发器低温液态丙烷,与高温天然气换热气化,这个相对较为简单的流程,即可实现天然气低温产生烃凝液处理以及丙烷的循环使用。
通过对整个工艺进行分析后发现,压缩机是整个工艺过程中能耗设备,丙烷制冷工艺所需要的能耗主要由压缩机所决定,因此,进行丙烷制冷影响因素敏感性分析,就是进行整个过程中压缩机能耗的敏感性分析。
丙烷制冷影响分析通过天然气的流量变化可以发现,天然气流量的逐渐增加,丙烷的消耗量以及压缩机的能耗都在逐渐升高,天然气流量对于丙烷消耗量以及压缩机能耗的影响十分明显,在使用丙烷制冷工艺的过程中,要根据自身的产能对丙烷的用量以及压缩机的数量进行准确的配备。
丙烷制冷系统简述丙烷制冷系统通常用于天然气冷却处理。
利用丙烷气化时的吸热效应产生冷量来冷却天然气。
主要包括丙烷压缩机、丙烷缓冲罐、丙烷吸入罐,丙烷蒸发器和丙烷后冷器。
重要系统组件:螺杆压缩机,油泵,微处理控制盘,高压接受器,空冷式冷凝器,浸没式冷却器,缓冲罐,液态丙烷。
流程描述:丙烷缓冲罐来的液体丙烷(1.15MPa、30℃),经经济器换热后温度降至8℃,再进一步节流降温至0.35MPa、-10℃。
与天然气换热后,丙烷液蒸发为气态丙烷(蒸发温度为-10℃),丙进入丙烷吸入罐。
经吸入罐分离出夹带的液滴后,进入丙烷压缩机压缩至1.2MPa,经丙烷后冷器冷凝成液相丙烷(1.15MPa、30℃)后返回丙烷缓冲罐。
制冷原理:在制冷过程中,获得低温的方法通常是用高压常温的流体进行绝热膨胀来实现的,丙烷压缩制冷法由四个基本过程所组成:压缩→冷凝→膨胀→蒸发。
压缩-外界对工质作功,提高工质的压力和温度;冷凝-气态工质冷却冷凝成液态工质,并在高温下向冷却介质排热;膨胀-高压液态工质在节流阀中通过节流膨胀降压至蒸发压力,由于压力降低,相应的沸点就降低,当液体沸点低于当时温度时,一部分液态工质就要蒸发,从而吸收热量,但由于膨胀过程发生很快,节流阀周围外界来不及供热,这部分热量只好从本身降低内能来供给,所以节流后温度下降了,膨胀成为低温气液混合物;蒸发-低温液态工质进入换热器从制冷对象吸热,同时自身蒸发为气态工质,从而达到制冷的目的。
丙烷吸入罐:作用:分离出气相丙烷中夹带的液滴,防止液击。
注意:丙烷吸入罐液位达到90%时,联锁停机。
丙烷系统统运行时,丙烷吸入罐液位达到80%时,应立即手动停机。
丙烷压缩机:丙烷压缩机为螺杆式,与活塞式相比,特点:重量轻、体积小;无质量惯性力,动平衡性能好;可采用喷油冷却,排温低,单级压比高;无余隙容积,容积效率高。
能量调节控制方式:滑阀,滑块。
两者均为液压系统驱动,滑阀实现压缩机的加载和卸载,滑块来增加或降低压缩机的容积比。
天然气处理中丙烷制冷技术的探究我国是一个能源使用的大国,对于天然气的使用量具有着巨大的需求。
丙烷制冷技术是在天然气传输处理过程中比较实用的一项处理技术。
在本篇文章当中,对天然气处理工艺的概念进行了介绍,之后对于丙烷制冷在天然气处理过程中的具体应用做了简单的叙述。
标签:丙烷制冷;天然气处理;技术研究在天然气管道的输送过程当中,由于温度和压力降低的原因,会在输配管线当中使天然气发生有液烃的凝结,并且在管道的低洼处形成积液,严重的影响了正常的输气,甚至会堵塞到管线。
不但降低了管道的输送能力,并且使得外输的天然气不能达到国家的二类气质标准。
根据上列问题,一般通过丙烷制冷以及分子筛脱水,来对天然气进行集中的脱水、脱烃处理。
与此同时,回收的轻烃还能够带来一定的经济价值。
1天然气处理工艺我们平时所讲的天然气的处理与加工工艺就是指使天然气从井口到输气管的整个过程。
该过程通常都需要通过井场分离、净化处理、输气管网等过程。
通过丙烷进行制冷主要是为了对天然气当中的烃露点进行控制,并且对轻烃进行回收。
2丙烷制冷制冷就是指通过人工的办法来制造一个低温环境的技术。
一般来说,使温度从室温降低到120K这个范围内就属于是制冷,从120K到0K也就是绝对零度的范围内就属于是低温,也被叫做低温制冷。
一般通过三种方法来进行制冷:①通过气体膨胀的冷效应来进行制冷,比如说:膨胀机和J-T;②利用半导体热效应来进行制冷,比如说:热分离机;③通过物质状态转变(比如蒸发、升华、融化)的吸热效应来进行制冷,比如说:蒸气压缩制冷。
常用的丙烷制冷采用的就是第三种方式,也就是利用物质的状态转变进行制冷。
现在,通过丙烷制冷一般能够将原料天然气冷却到零下二十到零下五十摄氏度之间,实现对天然气的低温分离脱烃的目的。
通过蒸气压缩来实现制冷是一种比较常用的方法,其制冷原理为:将制冷剂放入蒸发器当中,跟冷却对象进行热量的交换,将冷却物的热量吸收之后自身发生汽化现象,在利用压缩机将其蒸发的气体吸收,在压缩机中压缩之后形成高温高压的气体,再将其排入冷凝器中,利用常温介质进行冷却,使之凝结成一种高压低温的液体,也有可能是一种气液混合的物质,利用膨胀阀对高压液体进行节流,使之成为一种低温低压的液体,也有可能为气液混合体,将其投入蒸发器当中,再次与冷却物质进行热量的交换,将低压蒸汽排入压缩机中,往复循环制冷。