关于图像特征提取
- 格式:doc
- 大小:22.02 KB
- 文档页数:6
图像特征提取方法详解图像特征提取是计算机视觉和图像处理领域中的一个重要任务,它是对图像中的信息进行分析和提取,以便进行后续的图像识别、分类和分析。
在图像处理和计算机视觉应用中,图像特征提取是至关重要的一步,因为它直接影响了后续处理的结果。
一、图像特征的概念图像特征是指图像中能够表征其内容和结构的可测量属性。
常见的图像特征包括颜色、纹理、形状、边缘等。
这些特征可以帮助我们理解图像的含义,区分不同的物体、场景和结构。
二、图像特征提取的方法1. 颜色特征提取颜色是图像中最直观和重要的特征之一。
常用的颜色特征提取方法包括直方图统计、颜色矩和颜色空间转换。
直方图统计是通过统计图像中每种颜色出现的频率来提取颜色特征,它可以帮助我们了解图像中的主要颜色分布。
颜色矩是一种用于描述颜色分布和颜色相关性的方法,它可以帮助我们定量地比较不同图像之间的颜色特征。
颜色空间转换则是将图像的RGB颜色空间转换为其他颜色空间(如HSV、Lab等),以便更好地提取颜色特征。
2. 纹理特征提取纹理是图像中的重要特征之一,它可以帮助我们理解图像中的细节和结构。
常见的纹理特征提取方法包括灰度共生矩阵、小波变换和局部二值模式。
灰度共生矩阵是一种用于描述图像纹理结构的统计方法,它可以帮助我们了解图像中不同区域的纹理分布。
小波变换是一种多尺度分析方法,它可以帮助我们提取图像中不同尺度和方向的纹理特征。
局部二值模式是一种用于描述图像局部纹理特征的方法,它可以帮助我们快速提取图像中的纹理信息。
3. 形状特征提取形状是图像中的重要特征之一,它可以帮助我们理解图像中的对象和结构。
常见的形状特征提取方法包括边缘检测、轮廓提取和形状描述子。
边缘检测是一种用于提取图像中边缘信息的方法,它可以帮助我们理解图像中的对象轮廓和结构。
轮廓提取是一种用于提取图像中对象轮廓信息的方法,它可以帮助我们理解图像中的对象形状和结构。
形状描述子是一种用于描述图像对象形状特征的方法,它可以帮助我们快速提取图像中的形状信息。
图像识别中的特征提取及分类算法研究图像识别是计算机视觉领域的重要研究方向之一,广泛应用于人脸识别、物体检测、人工智能等领域。
而在图像识别中,特征提取和分类算法是关键步骤,对于提升图像识别的准确性和效率起着至关重要的作用。
本文将深入研究图像识别中的特征提取及分类算法,并进行详细阐述。
一、特征提取图像识别中的特征提取是将图像中的有用信息抽取出来,为后续的分类任务提供有效的特征表示。
常用的图像特征提取方法有颜色特征、纹理特征和形状特征等。
1. 颜色特征颜色特征是指利用图像中的颜色信息来进行特征表示的方法。
它可以通过统计图像中各个像素的颜色分布情况,或者利用颜色直方图、颜色矩等统计特征来进行描述。
在实际应用中,颜色特征常用于物体识别、图像分类等任务中。
2. 纹理特征纹理特征是指利用图像中的纹理信息来进行特征表示的方法。
纹理可以通过图像局部像素之间的灰度变化来描述,比如利用灰度共生矩阵、小波变换、Gabor滤波器等方法来提取纹理特征。
纹理特征对于纹理类物体的识别和分类具有较好的性能。
3. 形状特征形状特征是指利用图像中物体的外形和轮廓信息来进行特征表示的方法。
它可以通过计算物体的边缘信息、轮廓曲线、面积等参数来进行描述。
形状特征广泛应用于物体检测、目标跟踪等领域。
二、分类算法分类算法是通过对提取到的图像特征进行分析和学习,将图像分为不同的类别。
常用的分类算法包括传统的机器学习算法和深度学习算法。
1. 传统机器学习算法传统机器学习算法是指利用统计学方法和数学模型来进行图像分类的算法。
常见的传统机器学习算法有支持向量机(SVM)、K最近邻(KNN)、决策树等。
这些算法通过对训练样本的特征进行分析和学习,构建分类模型,从而对测试样本进行分类预测。
2. 深度学习算法深度学习算法是近年来发展起来的一种学习方法,它通过构建深层神经网络模型来进行图像分类。
深度学习算法在图像识别任务中取得了显著的突破。
常用的深度学习算法有卷积神经网络(CNN)、循环神经网络(RNN)等。
图像特征提取总结第一篇:图像特征提取总结图像常见特征提取方法简介常用的图像特征有颜色特征、纹理特征、形状特征、空间关系特征。
一、颜色特征(一)特点:颜色特征是一种全局特征,描述了图像或图像区域所对应的景物的表面性质。
一般颜色特征是基于像素点的特征,此时所有属于图像或图像区域的像素都有各自的贡献。
由于颜色对图像或图像区域的方向、大小等变化不敏感,所以颜色特征不能很好地捕捉图像中对象的局部特征。
另外,仅使用颜色特征查询时,如果数据库很大,常会将许多不需要的图像也检索出来。
颜色直方图是最常用的表达颜色特征的方法,其优点是不受图像旋转和平移变化的影响,进一步借助归一化还可不受图像尺度变化的影响,基缺点是没有表达出颜色空间分布的信息。
(二)常用的特征提取与匹配方法(1)颜色直方图其优点在于:它能简单描述一幅图像中颜色的全局分布,即不同色彩在整幅图像中所占的比例,特别适用于描述那些难以自动分割的图像和不需要考虑物体空间位置的图像。
其缺点在于:它无法描述图像中颜色的局部分布及每种色彩所处的空间位置,即无法描述图像中的某一具体的对象或物体。
最常用的颜色空间:RGB颜色空间、HSV颜色空间。
颜色直方图特征匹配方法:直方图相交法、距离法、中心距法、参考颜色表法、累加颜色直方图法。
(2)颜色集颜色直方图法是一种全局颜色特征提取与匹配方法,无法区分局部颜色信息。
颜色集是对颜色直方图的一种近似首先将图像从RGB颜色空间转化成视觉均衡的颜色空间(如 HSV 空间),并将颜色空间量化成若干个柄。
然后,用色彩自动分割技术将图像分为若干区域,每个区域用量化颜色空间的某个颜色分量来索引,从而将图像表达为一个二进制的颜色索引集。
在图像匹配中,比较不同图像颜色集之间的距离和色彩区域的空间关系(3)颜色矩这种方法的数学基础在于:图像中任何的颜色分布均可以用它的矩来表示。
此外,由于颜色分布信息主要集中在低阶矩中,因此,仅采用颜色的一阶矩(mean)、二阶矩(variance)和三阶矩(skewness)就足以表达图像的颜色分布。
使用图像处理技术实现图像特征提取的技巧与方法图像特征提取是图像处理领域中的一个重要任务,它旨在从图像数据中提取出有意义的特征信息,用于后续的图像分析和理解。
图像特征可以描述图像的某种属性或结构,如颜色、纹理、形状等,通过对图像进行特征提取,可以实现图像分类、目标检测、图像搜索等任务。
在实际应用中,图像特征提取的技巧和方法有很多种。
下面将介绍几种常用的图像特征提取方法。
首先是颜色特征提取技术。
颜色是图像中最直观、最容易获取和识别的特征之一。
常用的颜色特征提取方法包括直方图、颜色空间转换和颜色描述子等。
直方图能够统计图像中每个颜色的像素数目,通过对颜色直方图的分析,可以获取图像的颜色分布特征。
颜色空间转换可以将图像从RGB空间转换成其他颜色空间,如HSV、Lab等,从而提取出不同颜色通道的特征。
颜色描述子能够对图像的颜色进行定量化描述,如颜色矩、颜色矢量等。
其次是纹理特征提取技术。
纹理是指图像中像素间的某种规律或重复性,常用于描述物体表面的细节特征。
常用的纹理特征提取方法有灰度共生矩阵、小波变换和局部二值模式等。
灰度共生矩阵能够统计图像中不同像素间的灰度共生关系,通过计算共生矩阵中的纹理特征,可以获取图像的纹理信息。
小波变换能够将图像从空间域转换到频率域,通过分析不同频率的小波系数,可以提取出图像的纹理特征。
局部二值模式是一种基于像素邻域的纹理特征描述方法,通过比较像素与其邻域像素之间的灰度差异,可以刻画图像的纹理细节。
还有形状特征提取技术。
形状是物体的外形和轮廓特征,常用于目标检测和识别。
常用的形状特征提取方法有轮廓描述子、边缘检测和形状匹配等。
轮廓描述子能够基于物体的边缘轮廓提取其形状特征,如轮廓长度、曲率等。
边缘检测可以通过检测图像中的边缘信息,提取物体的形状特征。
形状匹配则是通过比较不同物体的形状特征,实现目标的检测和识别。
除了以上提到的方法,还有很多其他的图像特征提取技巧和方法,如兴趣点检测、尺度不变特征变换等。
医学图像配准中的图像特征提取与匹配医学图像配准是指将多个医学图像按照相同的参考系统进行对齐,以实现不同图像之间的对比和分析。
在医学图像配准的过程中,图像特征提取与匹配是关键的步骤之一。
本文主要介绍医学图像配准中的图像特征提取与匹配的方法和技术。
1. 图像特征提取图像特征提取是指从医学图像中提取有用的、能够表征图像信息的特征。
医学图像中的特征可以包括形状、纹理、边缘等。
常用的图像特征提取方法包括:(1)边缘检测:边缘是图像中灰度变化较大的地方,边缘检测可以通过计算图像像素间的灰度差异来提取边缘信息。
(2)纹理特征提取:纹理是描述图像内部灰度分布的一种特征。
常见的纹理特征提取方法包括灰度共生矩阵、小波变换等。
(3)形状特征提取:形状是指物体的外观轮廓,可以通过提取轮廓特征、边界特征等来描述图像的形状。
2. 图像特征匹配图像特征匹配是指将不同图像中提取到的特征进行对应,以实现医学图像的配准。
医学图像特征匹配常用的方法有:(1)特征点匹配:通过提取图像中的特征点,并计算特征点间的相似性来实现匹配。
常用的特征点匹配算法有SIFT、SURF、ORB等。
(2)区域匹配:将图像划分为不同的区域,通过计算每个区域的特征来进行匹配。
常用的区域匹配方法有基于颜色直方图、基于形状特征等。
(3)局部匹配:先将图像进行分块,然后通过比较每个块的特征来实现匹配。
常用的局部匹配算法有基于SIFT局部特征的匹配方法。
3. 医学图像配准算法医学图像配准算法主要包括基于特征的配准算法和基于区域的配准算法。
(1)基于特征的配准算法:这类算法主要利用图像中提取到的特征进行匹配和配准。
常用的算法有Harris角点算法、SIFT算法等。
特征点匹配算法在医学图像配准中具有较好的鲁棒性和准确性。
(2)基于区域的配准算法:这类算法主要针对整个图像区域进行匹配和配准。
常用的算法有基于互信息和归一化互相关系数的方法。
区域匹配算法在医学图像配准中更适用于相似度较低的图像配准。
图像处理中的图像特征提取方法与技巧图像处理是一门研究数字图像的领域,其目标是通过一系列的处理步骤来改善图像的质量或提取出其中的有用信息。
其中,图像特征提取是图像处理中的重要环节之一。
本文将介绍一些常用的图像特征提取方法和技巧。
1. 灰度特征提取灰度特征提取是图像处理中最基本的特征提取方法之一。
通过将彩色图像转换为灰度图像,可以提取出图像的亮度信息。
常用的灰度特征包括图像的平均灰度值、灰度直方图、对比度等。
这些特征可以反映出图像的整体明暗程度和灰度分布情况,对于一些亮度信息相关的任务,如人脸识别、目标检测等,具有重要意义。
2. 形态学特征提取形态学特征提取通过对图像进行形态学运算,如腐蚀、膨胀、开闭运算等,来提取出图像的形态信息。
比如,利用腐蚀和膨胀运算可以提取出图像的边缘信息,通过开闭运算可以获取到图像的拐点信息和孤立点信息。
形态学特征提取在图像的边缘检测、形状分析等领域中得到广泛应用。
3. 纹理特征提取纹理特征提取是指从图像中提取出具有纹理信息的特征。
图像的纹理是指图像中像素之间的空间关系,比如纹理的平滑度、粗糙度、方向等。
常见的纹理特征提取方法包括灰度共生矩阵(GLCM)、灰度差值矩阵(GLDM)等。
这些方法通过统计邻近像素之间的灰度差异来描述图像的纹理特征,对于物体识别、纹理分类等任务非常有用。
4. 频域特征提取频域特征提取是指通过对图像进行傅里叶变换或小波变换,从频域角度分析图像的特征。
对于傅里叶变换,可以得到图像的频谱图,从中提取出一些频域特征,如频谱能量、频谱密度等。
而小波变换则可以提取出图像的频率和幅度信息。
频域特征提取在图像压缩、图像识别等领域具有广泛应用。
5. 尺度空间特征提取尺度空间特征提取是指通过在不同的尺度下分析图像的特征,提取出图像的空间尺度信息。
常用的尺度空间特征提取方法包括拉普拉斯金字塔、高斯金字塔等。
这些方法可以从图像的多个尺度下提取出不同的特征,对于物体的尺度不变性分析、尺度空间关系分析等任务非常有用。
图像处理中的特征提取与分类方法图像处理技术是指利用计算机和数字图像处理技术来处理不同类型的图像,从而得到有效的信息。
图像处理被广泛应用于医学诊断、数字水印、娱乐、安防领域等方面。
其中一个重要的步骤就是图像的特征提取与分类,下面我将详细介绍这个过程中所用到的方法。
一、特征提取特征提取是图像处理中最关键的步骤之一。
图像中的特征是指具有区别度的、代表性的、不同的属性,不同的特征可以用于不同的分类任务。
在图像处理中,特征可以分为两种类型:结构特征和统计特征。
1. 结构特征结构特征是基于像素本身的一些属性来描述图像的特征,包括如下几种:(1)边缘特征:边缘是图像上两种不同灰度的区域之间的分界线。
边缘特征可以通过边缘检测算法来提取。
(2)角点特征:角点是图像上局部区域的转折点,可以用于跟踪和目标检测。
(3)纹理特征:纹理是图像上一种空间上或颜色上呈现规律的、重复的模式,可以用于纹理识别。
(4)形状特征:形状可以描述物体的几何形状,如圆、椭圆、矩形等。
2. 统计特征统计特征是通过对图像各个像素灰度值的统计分布来描述图像的特征,包括如下几种:(1)直方图:直方图描述了图像每个像素的灰度值出现的次数。
(2)均值和方差:均值表示图像区域内像素灰度值的平均值,方差表示图像区域内像素灰度值的变异程度。
(3)能量和熵:能量表示图像区域内像素良好分布的程度,熵表示图像区域内像素的信息量。
二、分类方法特征提取后,需要将其用于图像分类。
在图像分类上,根据不同任务,可以采用不同的分类方法。
1. 传统分类方法传统分类方法是指基于数学模型来描述图像特征和分类关系的分类方法,主要包括如下几种:(1)KNN算法:KNN算法是指K-近邻算法,是一种基于样本的分类方法。
对于一个测试样本,找出与它最相似的K个训练样本,用它们的分类标签中出现最多的作为预测结果。
(2)SVM算法:SVM算法是指支持向量机算法,是一种二分类模型,可以采用核函数进行非线性分类。
图像识别,是一种利用计算机算法和模型对图像进行自动分析和理解的技术。
图像识别的关键问题之一就是特征提取,它是将图像中的信息转换成计算机可处理的形式,从而实现对图像的分类、识别和检测等任务。
本文将综述图像识别中的特征提取方法,并探讨其应用和挑战。
一、基础特征提取方法基础特征提取方法是指最早的、最常用的一些特征提取方法。
其中,色彩特征是最常见的一种,通过提取图像中的颜色信息,可以实现对不同物体的区分。
纹理特征则是通过计算图像的纹理统计量,如灰度共生矩阵和小波变换等,来描述图像的纹理信息。
边缘特征是指图像中物体边缘的特性,如梯度和边缘检测等。
这些基础特征提取方法形式简单、计算效率高,但是对于复杂图像的处理效果有限。
二、深度学习在特征提取中的应用深度学习是图像识别领域的热点技术,其在特征提取中的应用取得了重大突破。
卷积神经网络(CNN)是深度学习中最常用的一种结构,它通过多层卷积和池化操作,可以自动学习到图像中的特征表示。
预训练模型如VGG-Net和ResNet等,已经在图像分类和物体检测等任务上取得了令人瞩目的成果。
深度学习在特征提取方面的优势在于,它能够自动学习到图像的高级特征表示,从而提升了图像识别的准确率和鲁棒性。
三、局部特征提取方法局部特征提取是指将图像分割为多个局部区域,并提取每个局部区域的特征。
SIFT和SURF是两种经典的局部特征提取算法,它们通过在图像中检测关键点,并计算关键点周围区域的特征描述子,来表示图像的局部特征。
这些局部特征对于图像的平移、旋转和缩放等变换具有较好的不变性,因此在物体识别和图像拼接等任务中应用广泛。
然而,随着图像数量的增加和场景复杂度的提高,局部特征提取方法面临着计算时间长和纹理辨别度低等挑战。
四、基于注意力机制的特征提取方法基于注意力机制的特征提取方法利用了人们的视觉注意机制,将注意力集中在图像中最重要的部分。
深度学习中的注意力机制有两种类型,一种是空间注意力,即将注意力集中在图像的特定区域;另一种是通道注意力,即将注意力集中在图像的特定通道。
图像处理中的特征提取与分类算法图像处理是指通过计算机技术对图像进行分析、处理和识别,是一种辅助人类视觉系统的数字化技术。
在图像处理中,特征提取与分类算法是非常重要的一个环节,它能够从图像中提取出不同的特征,并对这些特征进行分类,从而实现图像的自动化处理和识别。
本文将对图像处理中的特征提取与分类算法进行详细介绍,主要包括特征提取的方法、特征分类的算法、以及在图像处理中的应用。
一、特征提取的方法1.1颜色特征提取颜色是图像中最直观的特征之一,它能够有效地描述图像的内容。
颜色特征提取是通过对图像中的像素点进行颜色分析,从而得到图像的颜色分布信息。
常用的颜色特征提取方法有直方图统计法、颜色矩法和颜色空间转换法等。
直方图统计法是通过统计图像中每种颜色的像素点数量,从而得到图像的颜色直方图。
颜色矩法则是通过对图像的颜色分布进行矩运算,从而得到图像的颜色特征。
颜色空间转换法是将图像从RGB颜色空间转换到其他颜色空间,比如HSV颜色空间,从而得到图像的颜色特征。
1.2纹理特征提取纹理是图像中的一种重要特征,它能够描述图像中不同区域的物体表面特性。
纹理特征提取是通过对图像中的像素点进行纹理分析,从而得到图像的纹理信息。
常用的纹理特征提取方法有灰度共生矩阵法、小波变换法和局部二值模式法等。
灰度共生矩阵法是通过统计图像中不同像素点的灰度级别分布,从而得到图像的灰度共生矩阵,进而得到图像的纹理特征。
小波变换法是通过对图像进行小波变换,从而得到图像的频域信息,进而得到图像的纹理特征。
局部二值模式法是采用局部像素间差异信息作为纹理特征,从而得到图像的纹理特征。
1.3形状特征提取形状是图像中的一种重要特征,它能够描述图像中物体的外形和结构。
形状特征提取是通过对图像中的像素点进行形状分析,从而得到图像的形状信息。
常用的形状特征提取方法有轮廓分析法、边缘检测法和骨架提取法等。
轮廓分析法是通过对图像中物体的外轮廓进行分析,从而得到图像的形状特征。
图像处理中的特征提取和匹配算法图像处理在日益热门的人工智能技术中扮演着一种重要的角色。
在图像处理中,特征提取和匹配算法是两个至关重要的步骤。
特征提取是通过分析图像的局部特点来创建描述图像内容的向量,而匹配是将不同图像的特征或特征向量进行比较,以确定它们是否相似。
本文将介绍几种常用的特征提取和匹配算法。
一、特征提取算法1.尺度不变特征变换(SIFT)SIFT是一种特征提取算法,它能够从不同的尺度和方向上提取图像的局部特征。
这种算法在检索和匹配图像中特别有用。
SIFT算法的基本思想是通过高斯差分算子得到一组尺度空间图像,通过高斯图像之间的差异来确定关键点,然后计算每个关键点的局部梯度的幅值和方向,最后形成一个基于梯度方向的特征描述符。
2.速度增强型稀疏编码(SLEEC)SLEEC是一种新型的高效特征提取算法。
与其他算法不同的是,SLEEC只需扫描一次训练数据即可获得最具代表性的特征。
该算法通过运用具有多个分辨率的降采样、随机稀疏和加速度分析三种技术提取特征,从而实现了比其他算法更高的准确性和速度。
二、特征匹配算法1.暴力匹配算法暴力匹配算法是一种基本的匹配算法,它实现了图像特征之间的精确匹配。
该算法通过比较两个图像之间的每个可能的匹配,来确定匹配的好坏。
虽然该算法的准确性很高,但是它非常耗时,因此只适用于小图像匹配。
2.基于Flann树的匹配算法基于Flann树的匹配算法通过对特征向量进行一系列分割和聚类,以快速找到大量数据中的相似匹配。
该算法不仅适用于大规模数据集,而且具有高效和稳定性。
3.随机抽样一致性算法(RANSAC)随机抽样一致性算法是一种常见的特征匹配算法。
该算法通过随机采样一对点来确定匹配,在这个过程中,通过迭代重复采样和检测结果,不断提高匹配模型的准确度。
结论:在图像处理和计算机视觉中,特征提取和匹配是核心算法。
不同的特征提取和匹配算法适用于不同的应用场合。
在实际应用中,为了达到对图像的快速识别和匹配,我们需要根据具体的需求,选择合适的特征提取和匹配算法。
关于图像特征提取特征提取是计算机视觉和图像处理中的一个概念。
它指的是使用计算机提取图像信息,决定每个图像的点是否属于一个图像特征。
特征提取的结果是把图像上的点分为不同的子集,这些子集往往属于孤立的点、连续的曲线或者连续的区域。
特征的定义至今为止特征没有万能和精确的定义。
特征的精确定义往往由问题或者应用类型决定。
特征是一个数字图像中“有趣”的部分,它是许多计算机图像分析算法的起点。
因此一个算法是否成功往往由它使用和定义的特征决定。
因此特征提取最重要的一个特性是“可重复性”:同一场景的不同图像所提取的特征应该是相同的。
特征提取是图象处理中的一个初级运算,也就是说它是对一个图像进行的第一个运算处理。
它检查每个像素来确定该像素是否代表一个特征。
假如它是一个更大的算法的一部分,那么这个算法一般只检查图像的特征区域。
作为特征提取的一个前提运算,输入图像一般通过高斯模糊核在尺度空间中被平滑。
此后通过局部导数运算来计算图像的一个或多个特征。
有时,假如特征提取需要许多的计算时间,而可以使用的时间有限制,一个高层次算法可以用来控制特征提取阶层,这样仅图像的部分被用来寻找特征。
由于许多计算机图像算法使用特征提取作为其初级计算步骤,因此有大量特征提取算法被发展,其提取的特征各种各样,它们的计算复杂性和可重复性也非常不同。
边缘边缘是组成两个图像区域之间边界(或边缘)的像素。
一般一个边缘的形状可以是任意的,还可能包括交叉点。
在实践中边缘一般被定义为图像中拥有大的梯度的点组成的子集。
一些常用的算法还会把梯度高的点联系起来来构成一个更完善的边缘的描写。
这些算法也可能对边缘提出一些限制。
局部地看边缘是一维结构。
角角是图像中点似的特征,在局部它有两维结构。
早期的算法首先进行边缘检测,然后分析边缘的走向来寻找边缘突然转向(角)。
后来发展的算法不再需要边缘检测这个步骤,而是可以直接在图像梯度中寻找高度曲率。
后来发现这样有时可以在图像中本来没有角的地方发现具有同角一样的特征的区域。
区域与角不同的是区域描写一个图像中的一个区域性的结构,但是区域也可能仅由一个像素组成,因此许多区域检测也可以用来监测角。
一个区域监测器检测图像中一个对于角监测器来说太平滑的区域。
区域检测可以被想象为把一张图像缩小,然后在缩小的图像上进行角检测。
脊长条形的物体被称为脊。
在实践中脊可以被看作是代表对称轴的一维曲线,此外局部针对于每个脊像素有一个脊宽度。
从灰梯度图像中提取脊要比提取边缘、角和区域困难。
在空中摄影中往往使用脊检测来分辨道路,在医学图像中它被用来分辨血管。
特征抽取特征被检测后它可以从图像中被抽取出来。
这个过程可能需要许多图像处理的计算机。
其结果被称为特征描述或者特征向量。
常用的图像特征有颜色特征、纹理特征、形状特征、空间关系特征。
一颜色特征(一)特点:颜色特征是一种全局特征,描述了图像或图像区域所对应的景物的表面性质。
一般颜色特征是基于像素点的特征,此时所有属于图像或图像区域的像素都有各自的贡献。
由于颜色对图像或图像区域的方向、大小等变化不敏感,所以颜色特征不能很好地捕捉图像中对象的局部特征。
另外,仅使用颜色特征查询时,如果数据库很大,常会将许多不需要的图像也检索出来。
颜色直方图是最常用的表达颜色特征的方法,其优点是不受图像旋转和平移变化的影响,进一步借助归一化还可不受图像尺度变化的影响,基缺点是没有表达出颜色空间分布的信息。
(二)常用的特征提取与匹配方法(1)颜色直方图其优点在于:它能简单描述一幅图像中颜色的全局分布,即不同色彩在整幅图像中所占的比例,特别适用于描述那些难以自动分割的图像和不需要考虑物体空间位置的图像。
其缺点在于:它无法描述图像中颜色的局部分布及每种色彩所处的空间位置,即无法描述图像中的某一具体的对象或物体。
最常用的颜色空间:RGB颜色空间、HSV颜色空间。
颜色直方图特征匹配方法:直方图相交法、距离法、中心距法、参考颜色表法、累加颜色直方图法。
(2)颜色集颜色直方图法是一种全局颜色特征提取与匹配方法,无法区分局部颜色信息。
颜色集是对颜色直方图的一种近似。
首先将图像从RGB颜色空间转化成视觉均衡的颜色空间(如HSV 空间),并将颜色空间量化成若干个柄。
然后,用色彩自动分割技术将图像分为若干区域,每个区域用量化颜色空间的某个颜色分量来索引,从而将图像表达为一个二进制的颜色索引集。
在图像匹配中,比较不同图像颜色集之间的距离和色彩区域的空间关系(3)颜色矩这种方法的数学基础在于:图像中任何的颜色分布均可以用它的矩来表示。
此外,由于颜色分布信息主要集中在低阶矩中,因此,仅采用颜色的一阶矩(mean)、二阶矩(variance)和三阶矩(skewness)就足以表达图像的颜色分布。
(4)颜色聚合向量其核心思想是:将属于直方图每一个柄的像素分成两部分,如果该柄内的某些像素所占据的连续区域的面积大于给定的阈值,则该区域内的像素作为聚合像素,否则作为非聚合像素。
(5)颜色相关图二纹理特征(一)特点:纹理特征也是一种全局特征,它也描述了图像或图像区域所对应景物的表面性质。
但由于纹理只是一种物体表面的特性,并不能完全反映出物体的本质属性,所以仅仅利用纹理特征是无法获得高层次图像内容的。
与颜色特征不同,纹理特征不是基于像素点的特征,它需要在包含多个像素点的区域中进行统计计算。
在模式匹配中,这种区域性的特征具有较大的优越性,不会由于局部的偏差而无法匹配成功。
作为一种统计特征,纹理特征常具有旋转不变性,并且对于噪声有较强的抵抗能力。
但是,纹理特征也有其缺点,一个很明显的缺点是当图像的分辨率变化的时候,所计算出来的纹理可能会有较大偏差。
另外,由于有可能受到光照、反射情况的影响,从2-D图像中反映出来的纹理不一定是3-D物体表面真实的纹理。
例如,水中的倒影,光滑的金属面互相反射造成的影响等都会导致纹理的变化。
由于这些不是物体本身的特性,因而将纹理信息应用于检索时,有时这些虚假的纹理会对检索造成“误导”。
在检索具有粗细、疏密等方面较大差别的纹理图像时,利用纹理特征是一种有效的方法。
但当纹理之间的粗细、疏密等易于分辨的信息之间相差不大的时候,通常的纹理特征很难准确地反映出人的视觉感觉不同的纹理之间的差别。
(二)常用的特征提取与匹配方法纹理特征描述方法分类(1)统计方法统计方法的典型代表是一种称为灰度共生矩阵的纹理特征分析方法Gotlieb 和Kreyszig 等人在研究共生矩阵中各种统计特征基础上,通过实验,得出灰度共生矩阵的四个关键特征:能量、惯量、熵和相关性。
统计方法中另一种典型方法,则是从图像的自相关函数(即图像的能量谱函数)提取纹理特征,即通过对图像的能量谱函数的计算,提取纹理的粗细度及方向性等特征参数(2)几何法所谓几何法,是建立在纹理基元(基本的纹理元素)理论基础上的一种纹理特征分析方法。
纹理基元理论认为,复杂的纹理可以由若干简单的纹理基元以一定的有规律的形式重复排列构成。
在几何法中,比较有影响的算法有两种:Voronio 棋盘格特征法和结构法。
(3)模型法模型法以图像的构造模型为基础,采用模型的参数作为纹理特征。
典型的方法是随机场模型法,如马尔可夫(Markov)随机场(MRF)模型法和Gibbs 随机场模型法(4)信号处理法纹理特征的提取与匹配主要有:灰度共生矩阵、Tamura 纹理特征、自回归纹理模型、小波变换等。
灰度共生矩阵特征提取与匹配主要依赖于能量、惯量、熵和相关性四个参数。
Tamura 纹理特征基于人类对纹理的视觉感知心理学研究,提出6种属性,即:粗糙度、对比度、方向度、线像度、规整度和粗略度。
自回归纹理模型(simultaneous auto-regressive, SAR)是马尔可夫随机场(MRF)模型的一种应用实例。
三形状特征(一)特点:各种基于形状特征的检索方法都可以比较有效地利用图像中感兴趣的目标来进行检索,但它们也有一些共同的问题,包括:①目前基于形状的检索方法还缺乏比较完善的数学模型;②如果目标有变形时检索结果往往不太可靠;③许多形状特征仅描述了目标局部的性质,要全面描述目标常对计算时间和存储量有较高的要求;④许多形状特征所反映的目标形状信息与人的直观感觉不完全一致,或者说,特征空间的相似性与人视觉系统感受到的相似性有差别。
另外,从2-D 图像中表现的3-D 物体实际上只是物体在空间某一平面的投影,从2-D 图像中反映出来的形状常不是3-D 物体真实的形状,由于视点的变化,可能会产生各种失真。
(二)常用的特征提取与匹配方法Ⅰ几种典型的形状特征描述方法通常情况下,形状特征有两类表示方法,一类是轮廓特征,另一类是区域特征。
图像的轮廓特征主要针对物体的外边界,而图像的区域特征则关系到整个形状区域。
几种典型的形状特征描述方法:(1)边界特征法该方法通过对边界特征的描述来获取图像的形状参数。
其中Hough 变换检测平行直线方法和边界方向直方图方法是经典方法。
Hough 变换是利用图像全局特性而将边缘像素连接起来组成区域封闭边界的一种方法,其基本思想是点—线的对偶性;边界方向直方图法首先微分图像求得图像边缘,然后,做出关于边缘大小和方向的直方图,通常的方法是构造图像灰度梯度方向矩阵。
(2)傅里叶形状描述符法傅里叶形状描述符(Fourier shape deors)基本思想是用物体边界的傅里叶变换作为形状描述,利用区域边界的封闭性和周期性,将二维问题转化为一维问题。
由边界点导出三种形状表达,分别是曲率函数、质心距离、复坐标函数。
(3)几何参数法形状的表达和匹配采用更为简单的区域特征描述方法,例如采用有关形状定量测度(如矩、面积、周长等)的形状参数法(shape factor)。
在QBIC 系统中,便是利用圆度、偏心率、主轴方向和代数不变矩等几何参数,进行基于形状特征的图像检索。
需要说明的是,形状参数的提取,必须以图像处理及图像分割为前提,参数的准确性必然受到分割效果的影响,对分割效果很差的图像,形状参数甚至无法提取。
(4)形状不变矩法利用目标所占区域的矩作为形状描述参数。
(5)其它方法近年来,在形状的表示和匹配方面的工作还包括有限元法(Finite Element Method 或FEM)、旋转函数(Turning )和小波描述符(Wavelet Deor)等方法。
Ⅱ基于小波和相对矩的形状特征提取与匹配该方法先用小波变换模极大值得到多尺度边缘图像,然后计算每一尺度的7个不变矩,再转化为10 个相对矩,将所有尺度上的相对矩作为图像特征向量,从而统一了区域和封闭、不封闭结构。
四空间关系特征(一)特点:所谓空间关系,是指图像中分割出来的多个目标之间的相互的空间位置或相对方向关系,这些关系也可分为连接/邻接关系、交叠/重叠关系和包含/包容关系等。