电力线路设计规范
- 格式:docx
- 大小:21.93 KB
- 文档页数:13
架空电力线路设计规范架空电力线路是指将电力导线、绝缘子及电力设备等架设在空中的电力传输和配电线路。
架空电力线路设计规范是为了确保线路的安全运行和可靠供电而制定的一系列技术规定和要求。
1. 设计原则1.1 安全性原则:必须符合国家相关安全标准,确保线路的安全运行。
1.2 可靠性原则:确保线路能够在各种恶劣条件下仍能正常供电。
1.3 经济性原则:在满足安全和可靠的前提下,尽量降低建设和运维成本。
2. 设计参数2.1 电压等级:根据供电区域的需要确定线路的电压等级,一般分为110kV、220kV和500kV等。
2.2 越线距离:根据线路电压等级和情况,确定导线与土地表面、建筑物等的最小安全距离。
2.3 导线选型:根据电流负荷和电阻损耗等要求,选择合适的导线材质、直径和结构。
2.4 支柱设计:确定支柱的高度、间距和材质,保证导线的安全距离和支撑稳定。
2.5 绝缘子选择:根据线路的电压等级和环境条件,选择适合的绝缘子类型和串联数量。
2.6 地线安装:保证地线与导线的安全距离,提高线路的接地性能。
3. 施工规范3.1 安全措施:施工过程中必须按照相关安全规定进行作业,包括佩戴安全防护用品、采取防护措施等。
3.2 质量控制:对施工材料的质量进行检测和控制,确保线路的正常运行。
3.3 对地距离:导线与地面的最小安全距离应满足国家标准,避免地面的污秽、湿度等对线路的影响。
3.4 导线张力:导线的张力必须合理,既要保证安全可靠,又要避免牵拉过度导致断线等问题。
3.5 绝缘子安装:绝缘子的安装要牢固可靠,避免出现倒塌或绝缘子串联不同步等情况。
4. 运维管理4.1 定期检查:定期对线路及其附件进行巡视和检查,及时发现并解决潜在问题。
4.2 维护保养:对线路进行及时维护和保养,包括更换老化或损坏的设备、清除浮尘和植被等。
4.3 故障修复:对线路故障进行及时处置,保证线路的正常供电。
架空电力线路设计规范的实施可以保证线路的安全、可靠运行,确保供电质量和供电可靠性。
高压输电线路设计规范范本随着社会的发展和经济的快速增长,电力需求也日益增加。
高压输电线路作为电力传输的重要环节,其设计规范的制定对于保障电力供应的稳定性和安全性至关重要。
本文将探讨高压输电线路设计规范的范本。
一、引言高压输电线路设计规范的制定是为了确保电力传输的可靠性和安全性。
设计规范的范本应该包括线路的结构、材料、施工、运行和维护等方面的要求,以及对环境和社会的影响进行评估。
二、线路结构设计1. 线路类型:根据输电距离和负荷要求,确定线路的类型,包括架空线路、地下电缆和海底电缆等。
针对不同类型的线路,制定相应的设计要求。
2. 杆塔设计:根据线路类型和地形条件,确定杆塔的高度、间距和材料等。
考虑到抗风、抗震和抗冰的能力,确保杆塔的稳定性和可靠性。
3. 绝缘子设计:选择适合线路电压等级和环境条件的绝缘子,确保绝缘子的绝缘性能和耐久性。
三、材料选择和施工要求1. 导线和地线:根据输电容量和电压等级,选择合适的导线和地线材料。
考虑导线的导电性能、耐腐蚀性和机械强度等因素。
2. 绝缘材料:选择符合国家标准的绝缘材料,确保其绝缘性能和耐久性。
对绝缘材料的使用和施工要求进行详细说明。
3. 施工要求:确定线路施工的技术要求和安全措施,包括杆塔的安装、导线的张力调整和绝缘子的安装等。
确保施工的质量和安全。
四、线路运行和维护1. 运行管理:制定线路运行的管理制度和操作规程,包括巡检、检修和故障处理等。
确保线路的正常运行和及时处理故障。
2. 维护保养:制定线路的定期维护计划,包括杆塔的防腐涂层修复、导线的清洗和绝缘子的检测等。
确保线路设备的正常运行和延长使用寿命。
五、环境和社会影响评估1. 环境评估:对线路建设和运行对周围环境的影响进行评估,包括土地利用、水资源和生态环境等。
制定相应的环境保护措施,减少对环境的影响。
2. 社会影响评估:评估线路建设和运行对周围社会的影响,包括居民生活、交通和景观等方面。
制定相应的社会管理措施,减少对社会的不利影响。
66kV及以下架空电力线路设计规范1总则1.0.1为使66kV及以下架空电力线路的设计做到供电安全可靠、技术先进、经济合理,便于施工和检修维护,制订本规范。
1.0.2本规范适用于66kV及以下交流架空电力线路(以下简称架空电力线路)的设计。
2路径2.0.1架空电力线路路径的选择,应认真进行调查研究,综合考虑运行、施工、交通条件和路径长度等因素,统筹兼顾,全面安排,进行多方案的比较,做到经济合理、安全适用。
2.0.2市区架空电力线路的路径,应与城市总体规划相结合。
线路路径走廊位置,应与各种管线和其他市政设施统一安排。
2.0.3架空电力线路路径的选择,应符合下列要求:1、2注:3、3kV45过2m2.0.6耐张段的长度宜符合下列规定:1、35kV和66kV线路耐张段的长度,不宜大于5km;2、10kV及以下线路耐张段的长度,不宜大于2km。
3气象条件3.0.1架空电力线路设计的气温应根据当地10~20年气象记录中的统计什确定。
最高气温宜采用+40℃。
在最高气温工况、最低气温工况和年平均气温工况下,应按无风、无冰计算。
3.0.2架空电力线路设计采用的年平均气温,应按下列方法确定:1、当地区的年平均气温在3~17℃之间时,年平均气温应取与此数邻近的5的倍数值;25、15mm 或20mm。
123415m/s123.0.9长期荷载工况的风速应采用5m/s,气温应采用年平均气温,且无冰。
最大设计风速应采用当地空旷平坦地面上的离地10m高,统计所得的15年一遇10min平均最大风速;当无可靠资料时,最大设计风速不应低于25m/s。
山区架空电力线路的最大设计风速,应根据当地气象资料确定;当无可靠资料时,最大设计风速可按附近平地风速增加10%,且不应低于25m/s。
架空电力线路通过市区或森林等地区,如两侧屏蔽物的平均高度大于杆塔高度的2/3,其最大设计风速宜比当地最大设计风速减小20%。
4导线、地线、绝缘子和金具4.1一般规定4.1.1架空电力线路的导线,可采用钢芯铝绞线或铝绞线。
电力线路设计规范电力线路设计规范,是指按照国家关于电力系统规划、建设、运营和管理的相关规定,对电力线路设计的要求和标准进行总结和归纳的文件。
电力线路设计规范对于保障电力系统的安全、可靠、高效运行起着重要的指导作用。
下面将介绍一些常见的电力线路设计规范要点。
一、电力线路设计的基本原则:1. 安全:电力线路设计应遵循相关的安全规定,确保线路在正常运行、异常情况和重大事故发生时能够保证人员和设备的安全。
2. 可靠:电力线路设计应考虑到电力系统运行的可靠性要求,避免因设计不合理而导致线路故障和停运。
3. 经济:电力线路设计应以降低建设和运行成本为目标,尽可能提高利用率和能源效率,同时也要满足质量和技术要求。
4. 环保:电力线路设计应符合环保要求,尽可能减少对环境的污染。
二、电力线路设计的技术要求:1. 电力线路的接地:电力线路应设置良好的接地装置,确保人员和设备的安全。
2. 电线杆的选取:电线杆应满足承载能力和防护要求,同时考虑杆的高度和间距,以保证电线的安全和稳定运行。
3. 电力线路的绝缘:电力线路绝缘应满足国家的规定,确保线路在潮湿、污染等环境下仍能正常运行。
4. 电线的导体选取:电线的导体选择应满足电流负荷和绝缘要求,尽可能减小线路的功率损耗。
5. 电线的起伏控制:电力线路设计时应根据地形和风速等因素,合理控制线路的起伏,以减小风挂和工农架设的难度。
6. 线路的保护和自动化装置:电力线路应设计良好的保护和自动化装置,确保电力系统的稳定运行和快速恢复。
7. 电力线路的监测与检修:电力线路设计中应考虑到线路的监测和检修要求,以便及时发现和解决线路故障。
三、电力线路设计的管理和运营要点:1. 设计文件的编制和审查:电力线路设计文件应按照国家相关的规定编制和审查,确保设计合理和可行。
2. 设计施工的监督和验收:电力线路的设计施工应受到专业人员的监督和验收,以确保施工质量。
3. 线路的日常检修和维护:电力线路的日常检修和维护工作应定期进行,确保线路的安全和运行可靠。
中华人民共和国国家标准66KV及以下架空电力线路设计规范Code for design of 66kv or under over-headelectrical power transmission lineGB 50061-97主编部门:中华人民共和国电力工业部批准部门:中华人民共和国建设部施行日期:1998年6月1日1 总则1.0.1 为使66KV及以下架空电力线路的设计做到供电安全可靠、技术先进、经济合理,便于施工和检修维护,制订本规范。
1.0.2 本规范适用于66KV及以下交流架空电力线路(以下简称架空电力线路)的设计。
1.0.3 架空电力线路设计,必须认真贯彻国家的技术经济政策,符合发展规划,积极慎重地采用新技术新材料新设备新工艺和新结构。
1.0.4 架空电力线路的杆塔结构设计应采用以概率理论为基础的极限状态设计法。
1.0.5 架空电力线路设计,除应符合本规范外,尚应符合国家现行有关标准、规范的规定。
2 路径2.0.1 架空电力线路路径的选择,应认真进行调查研究,综合考虑运行、施工、交通条件和路径长度等因素,统筹兼顾,全面安排,进行多方案的比较,做到经济合理、安全适用。
2.0.2 市区架空电力线路的路径,应与城市总体规划相结合。
线路路径走廊位置,应与各种管线和其他市政设施统一安排。
2.0.3 架空电力线路路径的选择,应符合下列要求:1 应减少与其他设施交叉;当与其他架空线路交叉时,其交叉点不应选在被跨越线路的杆塔顶上。
2 架空电力线路跨越架空弱电线路的交叉角,应符合表2.0.3的要求。
表2.0.3 架空电力线路与架空弱电线路的交叉角注:架空弱电线路等级划分应符合本规范附录A的规定。
3 3KV及以上架空电力线路,不应跨越储存易燃、易爆物的仓库区域。
架空电力线路与火灾危险性的生产厂房和库房、易燃易爆材料堆场以及可燃或易燃、易爆液(气)体储罐的防火间距,应符合现行国家标准《建筑设计防火规范》(GBJ16-87)的规定。
电力行业输电线路设计规范导言:电力行业是现代社会中重要且必不可少的行业之一,从电力的产生到输送,再到最终供给给用户,其中输电线路的设计规范至关重要。
本文将对电力行业输电线路设计规范进行详细的探讨。
一、输电线路的基本概念和分类1.1 输电线路的概念和作用输电线路是将发电厂产生的电能输送到用户的媒介,起到连接发电厂与用户之间的桥梁作用。
它承担着电能传输、分配和调控的任务,是电力系统中不可或缺的组成部分。
1.2 输电线路的分类根据电力接口类型和电压等级的不同,输电线路可以分为高压、超高压和特高压线路。
高压线路通常用于城市及其周边区域的电力供应,超高压和特高压线路则用于远距离输电,以满足大规模用电需求。
二、输电线路设计的基本原则2.1 安全性原则输电线路设计中安全性是至关重要的考虑因素,包括设备安全和人员的安全。
确保输电线路的可靠性和稳定性,保障运行中不出现电气故障和人身伤亡。
2.2 经济性原则在满足安全性要求的前提下,考虑输电线路的经济性是设计的核心。
通过合理的线路布置和选用适当的设备,最大限度地降低建设和运营成本,提高输电效率。
2.3 可维护性原则输电线路的设计应该考虑到维护和修复的便利性,合理布置设备和设施,方便日常巡检和维修工作。
保证在线路故障发生时能够及时、有效地进行抢修,最大程度地减少停电时间。
三、输电线路的设计步骤3.1 线路位置确定根据输电线路的功能和影响范围,确定线路的位置和走向。
考虑到地理环境、地形地貌、自然条件等因素,确定线路的优化布局。
3.2 线路参数计算确定输电线路的电压等级、额定电流、载流量等参数,根据线路长度、功率因数和电能损耗进行计算。
同时,根据设计要求确定线路的额定载流量和负荷能力。
3.3 设备选型和配置根据线路的电压等级和电流负载,选择合适的导线、杆塔和绝缘子等设备。
根据设计要求和负荷要求配置合理的变压器、开关设备和保护设备等。
3.4 路线走通和施工图设计根据线路的设计参数和设备要求,设计线路的路线走向,绘制线路的走向图和施工图。
电力线路设计规范是指在电力工程中对电力线路设计的要求和标准。
的制定和遵守对于保障电力系统的安全、可靠和高效运行具有重要意义。
本文将从的背景、目的、内容和应用等方面进行详细讨论。
背景随着现代工业和社会的发展,电力供应对于国民经济和人民生活的重要性日益突出。
而电力线路作为电力系统的重要组成部分,其设计的合理性直接影响到电力传输和分配的效率和质量。
因此,为了提高电力系统的可靠性和经济性,各国纷纷制定了电力线路设计的规范和标准。
目的的目的是确保电力线路的安全运行、增强电力供应的可靠性和节能减排。
具体来说,它要求设计人员在设计过程中,充分考虑电力线路的运行环境、线路参数、电力负荷以及过电压和故障等因素,并合理确定电力线路的结构和组成,以实现线路的稳定运行和长寿命。
内容的内容相对复杂,主要包括以下几个方面:1. 电力线路的类型和结构。
不同的电力线路类型有不同的设计要求,如输电线路、配电线路和变电所出线等。
而电力线路的结构则涉及到杆塔、导线、绝缘子、地线等各个组成部分的选型和布置。
2. 电力线路的电气参数。
电力线路的电气参数直接关系到线路的功率传输和电能损耗。
因此,在设计中需要考虑恰当的电压等级、电流负载、电阻和电抗等参数,以满足线路对电能传输的要求。
3. 电力线路的安全和防护。
要求在设计中采取措施来确保线路的安全运行,包括对于电力冲击和故障的防护、避雷器的配置、接地系统的设计等。
4. 电力线路的环保和节能。
随着社会的发展,对环境保护和节能减排的要求越来越高。
因此,还要求设计人员要合理设计输电线路的路径、降低电能损耗以及控制电磁辐射等,以减少对环境的影响。
应用的应用范围广泛,几乎覆盖了所有电力工程项目。
无论是新建电力工程项目还是对现有电力线路进行改造和升级,都需要遵守相应的。
此外,各个国家和地区的也存在差异,因此,在进行国际间的电力工程项目合作时,还需要符合各个国家的相关规范和标准。
总结的制定和遵守对于保障电力系统的安全、可靠和高效运行具有重要意义。
电力工程中的输电线路设计与施工规范电力工程中的输电线路设计和施工规范对于确保电力传输的安全性和可靠性至关重要。
本文将探讨输电线路设计和施工规范的相关要点,其中包括线路选址、材料与设备选择、电气调试及施工管理等内容。
一、选址与环境评估在进行输电线路设计前,必须进行合适的选址与环境评估。
选址应根据输电需求、地形地貌、土地利用及环境保护等因素进行综合考虑。
同时,需要进行环境评估,确保线路建设与当地环境的协调与保护。
二、线路参数设计输电线路参数设计是确保电力传输效率和线路安全的重要环节。
在设计过程中,应根据电流负荷、输电距离和杆塔结构等因素,合理选择导线截面、杆塔距离和绝缘等级。
此外,还需要考虑电缆敷设和接地设计等相关问题。
三、材料与设备选择在输电线路设计和施工过程中,材料和设备的选择对于线路的耐候性和使用寿命至关重要。
合理选择导线、绝缘子、杆塔、地线等材料,并保证其符合国家标准和相应的技术规范。
此外,所选设备应具备可靠性高、运维成本低等特点。
四、电气调试电气调试是确保输电线路安全运行的重要环节。
在进行电气调试时,需要做到逐级投运、监测数据采集和故障定位等。
通过逐级投运和监测数据采集,可以保证线路的正常运行和异常故障的及时处理。
同时,故障定位技术的应用可以大大缩短故障恢复时间。
五、施工管理施工管理对于确保输电线路的质量和工期具有重要影响。
在施工管理中,应合理安排施工队伍,确保施工人员的技术水平和素质,严格遵守施工规范和安全操作规程。
此外,严格质量检验和监督管理对保证施工质量至关重要,可以通过抽查、监控系统等手段进行。
六、安全与环保措施在输电线路设计和施工过程中,安全和环保是核心关注的问题。
必须根据相关法规和规范要求,采取安全防护措施,包括人员安全、设备安全和施工现场防护等方面。
同时,还需严格遵守环保要求,保护生态环境,防止对周边土地、水资源和生物群落等造成污染和破坏。
综上所述,电力工程中的输电线路设计与施工规范是保证电力传输安全和可靠性的基础。
中华人民共和国国家标准66kV及以下架空电力线路设计规范GB 50061-97条文说明主编单位:辽宁电力勘测设计院1 总则1.0.2 原规范的适用范围为35kV及以下交流架空电力线路的设计。
随着经济的发展,电力负荷的增大,原规范的适用范围已不能满足实际需要,本规范确定为66kV及以下交流架空电力线路的设计。
1.0. 3 架空电力线路设计包括线路安装设计和线路杆塔结构设计两大部分。
线路安装设计包括路径设计、杆塔定位设计、架线设计、防雷设计和附属设施设计。
线路杆塔结构设计包括杆塔及其基础的设计。
条文中的共性要求,即针对上述设计内容制定。
对新技术应持既积极又慎重的态度,这是根据电力线路不同于其他建筑设施的特点而制定的。
1.0.4 以概率理论为基础的极限状态设计法是当前国际上结构设计较先进的方法。
这种方法以结构的失效概率来定义结构的可靠度,并以与其对应的可靠指标来度量结构的可靠度,能够较好地反映结构可靠度的实质,使概念更科学和明确。
按照现行国家标准《建筑结构设计统—标准》(GBJ68—84)的要求,本规范杆塔结构设计采用概率极限状态设计法。
架空电力线路架线设计是以导线或地线的最大使用张力和平均运行张力同时作为控制条件进行计算的;而连接导线或地线的绝缘子和金具是以安全系数设计法进行选型计算的。
这些均属于定值设计法。
2 路径2. 0. 1 架空电力线路路径的选择是一项非常重要的工作,对架空电力线路的造价和安全性、适用性的影响至关重要。
近年来由于工农业设施、市政设施的不断发展,线路路径的选择越来越困难。
因此在选择线路路径时,应认真进行调查。
对各种影响因素,如地理条件、地形条件、交通条件、运行和施工条件等,应进行综合比较。
对影响路径选择的重要环节,应在选线时即进行比较深入的技术经济比较。
2.0.2 市区线路路径的选择具有与一般地区完全不同的椿点,其中最首要的依据就是规划。
城市的总体规划均包括电力线路走廊及各种管线位置的安排,旧市区改造和电力负荷增长受各种因素的限制,很难做到同步规划,因此,作为电力设计部门,应及时报出电力建设的近期和远景规划,积极与规划部门配合,避免反复改建临时性线路,尽量争取做到统一规划。
10kv架空线路设计规范10kV架空线路设计规范是指在进行10kV架空线路设计时应遵守的技术规范和标准。
下面将从线路设计中的规范要求、线路参数、导线选型和附件要求等几个方面进行详细介绍。
一、规范要求1.符合国家电网公司及相关行业标准的规定,保证设计符合国家、地方的安全、质量、环境等方面的要求。
2.考虑线路所处环境的特点,如气象条件、地形地貌、土壤等。
3.根据预计的负荷情况,设计合理的导线跨距、绝缘距离和单回线路长度。
二、线路参数1.额定电压:10kV2.架空线型:根据实际情况,选用合适的线型,如单回、双回或多回。
3.导线截面:根据设计负荷和线路长度,计算合适的导线截面。
4.导线间距:根据气象条件和绝缘要求,设计合理的导线间距。
5.绝缘等级:根据地区的污秽程度,选用适当的绝缘等级。
6.导线张力:根据设计要求和线路参数,计算合理的导线张力。
7.电杆类型:选用适当的电杆类型,考虑电杆的强度和稳定性要求。
三、导线选型1.根据线路参数和设计要求,选用合适的导线类型,如裸导线、绝缘导线或绝缘钢芯铝绞线等。
2.导线应符合国家标准和电力行业相关标准,具有良好的导电性能和抗电气热沉积能力。
3.导线的截面应满足预计负荷的需要,同时考虑导线温度上升和电流密度等因素。
四、附件要求1.选用适当的绝缘子串,保证绝缘子串的绝缘性能和机械强度。
2.确保导线与电杆之间的可靠连接,选用合适的连接件和螺栓。
3.设置合适的避雷装置,保护线路免受大气雷击。
4.考虑架设线路所需的绝缘均串、绝缘导线等。
在10kV架空线路设计过程中,需要综合考虑线路参数、导线选型及附件要求等多方面的因素。
设计人员应严格按照相关规范要求进行设计,确保线路的安全、可靠和高效运行。
同时,在设计中要充分考虑线路的后期运维和维修,以便更好地服务于电力系统的运行与发展。
第4.0.2条钢芯铝绞线及其它复合成的导线,应按综合抗拉强度计算。
第4.0.3条导线的安全系数kd,应按下式计算:式中op一一导线的抗拉强度公斤/平方毫米;omax一一导线在弧垂最低点的最大使用应力公斤/平方毫米。
铝绞线、钢芯铝绞线及铝合金线的安全系数,对一般地区不应小于;对大、中城市的主要街道、厂区及人口稠密的地方,则不应小于。
第4.0.4条避雷线一般采用镀锌钢绞线,避雷线的安全系数宜大于同杆塔上导线的安全系数。
第4.0.5条 6-35千伏架空电力线路最大负荷利用小时在3000小时及以上时;导线截面宜采用接近经济电流密度的计算方法确定。
第4.0.6条架空电力线路的电压降,不宜超过下列数值:一、3-10千伏架空电力线路,自供电变电所二次侧出口至线路末端变压器一次侧人口的允许电压降为供电变电所二次侧额定电压的5%;二、3千伏以下架空电力线路,自变压器二次侧出口至线路末端不包括屋内线路的允许电压降为额定电压的4%。
第4.0.7条架空电力线路的导线,不应采用单股的铝线和铝合金线,并应符合下列要求:一、架空电力线路导线的截面,不应小于表4.0.7中所列数值。
表4.0.7二、避雷线的截面不宜小于25平方毫米。
三、3千伏以下的接户线应采用绝缘线。
四、不同金属或不同截面的导线,不得在档距内连接。
第4.0.8条架空电力线路绝缘子的选择,应符合下列要求:一、35千伏1、直线杆塔不宜采用针式绝缘子。
2、耐张绝缘子串的绝缘子个数,应比悬垂绝缘子串的同型绝缘子多一个。
二、3-10千伏直线杆可采用瓷横担。
三、3千伏以下1、直线杆一般采用低压针式绝缘子或低压瓷横担。
2、耐张杆应采用低压蝴蝶式绝缘子。
绝缘子的组装方式应防止瓷裙积水。
海拔高度超过1000米的地区,应根据海拔高度、线路电压等级,相应增强线路绝缘。
第4.0.9条绝缘子的机械强度安全系数不应小于下列数值:瓷横担 3.0针式绝缘子 2.5悬式绝缘子 2.0蝴蝶式绝缘子 2.5绝缘子的机械强度安全系数Kj,应按下式计算。
式中T—瓷横担的受弯破坏荷载公斤。
或针式绝缘子的受弯破坏荷载公斤 ,或悬式绝缘子一小时机电试验的试验荷载公斤 ,或蝴蝶式绝缘子的破坏荷载公斤;Tmax-绝缘子最大使用荷载公斤。
对35千伏架空电力线路,在断线情况下,瓷横担的机械强度安全系数不应小于2.01悬式绝缘子的机械强度安全系数不应小于1.3。
第4.0.10条在一般地区,绝缘于、绝缘子串或瓷横担的单位泄漏距离,不应小于厘米/千伏额定线电压。
在空气污秽地区,应根据运行经验和可能污秽程度,增加绝缘子、绝缘子串或瓷横担的泄漏距离或采取其它防污措施。
第4.0.11条金具的强度安全系数不应小于。
35千伏架空电力线路在断线情况下,金具的强度安全系数不应小于。
金具应热镀锌。
第4.0.12条 3千伏及以上架空电力线路的铝绞线、钢芯铝绞线或铝合金线,在与绝缘子或金具的固定处宜缠绕铝包带。
35千伏架空电力线路,尚应根据导线或避雷线的防振要求设宜防振设施。
导线和避雷线的平均运行应力上限和相应的防振措施应符合表4.0.l2的要求。
表4.0.l2如根据多年运行经验,证明当地导线和避雷线的振动危险很小,可不受表4.0.12的限制。
第五章导线排列第5.0.1条 35千伏架空电力线路的导线,一般采用三角排列或水平排列。
3-I0千伏架空电力线路的导线,一般采用三角排列或水平排列;多回路线路的导线,宜采用三角、水平混合排列或垂直排列。
3千伏以下架空电力线路的导线,一般采用水平排列。
在同一走廊内的3-l0千伏架空电力线路与3千伏以下架空电力线路,宜同杆架设。
第5.0.2条 10千伏及以下架空电力线路的档距,应根据运行经验确定。
如无可靠运行资料时,一般采用表5.0.2中所列数值。
表5.0.235千伏架空电力线路耐张段的长度,不宜大于3~5公里;l0千伏及以下架空电力线路耐张段的长度,不宜大于2公里。
第5.0.3条架空电力线路导线的线间距离,应根据运行经验确定。
如无可靠运行资料时,不应小于表5.0.3中所列数值。
注:3千伏以下线路,靠近电杆两侧导线间的水平距离不应小于米。
第5.0.4条覆冰地区35千伏架空电力线路上下层导线间或导线与避雷线间的水平偏移为:对设计冰厚为10毫米地区,不应小于米;对设计冰厚为15毫米地区,不应小于米。
第5.0.5条同杆架设10千伏及以下双回路或多回路线路的横担间垂直距离,不应小于表5.0.5中所列数值。
表5.0.5注:表中是指上面的横担取米,距下面的横担取米。
10千伏及以下线路与35千伏线路同杆架设时,导线间垂直距离不应小于米。
35千伏双回路或多回路线路的不同回路不同相导线间的距离,不应小于米。
第5.0.6条 3-10千伏架空电力线路的过引线、引下线与邻相导线间的净空距离,不应小于0.3米;1千伏以下时,不应小于米。
3-10千伏架空电力线路的导线与拉线、导线与电杆、导线与架构间的净空距离,不应小于米;3千伏以下时,不应小于米。
3-10千伏架空电力线路的引下线与低压线间的距离,不宜小于米。
10千伏及以下线路的拉线从两相导线之间穿过时,应装设拉线绝缘子。
第六章杆塔与基础第6.0.1条架空电力线路宜采用预应力混凝土杆。
第6.0.2条各类杆塔均应计算线路运行、断线及安装情况的荷载,并应按以上各种情况所受荷载,进行强度、稳定、变形和抗裂度计算。
但对针式绝缘子的线路和10千伏及以下的瓷横担线路,可不进行杆塔断线情况的计算。
第6.0.3条各类杆塔应按下列条件进行荷载计算:一、运行情况1.最大风速、无冰、未断线。
2.覆冰、相应风速、未断线。
3.最低气温、无风、无冰、未断线。
二、断线情况仅适用于采用悬垂式绝缘子的线路1.直线型杆塔:1 不论几回路的杆塔,断一根导线、避雷线未断、无冰、无风。
2 单导线的断线张力,应采用表6.0.3中所列数值。
3 对具有避雷线的35千伏线路,还要计算避雷线的不平衡张力,此时导线未断、无冰、无风。
4 避雷线的不平衡张力,对钢筋混凝土电杆,不应小于避雷线最大使用张力的15-20%;对铁塔,不应小于50%。
表6.0.32.耐张型杆塔:1 不论几回路的杆塔,在同一档内断两相导线、避雷线末断、无冰、无风。
2 断一根避雷线、导线末断、无冰、无风。
在断线情况下,所有导线张力宜取导线最大使用张力的70%,所有避雷线张力宜取避雷线最大使用张力的80%。
此外,终端杆塔应按进线档架线及未架线两种情况计算。
单回路终端杆塔还应按断一相导线、避雷线未断、无冰、无风条件计算。
三、安装情况应按安装荷载、相应风速、无冰条件计算。
第6.0.4条钢筋混凝土杆的强度计算,应采用安全系数的设计方法,普通钢筋混凝土杆采用的强度设计安全系数不应小于,预应力混凝土杆采用的强度设计安全系数不应小于。
第6.0.5条拉线应采用镀锌钢绞线或镀锌铁线,其强度安全系数及最小截面应符合表6.0.5的要求。
表6.0.5镀锌钢绞线的设计机械强度,应采用绞线的抗拉强度。
第6.0.6条拉线棒的直径不应小于16毫米。
拉线棒应热镀锌。
在腐蚀严重地区,除镀锌外,还应采取其它有效的防腐措施。
第6.0.7条用离心法制造的普通钢筋混凝土杆件,其混凝土标号不应低于300号,用振捣法制造的预应力混凝土杆件,其标号不宜低于400号。
第6.0.8条杆塔构件使用钢材的厚度不应小于表6.0.8中所列数值。
表6.0.8第6.0.9条电杆基础应根据当地运行经验、材料来源和地质情况等进行设计。
在有条件的地方,宜采用岩石底盘、卡盘和拉线盘。
采用岩石预制基础时,应选择结构完整、质地坚硬的石料如花岗岩等 ,并应进行强度试验。
其强度安全系数不应小于下列数值:岩石底盘 3岩石卡盘 4岩石拉线盘 5第6.0.10条杆塔基础的上拔和倾复稳定安全系数,按极限土抗力计算时,不应小于下列数值:直线杆塔 1.5耐张杆塔 1.8转角、终端杆塔 2.2第6.0.11条普通钢筋混凝土基础的强度安全系数,不应小于;混凝土基础的强度安全系数,不应小于。
预制基础的混凝土标号,不宜低于200号;普通钢筋混凝土基础的混凝土标号,不宜低于150号;混凝土基础的标号,不应低于100号。
第6.0.12条杆塔基础的埋直深度,不应小于米;在寒冷地区,其埋深应根据土壤的冻结深度和基础的形式确定。
第七章对地距离及交叉跨越第7.0.l条导线与地面、建筑物、树木、铁路、道路、河流、管道、索道及各种架空线路间的距离,应根据最高气温情况或覆冰情况求得的最大弧垂和最大风速情况或覆冰情况求得的最大风偏进行计算。
计算上述距离,不应考虑由于电流、太阳辐射等引起的弧垂增大,但应计及导线塑性伸长的影响和设计施工的误差。
架空电力线路与铁路不包括工业企业铁路、一级公路交叉,如交叉档距超过200米,最大弧垂应按导线温度为+70℃计算。
第7.0.2条导线与地面或水面的距离,在最大计算弧垂情况下,不应小于表7.0.2-1中所列数值。
表7.0.2-1注:1.交通困难地区是指车辆、农业机械不能达到的地区.2.最高水位,对35千伏线路是指百年一遇高水位;对10千伏及以下线路是指50年一遇高水位.导线与山坡、峭壁、岩石的净距,在最大计算风偏情况下不应小于表7.0.2-2中所列数值。
第7.0.3条 3-35千伏架空电力线路不应跨越屋顶为易燃材料的建筑物。
对其它建筑物,也应尽量不跨越;如需跨越,应与有关主管部门协商确定。
导线与建筑物的垂直距离为:在最大计算弧垂情况下,对35千伏线路,不应小于4.0米;对3-10千伏线路,不应小于3.0米。
3千伏以下架空电力线路跨越建筑物时,导线与建筑物的垂直距离,在最大计算弧垂情况下,不应小于2.5米。
表7.0.2-2第7.0.4条架空电力线路边导线与建筑物间的距离,在最大计算风偏情况下,不应小于表7.0.4中所列数值。
表7.0.4注:1.导线与城市多层建筑物或规划建筑线间的距离是指水平距离。
2.导线与不在规划范围内的城市建筑物间的距离是指净距,但无风情况下的水平距离不应小于表中所列数值的50%.第7.0.5条架空电力线路通过公园、绿化区或防护林带,导线与树木之间的净距,在最大计算风偏情况下,不应小于表7.0.5-1中所列数值。
表7.0.5-1架空电力线路通过果林、经济作物林以及城市灌木林时,不应砍伐出通道。
导线与果林、经济作物林及城市灌木林之间的最小垂直距离,在最大计算弧垂情况下,对35千伏线路,不应小于米;对10千伏及以下线路,不应小于米。
架空电力线路的导线与街道行道树间的距离,不应小于表7.0.5-2中所列水平距离或垂直距离数值。
表7.0.5-2校验导线与树木间的垂直距离,应考虑修剪周期内树木生长的高度。
第7.0.6条 35千伏架空电力线路通过居民区时,宜采用固定横担和固定线夹。
第7.0.7条架空电力线路跨越架空弱电线路时,其交叉角应符合表7.0.7的要求。