四种常用聚类方法
- 格式:docx
- 大小:10.67 KB
- 文档页数:3
五种常用系统聚类分析方法及其比较胡雷芳一、系统聚类分析概述聚类分析是研究如何将对象按照多个方面的特征进行综合分类的一种统计方法[1]。
然而在以往的分类学中,人们主要靠经验和专业知识作定性分类处理,许多分类不可避免地带有主观性和任意性,不能揭示客观事物内在的本质差别和联系;或者人们只根据事物单方面的特征进行分类,这些分类虽然可以反映事物某些方面的区别,但却往往难以反映各类事物之间的综合差异。
聚类分析方法有效地解决了科学研究中多因素、多指标的分类问题[2]。
在目前的实际应用中,系统聚类法和K均值聚类法是聚类分析中最常用的两种方法。
其中,K均值聚类法虽计算速度快,但需要事先根据样本空间分布指定分类的数目,而当样本的变量数超过3个时,该方法的可行性就较差。
而系统聚类法(Hierarchicalclusteringmethods,也称层次聚类法)由于类与类之间的距离计算方法灵活多样,使其适应不同的要求。
该方法是目前实践中使用最多的。
这该方法的基本思想是:先将n个样本各自看成一类,并规定样本与样本之间的距离和类与类之间的距离。
开始时,因每个样本自成一类,类与类之间的距离与样本之间的距离是相同的。
然后,在所有的类中,选择距离最小的两个类合并成一个新类,并计算出所得新类和其它各类的距离;接着再将距离最近的两类合并,这样每次合并两类,直至将所有的样本都合并成一类为止。
这样一种连续并类的过程可用一种类似于树状结构的图形即聚类谱系图(俗称树状图)来表示,由聚类谱系图可清楚地看出全部样本的聚集过程,从而可做出对全部样本的分类[3]。
二、五种常用系统聚类分析方法系统聚类法在进行聚类的过程中,需要计算类与类之间的距离。
根据类与类之间的距离计算方法的不同,我们可以将系统聚类法分为单连接法、完全连接法、平均连接法、组平均连接法与离差平方和法等。
1.单连接法(Singlelinkage)单连接法又称最短距离法。
该方法首先将距离最近的样本归入一类,即合并的前两个样本是它们之间有最小距离和最大相似性;然后计算新类和单个样本间的距离作为单个样本和类中的样本间的最小距离,尚未合并的样本间的距离并未改变。
基于地理的聚类方法随着信息技术的快速发展,地理信息系统(GIS)在各个领域扮演着越来越重要的角色。
其中,聚类分析是GIS中地理空间数据分析的重要方法之一。
它通过对数据点的相似性进行度量,将属于同一类别的数据点聚集在一起,从而发现地理空间中的规律和关系。
在本文中,我们将着重介绍基于地理的聚类方法。
1.基于密度的聚类密度聚类方法是基于数据点密度的分析方法。
其基本思想是将数据点分布空间中的高密度区域看成一类,而低密度区域则看成另一类。
常见的密度聚类算法有DBSCAN(密度聚类的基础算法)、OPTICS 等算法。
在地理信息领域,该方法可用于提取地形形态、城市几何形态、森林覆盖度等信息。
2.基于网格的聚类网格聚类将地理信息空间分割为一个个网格,并测试每个网格的内容。
网格中心是被聚类的对象,其属性值将被作为网格的模式。
网格聚类的优点是聚类结果具有空间属性和易于解释性。
网格聚类的应用领域包括城市规划、环境管理和森林覆盖等。
3.基于层次聚类层次聚类将数据点看成一棵树,从下到上逐渐合并成一团。
该方法通过不同阈值的设定,把这棵树的分枝划分成不同的类别。
在地理信息领域,该方法可用于划分地形形态、水文地貌等信息。
4.基于特征聚类特征聚类将地理信息中的特征看成一类,通过这些特征的共同性,将这些特征聚类在一起。
特征聚类应用广泛,例如在植被分类、河流图像分割和地形分类等领域。
总结基于地理的聚类方法可以分为四种:基于密度的聚类、基于网格的聚类、基于层次聚类和基于特征聚类。
不同的聚类方法适用于不同的数据类型,所以聚类方法的选择也很关键。
在GIS空间数据分析过程中,通过探索不同聚类方法的优缺点,可以深入理解数据本身,并发现其中具有潜在规律和联系的地理现象,为决策提供有效的支持。
统计学中的聚类分析方法统计学是一门研究数据收集、整理、分析和解释的学科。
在统计学中,聚类分析是一种常用的方法,通过对数据集进行分类,将相似的样本归为一类,以便揭示数据的内部结构和隐含关系。
聚类分析可以应用于各个领域,包括市场调研、生物学、医学、图像处理等。
对于大量数据集的分类和理解,聚类分析提供了一种有效的手段。
一、聚类分析的基本思想聚类分析的基本思想是将样本集合中具有相似特征的样本划分为一组,通过测量样本间的相似性或者距离,将样本分成不同的簇。
相似性可以根据各种度量方法来定义,例如欧氏距离、曼哈顿距离、相关系数等。
聚类分析的目标是使得同一簇中的样本之间更加相似,而不同簇中的样本之间差异较大。
在进行聚类分析时,需要注意选择合适的聚类算法和参数,以及对结果的验证和解释。
二、常用的聚类算法1. K-means算法K-means算法是一种常见的聚类算法,通过将样本分为K个簇,每个簇内的样本之间的距离最小,而不同簇之间的距离最大。
算法的基本步骤包括初始化质心、计算样本到质心的距离、分配样本到最近的质心、更新质心位置,并迭代上述步骤直至收敛。
2. 层次聚类算法层次聚类算法是一种分层次的聚类方法,不需要预先指定簇的数目。
该算法将每个样本作为一个独立的簇,并通过不断合并相似的簇来构建层次结构。
合并的标准可以是最小距离、最大距离、平均距离等。
3. 密度聚类算法密度聚类算法是一种基于密度的聚类方法,适用于对复杂的数据集进行聚类。
该算法通过计算样本集合中每个样本的密度,并将高密度相连的样本划分为一类。
密度聚类算法的优点在于它可以发现任意形状的簇,并且对于噪声和异常点具有较强的鲁棒性。
三、聚类结果的评价和解释聚类结果的评价和解释是聚类分析中的重要步骤。
常用的评价指标包括轮廓系数、DB指数、Dunn指数等,它们能够对聚类结果的好坏进行量化评估。
解释聚类结果的过程包括对每个簇的特征进行分析,寻找可以解释簇内样本差异的相关因素。
聚类算法⼀(Kmeans、层次类聚、谱类聚)⼀、 K-means 1、基础1 Clustering 中的经典算法,数据挖掘⼗⼤经典算法之⼀2 算法接受参数 k ;然后将事先输⼊的n个数据对象划分为 k个聚类以便使得所获得的聚类满⾜: 同⼀聚类中的对象相似度较⾼;⽽不同聚类中的对象相似度较⼩。
3 算法思想:以空间中k个点为中⼼进⾏聚类,对最靠近他们的对象归类。
通过迭代的⽅法,逐次更新各聚类中⼼的值,直⾄得到最好的聚类结果4 算法描述:(1)适当选择c个类的初始中⼼;(2)在第k次迭代中,对任意⼀个样本,求其到c各中⼼的距离,将该样本归到距离最短的中⼼所在的类;(3)利⽤均值等⽅法更新该类的中⼼值;(4)对于所有的c个聚类中⼼,如果利⽤(2)(3)的迭代法更新后,值保持不变,则迭代结束;否则,则继续迭代。
2、算法流程:输⼊:k, data[n];(1)选择k个初始中⼼点,例如c[0]=data[0],…c[k-1]=data[k-1];(2)对于data[0]….data[n], 分别与c[0]…c[k-1]⽐较,假定与c[i]差值最少,就标记为i;(3)对于所有标记为i点,重新计算c[i]={ 所有标记为i的data[j]之和}/标记为i的个数;(4)重复(2)(3),直到所有c[i]值的变化⼩于给定阈值。
3、优缺点 优点:速度快,简单 缺点:最终结果跟初始点选择相关,容易陷⼊局部最优,需直到k值⼆、层次类聚 上篇k-means算法却是⼀种⽅便好⽤的聚类算法,但是始终有K值选择和初始聚类中⼼点选择的问题,⽽这些问题也会影响聚类的效果。
为了避免这些问题,我们可以选择另外⼀种⽐较实⽤的聚类算法-层次聚类算法。
顾名思义,层次聚类就是⼀层⼀层的进⾏聚类,可以由上向下把⼤的类别(cluster)分割,叫作分裂法;也可以由下向上对⼩的类别进⾏聚合,叫作凝聚法;但是⼀般⽤的⽐较多的是由下向上的凝聚⽅法。
1、分裂法: 分裂法指的是初始时将所有的样本归为⼀个类簇,然后依据某种准则进⾏逐渐的分裂,直到达到某种条件或者达到设定的分类数⽬。
常见的聚类方法
聚类分析是一种数据分析方法,主要是为了将相似的对象归为同一群组,不同群组之间的对象则差异很大。
在聚类分析中,常见的聚类方法包括:
1. K均值聚类:是一种基于距离的聚类方法,其思想是先随机选取k个初始聚类中心,然后将每个样本点分配到最近的聚类中心中,接着重新计算每个聚类的中心,直到收敛为止。
2. 层次聚类:是一种基于距离和相似矩阵的聚类方法,其思想是将所有的样本点看作是一个大的聚类,然后根据相似度逐步的将聚类细分成小的聚类。
层次聚类分为一般层次聚类和凝聚层次聚类两种。
3. DBSCAN聚类:是一种基于密度的聚类方法,其思想是将某一点的密度低于设定阈值的数据点作为噪声,其它点的连通域形成簇。
4. 均层策略聚类:是一种基于分层策略的聚类方法,其思想是先将大量数据分为若干个均分的分片,然后对每个分片进行聚类,再作进一步的整合。
聚类方法的选择要基于数据的特点和要求,不同的方法会在结果和效率上有所差异。
五种常用系统聚类分析方法及其比较胡雷芳一、系统聚类分析概述聚类分析是研究如何将对象按照多个方面的特征进行综合分类的一种统计方法[1]。
然而在以往的分类学中,人们主要靠经验和专业知识作定性分类处理,许多分类不可避免地带有主观性和任意性,不能揭示客观事物内在的本质差别和联系;或者人们只根据事物单方面的特征进行分类,这些分类虽然可以反映事物某些方面的区别,但却往往难以反映各类事物之间的综合差异。
聚类分析方法有效地解决了科学研究中多因素、多指标的分类问题[2]。
在目前的实际应用中,系统聚类法和K均值聚类法是聚类分析中最常用的两种方法。
其中,K均值聚类法虽计算速度快,但需要事先根据样本空间分布指定分类的数目,而当样本的变量数超过3个时,该方法的可行性就较差。
而系统聚类法(Hierarchicalclusteringmethods,也称层次聚类法)由于类与类之间的距离计算方法灵活多样,使其适应不同的要求。
该方法是目前实践中使用最多的。
这该方法的基本思想是:先将n个样本各自看成一类,并规定样本与样本之间的距离和类与类之间的距离。
开始时,因每个样本自成一类,类与类之间的距离与样本之间的距离是相同的。
然后,在所有的类中,选择距离最小的两个类合并成一个新类,并计算出所得新类和其它各类的距离;接着再将距离最近的两类合并,这样每次合并两类,直至将所有的样本都合并成一类为止。
这样一种连续并类的过程可用一种类似于树状结构的图形即聚类谱系图(俗称树状图)来表示,由聚类谱系图可清楚地看出全部样本的聚集过程,从而可做出对全部样本的分类[3]。
二、五种常用系统聚类分析方法系统聚类法在进行聚类的过程中,需要计算类与类之间的距离。
根据类与类之间的距离计算方法的不同,我们可以将系统聚类法分为单连接法、完全连接法、平均连接法、组平均连接法与离差平方和法等。
1.单连接法(Singlelinkage)单连接法又称最短距离法。
该方法首先将距离最近的样本归入一类,即合并的前两个样本是它们之间有最小距离和最大相似性;然后计算新类和单个样本间的距离作为单个样本和类中的样本间的最小距离,尚未合并的样本间的距离并未改变。
对变量进行聚类的方法
对变量进行聚类的方法有很多种,以下是一些常见的方法:
1. 最短距离法:这种方法将两个样本之间最近的距离作为分类的依据,将距离最近的样本归为一类,然后对剩余的样本进行同样的操作,直到所有样本都被分类。
2. 类平均法:这种方法将每个类别的平均值作为分类的依据,将样本点与每个类别的平均值进行比较,并将其归入距离最近的类别中。
3. k均值法:这种方法是一种迭代算法,将样本点分为k个类别,每个类别的中心点为该类别中所有样本点的平均值。
然后重新计算每个类别的中心点,并将样本点重新归类,直到达到收敛条件。
4. 因子分析方法:这种方法通过对变量之间的相关性进行分析,将变量归为若干个因子,这些因子反映了变量之间的共同特征。
通过因子分析,可以将多个变量简化为少数几个因子,从而更好地揭示数据的内在结构。
以上是对变量进行聚类的常见方法,不同的方法有不同的特点和适用场景,应根据具体问题和数据选择合适的方法进行聚类分析。
三种常见聚类算法
一、K-Means聚类算法
K-Means聚类算法的步骤主要有以下几个:
(1)初始化簇质心
即选择K个簇质心,可以是随机选择,也可以是给定初始簇质心。
(2)计算样本距离簇质心的距离
可以使用欧式距离,余弦距离等样本距离簇质心的距离。
(3)将样本分配到最近的簇中
将每个样本分配到距离该样本最近的一个簇质心所在的簇中。
(4)重新计算簇质心
将每个簇中所有样本的均值作为该簇的新质心。
(5)重复步骤(2),(3),(4),直到簇质心的值不再发生变化。
K-Means算法的优点是实现简单,快速,可将样本聚类到可表示的结
构中,聚类效果较好;缺点是需要调整参数K的值,聚类效果主要取决于
初始质心的设置,可能产生局部最优解,不适用于异常值比较多的数据。
常见的原型聚类方法(一)常见的原型聚类原型聚类是一种常见的无监督学习方法,用于根据样本之间的相似度将数据划分成不同的群组。
在本文中,我们会介绍几种常用的原型聚类方法,并对其进行详细说明。
1. K-Means聚类K-Means聚类是一种迭代的聚类算法,它通过选择K个聚类中心,并将每个样本分配到最近的聚类中心来进行聚类。
具体步骤如下:1.初始化K个聚类中心的位置。
2.分配每个样本到最近的聚类中心。
3.更新聚类中心的位置,使其成为一个聚类的平均值。
4.重复步骤2和3,直到聚类中心不再变化或达到最大迭代次数。
K-Means聚类的优点是计算简单、可解释性强,但需要提前指定聚类的数量K。
2. 层次聚类层次聚类是一种自底向上或自顶向下的聚类方法,该方法通过计算样本之间的距离或相似度,逐渐合并或划分群组来构建层级关系。
具体步骤如下:1.计算样本之间的距离或相似度。
2.将每个样本视为一个单独的聚类,并将它们组合成更大的聚类,直到形成一个包含所有样本的聚类。
3.根据需要,可以继续划分或合并聚类。
层次聚类的优点是不需要提前指定聚类的数量,能够自动构建层级结构。
但其计算复杂度较高,并且对噪声和异常值较为敏感。
3. DBSCAN聚类DBSCAN(Density-Based Spatial Clustering of Applications with Noise)聚类是一种基于样本密度的聚类算法,能够发现具有不规则形状的聚类。
具体步骤如下:1.随机选择一个未被访问的样本点,并标记为已访问。
2.根据指定的半径ε和最小样本数min_samples,找出与该样本点ε-邻域内的所有样本点。
3.如果ε-邻域内的样本点数大于等于min_samples,则将其添加到当前聚类中,并将其作为新的种子点,重复步骤2。
4.如果ε-邻域内的样本点数小于min_samples,则将该样本点标记为噪声点,继续下一个未被访问的样本点。
DBSCAN聚类的优点是不需要提前指定聚类的数量,能够发现任意形状的聚类。
聚类分析方法聚类分析是一种常用的数据分析方法,它可以帮助我们将数据集中的对象按照它们的相似性进行分组。
通过聚类分析,我们可以发现数据中的内在结构和规律,从而更好地理解数据。
在本文中,我们将介绍聚类分析的基本概念、常见的聚类方法以及聚类分析的应用场景。
首先,让我们来了解一下聚类分析的基本概念。
聚类分析是一种无监督学习方法,它不需要预先标记的训练数据,而是根据数据对象之间的相似性来进行分组。
在聚类分析中,我们通常会使用距离或相似度作为衡量对象之间关系的指标。
常见的距离指标包括欧氏距离、曼哈顿距离和余弦相似度等。
通过计算对象之间的距离或相似度,我们可以将它们划分到不同的类别中,从而实现数据的聚类。
接下来,让我们来介绍一些常见的聚类方法。
最常用的聚类方法包括层次聚类、K均值聚类和密度聚类。
层次聚类是一种基于对象之间相似性构建层次结构的方法,它可以分为凝聚式层次聚类和分裂式层次聚类。
K均值聚类是一种迭代的聚类方法,它将数据对象划分为K个类别,并通过迭代优化来找到最优的聚类中心。
密度聚类是一种基于数据密度的聚类方法,它可以发现任意形状的聚类簇,并对噪声数据具有较强的鲁棒性。
最后,让我们来看一些聚类分析的应用场景。
聚类分析可以应用于各个领域,例如市场营销、生物信息学、社交网络分析等。
在市场营销中,我们可以利用聚类分析来识别不同的消费群体,并针对不同群体制定个性化的营销策略。
在生物信息学中,聚类分析可以帮助我们发现基因表达数据中的基因模式,并识别相关的生物过程。
在社交网络分析中,我们可以利用聚类分析来发现社交网络中的社区结构,并识别影响力较大的节点。
总之,聚类分析是一种非常有用的数据分析方法,它可以帮助我们发现数据中的内在结构和规律。
通过本文的介绍,相信大家对聚类分析有了更深入的了解,希望能够在实际应用中发挥其价值,为各行各业的发展提供有力支持。
距离聚类算法
距离聚类是一种常见的聚类算法,它基于样本之间的相似性度量(通常是距离)来将样本分组为不同的簇。
在距离聚类中,每个样本都被视为一个数据点,并且聚类的目标是将相似的数据点分配到同一个簇中,从而使得同一簇内的数据点之间的距离最小化。
距离聚类算法的常见代表包括以下几种:
1. K均值聚类(K-means clustering):K均值聚类是一种迭代的聚类算法,它将样本分为K个簇,其中K是用户指定的参数。
该算法通过不断迭代优化每个簇的质心位置,使得簇内样本之间的平均距离最小化。
2. 层次聚类(Hierarchical clustering):层次聚类是一种自底向上或自顶向下的聚类方法。
自底向上的方法(凝聚型层次聚类)首先将每个样本视为一个簇,然后逐步合并最相似的簇,直到形成一个大的簇,或者达到预设的簇的数量。
自顶向下的方法(分裂型层次聚类)首先将所有的样本视为一个簇,然后逐步将簇划分为更小的子簇,直到达到预设的簇的数量。
3. 密度聚类(Density-based clustering):密度聚类算法基于样本的密度来划分簇。
它将高密度区域视为一个簇,而低密度区域被视为簇的边界或噪音。
DBSCAN(Density-Based Spatial Clustering of Applications with Noise)是密度聚类的一个常见算法。
这些算法中,K均值聚类是最常见且实现简单的一种距离聚类算法。
但需要注意的是,使用距离聚类算法时,需要根据具体的数据特点和应用场景选择适合的距离度量方法(如欧氏距离、曼哈顿距离等)和合适的簇的数量(对于K均值聚类)。
聚类,也被称为Clustering,是一种无监督学习方法,用于将数据集分割成不同的类或簇。
每个簇内的数据对象的相似性尽可能大,而不在同一个簇中的数据对象的差异性也尽可能地大。
以下是一些常见的聚类方法及其简要描述:1. K-Means: K-Means聚类算法是最常用的聚类方法之一,它将数据点分为K个簇,每个簇的中心点是其所有成员的平均值。
例如,可以使用K-Means对顾客按照购买行为进行分组。
2. Affinity Propagation: 这是一种基于图论的聚类算法,旨在识别数据中的"exemplars" (代表点)和"clusters" (簇)。
例如,可以使用Affinity Propagation来识别新闻文章中的主题。
3. Agglomerative Clustering (凝聚层次聚类): 这是一种自底向上的聚类算法,它将每个数据点视为一个初始簇,并将它们逐步合并成更大的簇,直到达到停止条件为止。
例如,可以使用Agglomerative Clustering来对基因进行分类。
4. Mean Shift Clustering: 此算法根据数据的密度来进行聚类。
例如,可以使用Mean Shift 对天气数据进行空间分区。
5. Bisecting K-Means: 它是K-Means的衍生算法,通过不断地将当前簇一分为二来找到更好的聚类效果。
例如,可以使用Bisecting K-Means对文档进行主题分类。
6. DBSCAN: DBSCAN是一个基于密度的聚类算法,它可以识别出任意形状的簇,并且可以处理噪声数据。
例如,可以使用DBSCAN对地理空间数据进行区域划分。
聚类的主要方法
聚类是一种数据挖掘技术,其目的是将相似的数据分组到一起。
聚类主要有以下几种方法:
1. 分层聚类:将数据分层次地组织成一个树形的层次结构,从而形成聚类的结果。
2. 划分聚类:将数据集分成独立的、互不重叠的聚类,然后再对每个聚类进行进一步分析。
3. 密度聚类:在数据分布中找到密度较高的区域,并将其作为聚类的中心。
4. 基于原型的聚类:根据原型点(例如,聚类的中心)将数据集分成若干个聚类。
5. 基于网格的聚类:将数据空间划分成多个网格,然后将每个网格内的数据点归入同一聚类。
这些方法在聚类分析中都有广泛的应用,具体的选择与使用需要根据聚类目的、数据特征和算法特点等因素来确定。
聚类分析cluster analysis聚类分析方法是按样品(或变量)的数据特征,把相似的样品(或变量)倾向于分在同一类中,把不相似的样品(或变量)倾向于分在不同类中。
聚类分析根据分类对象不同分为Q型和R型聚类分析在聚类分析过程中类的个数如何来确定才合适呢?这是一个十分困难的问题,人们至今仍未找到令人满意的方法。
但是这个问题又是不可回避的。
下面我们介绍几种方法。
1、给定阈值——通过观测聚类图,给出一个合适的阈值T。
要求类与类之间的距离不要超过T值。
例如我们给定T=0.35,当聚类时,类间的距离已经超过了0.35,则聚类结束。
聚类分析的出发点是研究对象之间可能存在的相似性和亲疏关系。
样品间亲疏程度的测度研究样品或变量的亲疏程度的数量指标有两种,一种叫相似系数,性质越接近的变量或样品,它们的相似系数越接近于1或一l,而彼此无关的变量或样品它们的相似系数则越接近于0,相似的为一类,不相似的为不同类;另一种叫距离,它是将每一个样品看作p维空间的一个点,并用某种度量测量点与点之间的距离,距离较近的归为一类,距离较远的点应属于不同的类。
变量之间的聚类即R型聚类分析,常用相似系数来测度变量之间的亲疏程度。
而样品之间的聚类即Q型聚类分析,则常用距离来测度样品之间的亲疏程度。
定义:在聚类分析中反映样品或变量间关系亲疏程度的统计量称为聚类统计量,常用的聚类统计量分为距离和相似系数两种。
距离:用于对样品的聚类。
常用欧氏距离,在求距离前,需把指标进行标准化。
相似系数:常用于对变量的聚类。
一般采用相关系数。
相似性度量:距离和相似系数。
距离常用来度量样品之间的相似性,相似系数常用来度量变量之间的相似性。
样品之间的距离和相似系数有着各种不同的定义,而这些定义与变量的类型有着非常密切的关系。
距离和相似系数这两个概念反映了样品(或变量)之间的相似程度。
相似程度越高,一般两个样品(或变量)间的距离就越小或相似系数的绝对值就越大;反之,相似程度越低,一般两个样品(或变量)间的距离就越大或相似系数的绝对值就越小。
聚类分析的算法可以分为划分法、层次法、基于密度的方法、基于网格的方法、基于模型的方法。
1、划分法,给定一个有N个元组或者纪录的数据集,分裂法将构造K个分组,每一个分组就代表一个聚类,K<N。
2、层次法,这种方法对给定的数据集进行层次似的分解,直到某种条件满足为止。
3、基于密度的方法,基于密度的方法与其它方法的一个根本区别是:它不是基于各种各样的距离的,而是基于密度的。
这样就能克服基于距离的算法只能发现“类圆形”的聚类的缺点。
4、图论聚类方法解决的第一步是建立与问题相适应的图,图的节点对应于被分析数据的最小单元,图的边(或弧)对应于最小处理单元数据之间的相似性度量。
5、基于网格的方法,这种方法首先将数据空间划分成为有限个单元的网格结构,所有的处理都是以单个的单元为对象的。
6、基于模型的方法,基于模型的方法给每一个聚类假定一个模型,然后去寻找能够很好的满足这个模型的数据集。
聚类分析的方法一、系统聚类法系统聚类分析法就是利用一定的数学方法将样品或变量(所分析的项目)归并为若干不同的类别(以分类树形图表示),使得每一类别内的所有个体之间具有较密切的关系,而各类别之间的相互关系相对地比较疏远。
系统聚类分析最后得到一个反映个体间亲疏关系的自然谱系,它比较客观地描述了分类对象的各个体之间的差异和联系。
根据分类目的不同,系统聚类分析可分为两类:一类是对变量分类,称为R型分析;另一类是对样品分类,称为Q型分析。
系统聚类分析法基本步骤如下(许志友,1988)。
(一)数据的正规化和标准化由于监测时所得到的数值各变量之间相差较大,或因各变量所取的度量单位不同,使数值差别增大,如果不对原始数据进行变换处理,势必会突出监测数据中数值较大的一些变量的作用,而消弱数值较小的另一些变量的作用,克服这种弊病的办法是对原始数据正规化或标准化,得到的数据均与监测时所取的度量单位无关。
设原始监测数据为Xij (i=1,2,…,n;j=1,2,…,m;n为样品个数,m为变量个数),正规化或标准化处理后的数据为Zij (i=1,2,…,n;j=1,2,…,m)。
1. 正规化计算公式如下:(7-32)(i=1,2,…,n;j=1,2,…,m)2. 标准化计算公式如下:(7-33)(i=1,2,…,n;j=1,2,…,m)其中:(二)数据分类尺度计算为了对数据Zij进行分类,须对该数据进一步处理,以便从中确定出分类的尺度,下列出分类尺度计算的四种方法。
1.相关系数R两两变量间简单相关系数定义为:(7-34)(i,j=1,2,…,m)其中一般用于变量的分类(R型)。
有一1≤≤1且愈接近1时,则此两变量愈亲近,愈接近-1,则关系愈疏远。
2.相似系数相似系数的意义是,把每个样品看做m维空间中的一个向量,n个样品相当于m维空间中的n个向量。
第i个样品与第j个样品之间的相似系数是用两个向量之间的夹角余弦来定义,即:(7-35)(i,j=1,2,…,m)常用于样品间的分类(Q型)。
聚类分析方法有哪些聚类就是按照某个特定标准(如距离准则,即数据点之间的距离)把一个数据集分割成不同的类或簇,使得同一个簇内的数据对象的相似性尽可能大,同时不在同一个簇中的数据对象的差异性也尽可能地大。
我们可以具体地理解为,聚类后同一类的数据尽可能聚集到一起,不同类数据尽量分离。
聚类技术正在蓬勃发展,对此有贡献的研究领域包括数据挖掘、统计学、机器学习、空间数据库技术、生物学以及市场营销等。
各种聚类方法也被不断提出和改进,而不同的方法适合于不同类型的数据,因此对各种聚类方法、聚类效果的比较成为值得研究的课题。
聚类分析法是理想的多变量统计技术,主要有分层聚类法和迭代聚类法。
聚类分析也称群分析、点群分析,是研究分类的一种多元统计方法。
例如,我们可以根据各个银行网点的储蓄量、人力资源状况、营业面积、特色功能、网点级别、所处功能区域等因素情况,将网点分为几个等级,再比较各银行之间不同等级网点数量对比状况。
聚类算法的分类目前,有大量的聚类算法。
而对于具体应用,聚类算法的选择取决于数据的类型、聚类的目的。
如果聚类分析被用作描述或探查的工具,可以对同样的数据尝试多种算法,以发现数据可能揭示的结果。
主要的聚类算法可以划分为如下几类:划分方法、层次方法、基于密度的方法、基于网格的方法以及基于模型的方法。
目前,聚类问题的研究不仅仅局限于上述的硬聚类,即每一个数据只能被归为一类,模糊聚类[10]也是聚类分析中研究较为广泛的一个分支。
模糊聚类通过隶属函数来确定每个数据隶属于各个簇的程度,而不是将一个数据对象硬性地归类到某一簇中。
目前已有很多关于模糊聚类的算法被提出,如著名的FCM算法等,此方法后面会提及。
常用的聚类方法1.k-mean聚类分析适用于样本聚类;2.分层聚类适用于对变量聚类;3.两步聚类适用于分类变量和连续变量聚类;。
聚类就是按照某个特定标准把一个数据集分割成不同的类或簇,使得同一个簇内的数
据对象的相似性尽可能大,同时不在同一个簇中的数据对象的差异性也尽可能地大。
即聚类后同一类的数据尽可能聚集到一起,不同类数据尽量分离。
主要的聚类算法可
以划分为如下几类:划分方法、层次方法、基于密度的方法、基于网格的方法以及基
于模型的方法。
下面主要对k-means聚类算法、凝聚型层次聚类算法、神经网络聚类
算法之SOM,以及模糊聚类的FCM算法通过通用测试数据集进行聚类效果的比较和分析。
k-means聚类算法
k-means是划分方法中较经典的聚类算法之一。
由于该算法的效率高,所以在对大规
模数据进行聚类时被广泛应用。
目前,许多算法均围绕着该算法进行扩展和改进。
k-means算法以k为参数,把n个对象分成k个簇,使簇内具有较高的相似度,而簇间
的相似度较低。
k-means算法的处理过程如下:首先,随机地选择k个对象,每个对
象初始地代表了一个簇的平均值或中心;对剩余的每个对象,根据其与各簇中心的距离,将它赋给最近的簇;然后重新计算每个簇的平均值。
这个过程不断重复,直到准则函
数收敛。
通常,采用平方误差准则,其定义如下:
E=\sum_{i=1}^{k}\sum_{p\in C_i}\left\|p-m_i\right\|^2
这里E是数据中所有对象的平方误差的总和,p是空间中的点,$m_i$是簇$C_i$的平
均值[9]。
该目标函数使生成的簇尽可能紧凑独立,使用的距离度量是欧几里得距离,当然也可以用其他距离度量。
算法流程
:
输入:包含n个对象的数据和簇的数目k;
输出:n个对象到k个簇,使平方误差准则最小。
步骤:
(1) 任意选择k个对象作为初始的簇中心;
(2) 根据簇中对象的平均值,将每个对象(重新)赋予最类似的簇;
(3) 更新簇的平均值,即计算每个簇中对象的平均值;
(4) 重复步骤(2)、(3)直到簇中心不再变化;
层次聚类算法
根据层次分解的顺序是自底向上的还是自上向下的,层次聚类算法分为凝聚的层次聚
类算法和分裂的层次聚类算法。
凝聚型层次聚类的策略是先将每个对象作为一个簇,然后合并这些原子簇为越来越大的簇,直到所有对象都在一个簇中,或者某个终结条
件被满足。
绝大多数层次聚类属于凝聚型层次聚类,它们只是在簇间相似度的定义上
有所不同。
算法流程
:
注:以采用最小距离的凝聚层次聚类算法为例:
(1) 将每个对象看作一类,计算两两之间的最小距离;
(2) 将距离最小的两个类合并成一个新类;
(3) 重新计算新类与所有类之间的距离;
(4) 重复(2)、(3),直到所有类最后合并成一类。
SOM聚类算法
SOM神经网络是由芬兰神经网络专家Kohonen教授提出的,该算法假设在输入对象中存在一些拓扑结构或顺序,可以实现从输入空间(n维)到输出平面(2维)的降维映射,其映射具有拓扑特征保持性质,与实际的大脑处理有很强的理论联系。
SOM网络包含输入层和输出层。
输入层对应一个高维的输入向量,输出层由一系列组织在2维网格上的有序节点构成,输入节点与输出节点通过权重向量连接。
学习过程中,找到与之距离最短的输出层单元,即获胜单元,对其更新。
同时,将邻近区域的权值更新,使输出节点保持输入向量的拓扑特征。
算法流程
:
(1) 网络初始化,对输出层每个节点权重赋初值;
(2) 从输入样本中随机选取输入向量并且归一化,找到与输入向量距离最小的权重向量;
(3) 定义获胜单元,在获胜单元的邻近区域调整权重使其向输入向量靠拢;
(4) 提供新样本、进行训练;
(5) 收缩邻域半径、减小学习率、重复,直到小于允许值,输出聚类结果。
FCM聚类算法
965年美国加州大学柏克莱分校的扎德教授第一次提出了‘集合’的概念。
经过十多年的发展,模糊集合理论渐渐被应用到各个实际应用方面。
为克服非此即彼的分类缺点,出现了以模糊集合论为数学基础的聚类分析。
用模糊数学的方法进行聚类分析,就是模糊聚类分析。
FCM算法是一种以隶属度来确定每个数据点属于某个聚类程度的算法。
该聚类算法是传统硬聚类算法的一种改进。
设数据集$X={x_1,x_2,...,x_n}$,它的模糊$c$划分可用
模糊矩阵$U=[u{ij}]$表示,矩阵$U$的元素$u{ij}$表示第$j(j=1,2,...,n)$个数据点属于第$i(i=1,2,...,c)$类的隶属度,$u_{ij}$满足如下条件:
\begin{equation} \left\{ \begin{array}{lr} \sum_{i=1}^c u_{ij}=1
\quad\forall~j \\u_{ij}\in[0,1] \quad\forall ~i,j \\\sum_{j=1}^c u_{ij}>0
\quad\forall ~i \end{array} \right. \end{equation}
目前被广泛使用的聚类准则是取类内加权误差平方和的极小值。
即:
(min)J_m(U,V)=\sum^n_{j=1}\sum^c_{i=1}u^m_{ij}d^2_{ij}(x_j,v_i)
其中$V$为聚类中心,$m$为加权指数,$d_{ij}(x_j,v_i)=||v_i-x_j||$。
算法流程
:
(1) 标准化数据矩阵;
(2) 建立模糊相似矩阵,初始化隶属矩阵;
(3) 算法开始迭代,直到目标函数收敛到极小值;
(4) 根据迭代结果,由最后的隶属矩阵确定数据所属的类,显示最后的聚类结果
四种聚类算法试验
选取专门用于测试分类、聚类算法的国际通用的UCI数据库中的IRIS数据集,IRIS
数据集包含150个样本数据,分别取自三种不同的莺尾属植物setosa、versicolor
和virginica的花朵样本,每个数据含有4个属性,即萼片长度、萼片宽度、花瓣长度、花瓣宽度,单位为cm。
在数据集上执行不同的聚类算法,可以得到不同精度的聚类
结果。
基于前面描述的各算法原理及流程,可初步得如下聚类结果。
聚类方法聚错样本数运行时间/s平均准确率/(%)K-means170.14600189层次聚类510.12874466SOM225.26728386FCM120.47041792解释:
(1) 聚错样本数:总的聚错的样本数,即各类中聚错的样本数的和;
(2) 运行时间:即聚类整个过程所耗费的时间,单位为s;
(3) 平均准确度:设原数据集有k个类,用$c_i$表示第i类,$n_i$为$c_i$中样本的
个数,$m_i$为聚类正确的个数,则$m_i/n_i$为第i类中的精度,则平均精度为
$avg=\frac{1}{k}\sum_{i=1}^{k}\frac{m_{i}}{n_{i}}$。