中国石油大学-孔隙度
- 格式:doc
- 大小:113.50 KB
- 文档页数:4
第一章储层流体的物理性质1、掌握油藏流体的特点,烃类主要组成处于高温、高压条件下,石油中溶解有大量的天然气,地层水矿化度高。
石油、天然气是由分子结构相似的碳氢化合物的混合物和少量非碳氢化合物的混合物组成,统称为储层烃类。
储层烃类主要由烷烃、环烷烃和芳香烃等。
非烃类物质(指烃类的氧、硫、氮化合物)在储层烃类中所占份额较少。
2、掌握临界点、泡点、露点(压力)的定义临界点是指体系中两相共存的最高压力和最高温度点。
泡点是指温度(或压力)一定时,开始从液相中分离出第一批气泡时的压力(或温度)。
露点是指温度(或压力)一定时,开始从气相中凝结出第一批液滴时的压力(或温度)。
3、掌握画出多组分体系的相图,指出其特征线、点、区,并分析不同类型油藏开发过程中的相态变化;三线:泡点线--AC线,液相区与两相区的分界线露点线--BC线,气相区与两相区的分界线等液量线--虚线,线上的液相含量相等四区:液相区(AC线以上-油藏)气相区(BC线右下方-气藏)气液两相区(ACB线包围的区域-油气藏)反常凝析区(PCT线包围的阴影部分-凝析气藏)J点:未饱和油藏I点:饱和油藏,可能有气顶;F点:气藏;A点:凝析气藏。
凝析气藏(Condensate gas ):温度位于临界温度和最大临界凝析温度之间,阴影区的上方。
1)循环注气2)注相邻气藏的干气。
4、掌握接触分离、多级分离、微分分离的定义;接触分离:指使油气烃类体系从油藏状态变到某一特定温度、压力,引起油气分离并迅速达到平衡的过程。
特点:分出气较多,得到的油偏少,系统的组成不变。
多级分离:在脱气过程中分几次降低压力,最后达到指定压力的脱气方法。
多级分离的系统组成是不断发生变化的。
微分分离:在微分脱气过程中,随着气体的分离,不断地将气体放掉(使气体与液体脱离接触)。
特点:脱气是在系统组成不断变化的条件下进行的。
5、典型油气藏的相图特征,判别油气藏类型;6、掌握油田常用的分离方式及原因多级分离分出的气少,获得的地面油多,而且其中轻质油含量高,测得的气油比小。
中国石油大学 油层物理 实验报告实验日期: 2011.10.13 成绩:班级: 学号: 姓名:教师: 张丽丽 同组者: 无岩石比面测定一. 实验目的:1.巩固岩石比面的概念。
2.了解岩石比面的测定原理和方法。
二.实验原理:比面是指单位体积岩石体积内颗粒的总表面积,或单位岩石体积内总空隙度得表面积.比面通常可以分为以岩石外表体积估计体积和空隙体积为基数的比面,根据毛管模型,以岩石表面体积为基数的比面计算公式为: μφφ1)1(1423QH LA S v -=式中 v S —以岩石骨架为基础的比面,32/cm cm ;φ-孔隙度,小数; A-截面积,小数; L-长度,cm ; H-岩石两端的压差,cm ; Q-通过岩心的空气流量,s cm3;μ空气的粘度,mP a ·S 。
当孔隙度已知,A 和L 可以用游标卡尺直接测出,μ由查表得到后,只要通过压力计测得空气通过岩样的压差H 和相应的流量Q ,便可求出岩样的比面。
三、实验流程图四、实验操作步骤1.打开水罐进液阀放空阀,向水罐中注水,大约灌2/3体积时停止,关闭水罐进液阀及放空阀;2.用游标卡尺测出岩样的长度和直径,计算岩样的截面积;3.将岩样放入岩石夹持器,关闭环压放空阀,打开换压阀加压,确保岩样与夹持器之间无气体窜流;4.准备好秒表,打开流量控制阀,并控制流出的水量,待压力计的压力稳定在某一H 值后,测量一定时间内流出得水量,用同样地方法至少测定三个水流量和与之相应的H 值。
(如果岩石渗透率较低,关闭水柱阀,用汞柱差计读取岩石心上游压力,并将汞柱压力转换成水柱高度。
);5.关闭流量控制阀,关闭环压阀,缓慢打开环压放空阀,结束实验。
五、实验数据处理空气粘度u(mP.s)=0.01819mP.s 孔隙度φ(%)=27.8%表1、岩石比面测定原始记录分别计算三组数据的v S 值,取平均值如下:3223231/3.9400001819.010919.08.1706.4784.4)278.01(278.0141)1(14cmcm QH L A S v =⨯⨯⨯-⨯=-=μφφ3223232/3.8990001819.011256.025.2706.4784.4)278.01(278.0141)1(14cmcm QH L A S v =⨯⨯⨯-⨯=-=μφφ3223233/4.9120001819.011925.055.3706.4784.4)278.01(278.0141)1(14cmcm QH L A S v =⨯⨯⨯-⨯=-=μφφ则有:vS =(1v S +2v S +3v S )/3=(940.3+899.3+912.4)/3 =917.232/cm cm六.小结通过本次做岩石表面测定的实验,我加深了对岩石比面的了解。
的研究方法和描述技术以及储层评价和预测的综合性地质科学。
2有效孔隙度:岩石中能够储集和渗滤流体的连通孔隙体积与岩石总体积之比。
3有效渗透率:是指在多相流体从在时,岩石对其中每相流体的渗透率。
4储层孔隙结构:岩石所具有的孔隙和吼道的几何形状、大小、分布以及其连通关系。
5储层非均质性:油气储层在沉积、成岩以及后期构造作用的综合影响下,储层的空间分布及内部各种属性的不均匀变化。
6层内非均质性:指一个单砂层规模内垂向上的储层性质变化。
7平面非均质性:指一个储层砂体的几何形态、规模、连续性,以及砂体内孔隙度、渗透率的平面变化所引起的非均质性。
8层间非均质性:指一套砂泥岩间互的含油层系中的层间差异。
9储层概念模型:是指把所描述油藏的各种地质特征,特别是储层,典型化、概念化,抽象成具有代表性的地质模型。
10静态模型也称实体模型,是把一个具体研究对象(一个油田、一个开发区块或一套层系)的储层,依据资料控制点实测的数据将其储层表征在三维空间的变化和分布如实的描述出来而建立的地质模型.11预测模型:不仅忠实于资料控制点的实测数据,而且追求控制点间的内插与外推值具有相当的精度,并遵循地质和统计规律,即对无资料点有一定得预测能力。
12储层敏感性:储层对与各种类型地层损害的敏感性程度。
13速敏性:是指因流体流动速度变化引起地层微粒运移堵塞喉道,导致渗流率下降的现象。
14水敏性:粘土矿物遇水发生膨胀现象。
15酸敏性:酸液进入储层后与储层中的酸敏性矿物或原油作用,或产生凝胶、沉淀或释放颗粒导致渗流率下降的现象。
16原生孔隙:是指在岩石沉积或成岩过程中形成的孔隙。
17次生孔隙:在岩石形成以后,由溶解、交代、重结晶、白云石化以及构造运动等作用下形成的孔、洞、缝。
18原始油层压力:在未开采以前油层所具有的压力。
括火山碎屑岩,岩浆岩变质岩,泥岩,硅质岩类等。
2储集岩的基本特征:包括成分、结构、构造。
3 储集岩的主要含油物性,包括孔隙度、渗透率、饱和度,是岩石储集性能的重要控制因素。
地球矿场物理习题集名词解释1、视电阻率:因为地层是非均匀介质,所以,进行电阻率测量时,电极周围各部分介质的电阻率,将这种在综合条件影响下测量的岩石电阻率称为视电阻率。
2、标准测井3、周波跳跃:在疏松地层或含气地层中,由于声波能力的急剧衰减,以致接收器接收波列的首波不能触发记录,而往往是后续波触发接收器,从而造成声波时差的急剧增大,这种现象称为周波跳跃。
4、第一临界角5、孔隙度6、渗透率7、相对渗透率Kro:是指岩石的有效渗透率与绝对渗透率的比值,其值在0—1之间。
通常用Kro,Krg ,Krw,分别表示油、气、水的相对渗透率。
8、含水饱和度9、挖掘效应10、含氢指数:单位体积的任何物质中氢核数与同样体积的淡水中氢核数的比值。
11、纵向微分几何因子12、横向微分几何因子13、纵向积分几何因子14、横向积分几何因子15、声速测井16、自然电位测井17、自然伽马测井18、聚焦电阻率测井19、侧向测井20、补偿中子测井21、热中子寿命:热中子从生成开始到被俘获吸收为止所经历的平均时间。
22、半衰期23、泥质含量24、探测半径25、源距26、中子寿命测井27、放射性同位素测井28、中子伽马测井29、岩石体积物理模型:根据岩石的组成按其物理性质的差异,把单位体积岩石分成相应的几部分,然后研究每一部分对岩石宏观物理量的贡献,并把岩石的宏观物理量看成是各部分贡献之和。
30、声波时差31、放射性涨落误差32、感应测井33、梯度电极系34、电位电极系35、石灰岩密度孔隙单位:无论地层是何种岩性,均按石灰岩参数选取骨架密度参数,由此得到的石灰岩孔隙度单位。
36、减速时间37、减速长度38、俘获时间39、俘获长度40、声幅测井41、康普顿效应:当伽马光子的能力较核外束缚电子的结合能打得多且为中等数值时,它与原子核外轨道电子相互作用时可视为弹性碰撞,能量一部分转交给电子,使电子以与伽马光子的初始运动方向成角的方向射出,形成康普顿电子,而损失了部分能量的伽马光子则朝着与其初始运动城角的方向散射,这种效应称为康普顿效应。
岩石比面的测定一、实验目的1.巩固岩石比面的概念。
2.了解岩石比面的测定原理和方法。
二、实验原理比面是指单位体积岩石内颗粒的总表面积,或单位体积岩石内总孔隙的内表面积。
比面通常可分为以岩石外表体积、骨架体积和孔隙体积为基数的比面。
根据毛管模型,以岩石骨架体积为基数的比面的计算公式为:=b S 式中,b S —以岩石骨架体积为基础的比面,32/cm cm ;φ—孔隙度,小数;A —截面积,2cm ; L —长度,cm ;H —岩心两端的压差,cm 水柱;Q —通过岩心的空气流量,3/cm s ;μ—空气的粘度,210mPa s 。
当孔隙度已知,A 和L 可以用游标卡尺直接量出,由查表得到μ后,只要通过压力计测得空气通过岩样的压差H 和相应的流量Q 便可算出岩样的比面。
三、实验流程图1岩石比面测定流程图1-环压阀;2-环压放空阀;3-夹持器;4-水罐;5-流量控制阀;6-水柱压差计;7-水杯;8-环压表;9-进液阀;10-放空阀四、实验操作步骤1.打开水罐进液阀、放空阀,向水罐中灌水,大约灌体积时停止,关闭水罐进液阀及放空阀;2.用游标卡尺量出岩样的长度和直径,计算岩样的截面积;3.将岩样放入岩心夹持器,关闭环压放空阀,打开环压阀加环压,确保岩样与夹持器之间无气体窜流;4.准备好秒表、打开流量控制阀,并控制流出的水量,待压力计的压力稳定在某一H值后,测量一定时间内流出的水量,用同样的方法至少测定三个水流量和与之相应的H值。
(如果岩石渗透率较低,关闭水柱阀,用汞柱压差计读取岩心上游压力,并将汞柱高度转换成水柱高度。
);5.关流量控制阀,关闭环压阀,缓慢打开环压放空阀,结束实验。
五、实验数据处理1.列出原始数据实验仪器编号:10 室内温度:20.5℃空气粘度μ0.01812mPa•s 孔隙度φ35.5%表1岩石比面测定记录表2.进行相关计算19.180.2388/38.44VQ ml s t===29.420.3123/30.16VQ ml s t===38.510.3621/23.50VQ ml st===计算各次测量的比面1231274.04/ bcS m mc =2231278.71/ bcS m mc =3231270.50/ bcS m mc =231231274.041278.711270.501274.42/33b b bbS S SS cm cm++++===将计算结果置于表1.。
中国⽯油⼤学(华东)油⽥开发地质学考试复习知识总结油⽥开发地质学复习重点总结(⽯⼯学院40学时)第⼀章:油⽓⽥地下流体的基本特征1、名词术语(1)⽯油:是储存于地下深处岩⽯孔隙和裂缝中的、天然⽣成的、以液态烃为主的可燃性有机矿产。
(2)油⽥⽔:油、⽓⽥区域内与油⽓藏有密切联系的地下⽔,⼀般指直接与油层连通的地下⽔。
(3)天然⽓:地质条件下⽣成、运移并聚集在地下岩层中、以烃类为主的⽓体。
(4)⽯油的荧光性:⽯油及其衍⽣物(⽆论其本⾝还是溶于有机溶剂中)在紫外线的照射下,产⽣荧光的特性。
(5)⽯油的旋光性:当偏振光通过⽯油时,使偏光⾯发⽣⼀定⾓度旋转的特性。
2、原油的主要元素和化合物、组分组成(1)主要元素:碳、氢、硫、氮、氧碳、氢占绝对优势,主要以烃类形式存在,是组成⽯油的主体;氧、氮、硫主要以化合物形式存在。
(2)化合物:烃类化合物(碳、氢)、⾮烃类化合物(碳、氢、硫、氮、氧)①烃类化合物(按结构分类):烷烃(正构烷烃、异构烷烃)、环烷烃、芳⾹烃②⾮烃类化合物:含硫化合物(元素硫、硫化氢、⼆硫化物、硫醇、硫醚等)、含氮化合物(吡啶、吡咯、喹啉、钒卟啉、镍卟啉等)、含氧化合物(环烷酸、脂肪酸、酚、醛、酮等)。
(3)组分组成:根据⽯油不同化合物对有机溶剂和吸附剂具有选择性溶解和吸附性能划分。
①油质:⽯油的主要组分,淡⾊粘性液体,由烃类化合物组成;溶解性强、可溶解的有机溶剂很多,不被硅胶吸附(评价⽯油质量的标志);②胶质:胶质—粘性玻璃状半固体或固体,淡黄、褐红到⿊⾊,由芳烃和⾮烃化合物组成。
溶于⽯油醚,能被硅胶吸附;③沥青质:沥青质—脆性固体,暗褐⾊到深⿊⾊,由稠环芳烃和⾼分⼦⾮烃化合物组成。
不溶于⽯油醚,能被硅胶吸附。
注意:(1)异构烷烃中类异戊⼆烯型烷烃可能来⾃叶绿素的侧链,卟啉同系物也存在于动物⾎红素和植物叶绿素中,均可作为⽯油有机成因的标志;(2)油质主要指烷烃、环烷烃和芳⾹烃等烃类物质,胶质和沥青质指含有氮、硫、氧的⾮烃物质及不饱和的芳⾹烃。
第一章 储层岩石的物理特性24、下图1-1为两岩样的粒度组成累积分布曲线,请画出与之对应的粒度组成分布曲线,标明坐标并对曲线加以定性分析。
∑Log d iWWi图1-1 两岩样的粒度组成累积分布曲线答:粒度组成分布曲线表示了各种粒径的颗粒所占的百分数,可用它来确定任一粒级在岩石中的含量。
曲线尖峰越高,说明该岩石以某一粒径颗粒为主,即岩石粒度组成越均匀;曲线尖峰越靠右,说明岩石颗粒越粗。
一般储油砂岩颗粒的大小均在1~0.01mm 之间。
粒度组成累积分布曲线也能较直观地表示出岩石粒度组成的均匀程度。
上升段直线越陡,则说明岩石越均匀。
该曲线最大的用处是可以根据曲线上的一些特征点来求得不同粒度属性的粒度参数,进而可定量描述岩石粒度组成的均匀性。
曲线A 基本成直线型,说明每种直径的颗粒相互持平,岩石颗粒分布不均匀;曲线B 上升段直线叫陡,则可看出曲线B 所代表的岩石颗粒分布较均匀。
30、孔隙度的一般变化范围是多少,Φa 、Φe 、Φf 的关系怎样?常用测定孔隙度的方法有哪些?影响孔隙度大小的因素有哪些?答:1)根据我国各油气田的统计资料,实际储油气层储集岩的孔隙度范围大致为:致密砂岩孔隙度自<1%~10%;致密碳酸盐岩孔隙度自<1%~5%;中等砂岩孔隙度自10%~20%;中等碳酸盐岩孔隙度自5%~10%;好的砂岩孔隙度自20%~35%;好的碳酸盐岩孔隙度自10%~20%。
2)由绝对孔隙度a φ、有效孔隙度e φ及流动孔隙度ff φ的定义可知:它们之间的关系应该是a φ>e φ>ff φ。
3)岩石孔隙度的测定方法有实验室内直接测定法和以各种测井方法为基础的间接测定法两类。
间接测定法影响因素多,误差较大。
实验室内通过常规岩心分析法可以较精确地测定岩心的孔隙度。
4)对于一般的碎屑岩 (如砂岩),由于它是由母岩经破碎、搬运、胶结和压实而成,因此碎屑颗粒的矿物成分、排列方式、分选程度、胶结物类型和数量以及成岩后的压实作用(即埋深)就成为影响这类岩石孔隙度的主要因素。
一.填空题(每空 0.5 分,共 14 分)1.地层油的粘度随温度的增加而减小,当压力高于饱和压力时,随压力的减减小;当压力低于饱和压力时,随压力降低而增大。
2.测定岩石绝对渗透率的条件是:岩石孔隙空间 100%被某一种流体所饱和体与岩石不发生物理化学反应;流体在岩石孔隙中的渗流为最稳定的层流。
3.孔隙度分为绝对孔隙度,有效孔隙度和流动孔隙度,通常测定的孔隙有效孔隙度。
4.根据苏林分析法,地层水主要分为硫酸钠(Na2SO4)水型,碳酸氢钠(NaHC水型,氯化镁(MgCl2)水型,氯化钙(CaCl2)水型。
5.在储层岩石中,不同胶结物具有不同的特性,泥质胶结物的特性是遇水膨灰质胶结物的特性是遇酸反应,硫酸盐胶结物的特性是高温脱水。
6.某油藏为封闭的未饱和油藏,随着油藏的开发,油藏压力降低,这会导致孔隙体积变小(变大,变小,不变),束缚水体积膨胀(膨胀,缩小,不变原油体积膨胀(膨胀,缩小,不变),从而使原油排出油藏,这是天然能量的弹性能。
而当压力低于泡点压力时,油藏中出现油,气两相,而且溶体积增加(增加,减小,不变),推动原油流动,这种驱动方式为溶解气7.颗粒平均直径小,则岩石比面大,则化学驱过程中吸附的化学剂多。
8.水驱油时的流度比越小,波及系数越大,采收率越大,在表面活性聚合物驱,碱驱中,用此机理的是聚合物驱1粒度曲线包括粒度组成分布曲线和粒度组成累积分布曲线2流体饱和度的主要测定方法有常压干馏法,蒸馏抽提法,色谱法3岩石比面越大,则平均粒径越小,对流体的吸附阻力越大4油藏原始地质储量是根据有效孔隙度来记称的,而油藏可采地质储量是根据流动孔隙度来记称的。
5已知空气分子量为29,若天然气的相对密度为0.6,则天然气的分子量为17.46在饱和压力下,地层油的单相体积系数最大,其粘度最小7地层水化学组成的两个显著特点是总矿化度高,它是与地表水的主要区别:溶解气量少,它是与地层油的主要区别8亲水油藏中,毛管力是水驱油过程的动力,亲油油藏中,毛管力是水驱油过程的阻力9在水油固体系中,若润湿接触角大于90°则润湿相是油相10在自吸吸入法测定岩样润湿性时,若被水驱出的油相体积大于被油驱出的水相体积,则该岩样的润湿相是水相11由于受毛管滞后现象的影响,必定使得自吸过程的湿相饱和度小于驱替过程的湿相饱和度。
中国石油大学《油层物理》实验报告实验日期: 2011.10.21 成绩:班级: 石工10-15 学号:10131504 姓名: 于秀玲 教师:同组者:实验一 岩石孔隙度测定一、实验目的1. 掌握气测孔隙度的流程和操作步骤。
2. 巩固岩石孔隙度的概念,掌握其测定原理。
二、实验原理根据玻义尔定律,在恒定温度下,岩心室一定,放入岩心杯岩样的固相(颗粒)体积越小,则岩心室中气体所占体积越大,与标准室连通后,平衡压力越低;反之,当放入岩心室内的岩样固相体积越大,平衡压力越高。
绘制标准块的体积(固相体积)与平衡压力的标准曲线,测定待测岩样平衡压力,根据标准曲线反求岩样固相体积。
按下式计算岩样孔隙度:100%f s fV V V ϕ-=⨯式中 φ—孔隙度f V —岩样外表体积s V —岩样固相体积测定岩石骨架体积可以用①气体膨胀法11221()()Po Vo Vs PV P Vo V V -+=-+②气体孔隙度仪测定岩石外形体积可以用①尺量法 ——适用于外形规则的岩石②排开汞的体积法——适用于外形不规则的岩石三.实验流程图1 实验流程图四、实验操作步骤1. 将钢圆盘从小到大编号为1、2、3、4;2. 用游标卡尺测量各个钢圆盘和岩样的直径与长度,并记录在数据表中;3. 打开样品阀及放空阀,确保岩心室气体为大气压;4. 将2号钢圆盘装入岩心杯,并把岩心杯放入夹持器中,顺时针转动T形转柄,使之密封。
5. 关样品阀及放空阀,开气源阀、供气阀,调节调压阀,将标准室压力调至某一值,如560kPa。
待压力稳定后,关闭供气阀,并记录标准室气体压力。
6. 开样品阀,气体膨胀到岩心室,待压力稳定后,记下此平衡压力。
7. 开放空阀至大气压,关样品阀,逆时针转动T形转柄一周,将岩心室向外推出,取出钢圆盘。
8. 用同样方法将3号、4号、全部(1号-4号)及两两组合的三组钢圆盘装入岩心室中,重复步骤2-5,记下平衡压力。
9. 将待测岩样装入岩心室,按上述方法测定装岩样后的平衡压力。
中国石油大学渗流物理实验报告
实验日期: 成绩: 班级: 学号: 姓名: 教师: 张丽丽
同组者:
岩石孔隙度的测定
一、实验目的
1.巩固岩石孔隙度的概念,掌握其测定原理。
2.掌握测量岩石孔隙度的流程和操作步骤。
二、实验原理
的标准室内充满一定压力的气体,测试孔隙度的实验流程图如图1所示,将体积为V
1
打开标准室与岩心室之间的开关(样品阀),标准室中的高压气体进入岩心室,其压力降低。
根据玻义尔定律,在恒定温度下,岩心室体积一定,放入岩心室岩样的固相体积越小,则岩心室中气体所占体积越大,与标准室连通后,平衡压力越低;反之,当放入岩心室内的岩样固相体积越大,平衡压力越高。
绘制标准块的体积(固相体积)与平衡压力的标准曲线,测定待测岩样平衡压力后,据标准曲线反求岩样固相体积。
按下式计算岩样孔隙度:
三、实验流程
图1 孔隙度测定流程图
四、实验步骤
1)用游标卡尺测量各个钢圆盘和岩样的直径与长度(为了便于区分,将钢圆盘从
小到大编号为1、2、3、4),并记录在数据表中。
2)将2号钢圆盘装入岩心杯,并把岩心杯放入夹持器中,顺时针转动T形转柄,
使之密封。
打开样品阀及放空阀,确保岩心室气体为大气压。
3)关闭样品阀及放空阀,开气源阀和供气阀。
调节调压阀,将标准室气体压力调
至某一值,如560kPa。
待压力稳定后,关闭供气阀,并记录标准室的气体压力。
4)打开样品阀,气体膨胀扩散到岩心室,待压力稳定后,记录平衡压力。
5)打开放空阀,逆时针转动T形转柄,将岩心杯向外推出,取出钢圆盘。
6)用同样方法将3号、4号及全部(1~4号)钢圆盘装入岩心杯中,重复步骤2~
5,记录平衡压力。
7)将待测岩样装入岩心杯,按上述方法测定装岩样后的平衡压力。
五、数据处理与计算
表1 气体孔隙度测定原始记录
实验仪器编号: 1
计算钢圆盘及岩样体积V f =πD 2
4L
以二号钢圆盘为例:V f =πD 24L=3.14×2.502
4×1.994=9.783cm 3
岩样孔隙度计算
由P 2=245kPa 可查得V s =24.5cm 3
∴ϕ=(1-V s V f
)×100%=(1-24.5
27.538)×100%=11.0%
六、问答题
1. 孔隙度的概念?
答:孔隙度指岩石中的有效孔隙体积与岩石外表体积之比。
2. 根据气体等温膨胀定律得出的平衡关系式是什么? 答:P 1V 1=P 2V 2
3.
%100⨯-=f
s f V V V φ中的V f 和V s 是怎么测出来?
答:V
由岩样长度、直径等数据计算得到。
f
V
由P-V曲线查得。
s
4.绘制P-V标准曲线的目的是什么?
的值。
答:查V
s。