七年级数学下册期中测试题6
- 格式:doc
- 大小:141.50 KB
- 文档页数:7
人 教 版 数 学 七 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题1.已知(a ﹣2)x |a |﹣1=﹣2是关于x 的一元一次方程,则a 的值为( )A. ﹣2B. 2C. ±2D. ±1 2.已知31x y =⎧⎨=⎩是方程mx —y=2的解,则m 的值是( ) A. B. 13- C. 1 D. 5 3.下列各等式的变形中,一定正确的是( )A. 若2a =0,则a =2 B. 若a =b ,则2(a ﹣1)=2(b ﹣1) C. 若﹣2a =﹣3,则a =23 D. 若a =b ,则ac =b c4.若m>n ,则不论a 取何实数,下列不等式都成立的是( )A. m+a>nB. ma>naC. a-m<a-nD. 22ma na > 5.若单项式13a m b 3与-2a 2b n 的和仍是单项式,则方程m 3x -n =1的解为( ) A. ﹣2 B. 2 C. ﹣6 D. 66.不等式组1020x x +≥⎧⎨-⎩的解集在数轴上表示为( ) A.B. C. D. 7.若方程组34526x y k x y k -=-⎧⎨+=⎩的解中2019x y +=,则等于( ) A. 2018 B. 2019 C. 2020 D. 20218.已知关于不等式组2x x a ⎧⎨>⎩有解,则的取值不可能是( ) A 0 B. 1 C. 2 D. -29.一家商店将某种服装按照成本价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的成本是多少元?设这种服装每件的成本是x 元,则根据题意列出方程正确的是( )A. 0.8×(1+40%)x =15B. 0.8×(1+40%)x ﹣x =15C. 0.8×40%x =15D. 0.8×40%x ﹣x =1510.《九章算术》中有一道“盈不足术”的问题,原文为:今有人共买物,人出八,盈三;人出七,不足四,问人数,物价各几何?意思是:“现有几个人共同购买一件物品,每人出8钱,则多3钱;每人出7钱,则差4钱,求物品的价格和共同购买该物品的人数.设该物品的价格是x 钱,共同购买该物品的有y 人,则根据题意,列出的方程组是()A. 8374y x y x -=⎧⎨-=⎩B. 8374y x y x -=⎧⎨-=-⎩C. 8374y x y x -=-⎧⎨-=-⎩D. 8374y x y x -=⎧⎨-=⎩二.填空题11.满足 2.1x <-的最大整数是______. 12.小军在解关于的方程513m x +=时,误将x +看成x -,得到方程的解为3x =-,则的值为______. 13.如图,母亲节那天,很多同学给妈妈准备了鲜花和礼盒,从图中信息可知,礼盒的单价是__________元.14.小红网购了一本数学拓展教材《好玩的数学》.两位小伙伴想知道书的价格,小红告诉他们这本书的价格是整数并让他们猜,小曹说:“至少29元”,小强说:“至多元,小红说:“你们两个人都猜错了。
人教版七年级数学下册期中测试卷(完整)班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知a=2018x+2018,b=2018x+2019,c=2018x+2020,则a2+b2+c2-ab-ac-bc的值是()A.0 B.1 C.2 D.32.如图是甲、乙两车在某时段速度随时间变化的图象,下列结论错误的是()A.乙前4秒行驶的路程为48米B.在0到8秒内甲的速度每秒增加4米/秒C.两车到第3秒时行驶的路程相等D.在4至8秒内甲的速度都大于乙的速度3.在平面直角坐标系中,点A(﹣3,2),B(3,5),C(x,y),若AC∥x 轴,则线段BC的最小值及此时点C的坐标分别为()A.6,(﹣3,5) B.10,(3,﹣5)C.1,(3,4) D.3,(3,2)4.将一副三角板和一张对边平行的纸条按如图摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是()A.15°B.22.5°C.30°D.45°5.已知点P(a+5,a-1)在第四象限,且到x 轴的距离为2,则点P 的坐标为( ) A .(4,-2)B .(-4,2)C .(-2,4)D .(2,-4)6.已知2|1|0++-=a b ,那么()2017ab +的值为( )A .-1B .1C .20173D .20173-7.若关于x 的一元一次不等式组11(42)423122x a x x ⎧--≤⎪⎪⎨-⎪<+⎪⎩的解集是x ≤a ,且关于y 的分式方程24111y a y y y---=--有非负整数解,则符合条件的所有整数a 的和为( ) A .0B .1C .4D .68.三个全等三角形按如图的形式摆放,则∠1+∠2+∠3的度数是( )A .90B .120C .135D .1809.如图,将矩形ABCD 沿对角线BD 折叠,点C 落在点E 处,BE 交AD 于点F ,已知∠BDC =62°,则∠DFE 的度数为( )A .31°B .28°C .62°D .56°10.如果,长方形ABCD 中有6个形状、大小相同的小长方形,且3EF =,12CD =,则图中阴影部分的面积为( ).A .108B .72C .60D .48二、填空题(本大题共6小题,每小题3分,共18分)1.已知2320x y --=,则23(10)(10)x y ÷=________.2.在直线l 上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是a ,b ,c ,正放置的四个正方形的面积依次是S 1,S 2,S 3,S 4,则S 1+S 2+S 3+S 4=________.3.如图,AB ∥CD ,则∠1+∠3—∠2的度数等于 __________.4.27的立方根为________.5.有三个互不相等的整数a,b,c ,如果abc=4,那么a+b+c=__________ 69=________.三、解答题(本大题共6小题,共72分)1.解方程:(1)()()371323x x x --=-+ (2)21252x x x +--=-2.计算下列各题:(1)327-+2(3)--31- (2)3331632700.1251464---++-.3.如图,已知直线l 1∥l 2,直线l 3和直线l 1、l 2交于点C 和D ,点P 是直线CD 上的一个动点。
七年级数学下册期中测试卷【及参考答案】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.﹣2的绝对值是( )A .2B .12C .12-D .2-2.某校为了了解家长对“禁止学生带手机进入校园”这一规定的意见,随机对全校100名学生家长进行调查,这一问题中样本是( )A .100B .被抽取的100名学生家长C .被抽取的100名学生家长的意见D .全校学生家长的意见3.已知平面内不同的两点A (a +2,4)和B (3,2a +2)到x 轴的距离相等,则a 的值为( )A .﹣3B .﹣5C .1或﹣3D .1或﹣54.已知5x =3,5y =2,则52x ﹣3y =( )A .34B .1C .23D .985.如图,△ABC 中,AB=5,AC=6,BC=4,边AB 的垂直平分线交AC 于点D ,则△BDC 的周长是( )A .8B .9C .10D .116.式子|x ﹣1|-3取最小值时,x 等于( )A .1B .2C .3D .47.如图,有一块直角三角形纸片,两直角边6cm AC =,8cm BC =.现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于( )A .2cmB .3cmC .4cmD .5cm8.估计7+1的值( )A .在1和2之间B .在2和3之间C .在3和4之间D .在4和5之间 9.下列各组数值是二元一次方程x ﹣3y =4的解的是( )A .11x y =⎧⎨=-⎩B .21x y =⎧⎨=⎩C .12x y =-⎧⎨=-⎩D .41x y =⎧⎨=-⎩10.关于x 的不等式组12x x m⎧≤-⎪⎨⎪>⎩的所有整数解的积为2,则m 的取值范围为( )A .m >-3B .m <-2C .m -3≤<-2D .m -3<≤-2二、填空题(本大题共6小题,每小题3分,共18分)1.若一个多边形的内角和是其外角和的3倍,则这个多边形的边数是______.2.如图,将长方形纸片ABCD 的∠C 沿着GF 折叠(点F 在BC 上,不与B,C 重合),使点C 落在长方形内部的点E 处,若FH 平分∠BFE,则∠GFH 的度数是________.3.一般地,如果()40x a a =≥,则称x 为a 的四次方根,一个正数a 的四次方根有两个.它们互为相反数,记为4a 4410m =,则m =________.4.已知直线AB ∥x 轴,点A 的坐标为(1,2),并且线段AB =3,则点B 的坐标为________.5.如图,直线a,b与直线c相交,给出下列条件:①∠1=∠2;②∠3=∠6;③∠4+∠7=180°;④∠5+∠3=180°;⑤∠6=∠8,其中能判断a∥b的是________(填序号)6.如果a、b互为倒数,c、d互为相反数,且m1=-,则()22ab c d m-++=___________.三、解答题(本大题共6小题,共72分)1.(1)解方程组:(2)解方程组:2.若a、b互为相反数,c、d互为倒数,m的绝对值为2.(1)直接写出a+b,cd,m的值;(2)求a bm cdm+++的值.3.如图,AD平分∠BAC交BC于点D,点F在BA的延长线上,点E在线段CD 上,EF 与AC相交于点G,∠BDA+∠CEG=180°.(1)AD与EF平行吗?请说明理由;(2)若点H在FE的延长线上,且∠EDH=∠C,则∠F与∠H相等吗,请说明理由.4.已知:如图,在△ABC中,AB=AC,BD⊥AC于D,CE⊥AB于E,BD、CE相交于F,连接AF.求证:AF平分∠BAC.5.某商场服装部分为了解服装的销售情况,统计了每位营业员在某月的销售额(单位:万元),并根据统计的这组销售额的数据,绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:(1)该商场服装营业员的人数为,图①中m的值为;(2)求统计的这组销售额数据的平均数、众数和中位数.6.“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70km/h.如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪正前方30m处,过了2s后,测得小汽车与车速检测仪间距离为50m,这辆小汽车超速了吗?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、C3、A4、D5、C6、A7、B8、C9、A10、C二、填空题(本大题共6小题,每小题3分,共18分)1、82、90°3、104、(4,2)或(﹣2,2).5、①③④⑤.6、3三、解答题(本大题共6小题,共72分)1、(1);(2).2、(1)a+b=0,cd=1,m=±2;(2)3或-13、略4、证明略.5、(1)25;28;(2)平均数:18.6;众数:21;中位数:18.6、略。
2023年部编版七年级数学下册期中考试题及答案【新版】班级: 姓名:一、选择题(本大题共10小题, 每题3分, 共30分)1.已知a=255, b=344, c=533, d=622 , 那么a,b,c,d大小顺序为()A. a<b<c<dB. a<b<d<cC. b<a<c<dD. a<d<b<c2.下列图形中, 不是轴对称图形的是()A. B. C. D.3. 在平面直角坐标系中, 点A(﹣3, 2), B(3, 5), C(x, y), 若AC∥x 轴, 则线段BC的最小值及此时点C的坐标分别为()A. 6, (﹣3, 5)B. 10, (3, ﹣5)C. 1, (3, 4)D. 3, (3, 2)4.按一定规律排列的一列数: , , , , …, 其中第6个数为()A. B. C. D.5.今年一季度, 河南省对“一带一路”沿线国家进出口总额达214.7亿元, 数据“214.7亿”用科学记数法表示为()A. 2.147×102B. 0.2147×103C. 2.147×1010D. 0.2147×1011 6.如图, 要把河中的水引到水池A中, 应在河岸B处(AB⊥CD)开始挖渠才能使水渠的长度最短, 这样做依据的几何学原理是()A. 两点之间线段最短B. 点到直线的距离C. 两点确定一条直线D. 垂线段最短7.如图, 每个小正方形的边长为1, A、B、C是小正方形的顶点, 则∠ABC的度数为()A. 90°B. 60°C. 45°D. 30°8.若且, 则函数的图象可能是()A. B.C. D.9.如图, 将矩形ABCD沿对角线BD折叠, 点C落在点E处, BE交AD于点F, 已知∠BDC=62°, 则∠DFE的度数为()A. 31°B. 28°C. 62°D. 56°10. 计算的结果是()A. B. C. D.二、填空题(本大题共6小题, 每小题3分, 共18分)1. 16的平方根是 .2. 若关于x、y的二元一次方程组的解是, 则关于a、b的二元一次方程组的解是________.3. 在关于x、y的方程组中, 未知数满足x≥0, y>0, 那么m的取值范围是_________________.4. 多项式﹣3x+7是关于x的四次三项式, 则m的值是________.5.若不等式(a﹣3)x>1的解集为, 则a的取值范围是________.6. 化简: =________三、解答题(本大题共6小题, 共72分)1. 解下列方程:(1)4935x yx y-+=⎧⎨+=⎩(2)3224()5()2x yx y x y+=⎧⎨+--=⎩2. 解不等式组: , 并写出它的所有非负整数解.3. 如图①, 在三角形ABC中, 点E, F分别为线段AB, AC上任意两点, EG交BC于点G, 交AC的延长线于点H, ∠1+∠AFE=180°.(1)证明: BC∥EF;(2)如图②, 若∠2=∠3, ∠BEG=∠EDF, 证明:DF平分∠AFE.4. 如图, 四边形ABCD中, ∠A=∠C=90°, BE, DF分别是∠ABC, ∠ADC的平分线.(1)∠1与∠2有什么关系, 为什么?(2)BE与DF有什么关系?请说明理由.5. 为响应党的“文化自信”号召, 某校开展了古诗词诵读大赛活动, 现随机抽取部分同学的成绩进行统计, 并绘制成如下的两个不完整的统计图, 请结合图中提供的信息, 解答下列各题:(1)直接写出a的值, a= , 并把频数分布直方图补充完整.(2)求扇形B的圆心角度数.(3)如果全校有2000名学生参加这次活动, 90分以上(含90分)为优秀, 那么估计获得优秀奖的学生有多少人?6. 为发展校园足球运动, 某城区四校决定联合购买一批足球运动装备. 市场调查发现: 甲、乙两商场以同样的价格出售同种品牌的足球服和足球, 已知每套队服比每个足球多50元, 两套队服与三个足球的费用相等, 经洽谈, 甲商场优惠方案是: 每购买十套队服, 送一个足球;乙商场优惠方案是: 若购买队服超过80套, 则购买足球打八折.(1)求每套队服和每个足球的价格是多少元;(2)若城区四校联合购买100套队服和a(a>10)个足球, 请用含a的式子分别表示出到甲商场和乙商场购买装备所花发费用;(3)在(2)的条件下, 假如你是本次购买任务的负责人, 你认为到甲、乙哪家商场购买比较合算?参考答案一、选择题(本大题共10小题, 每题3分, 共30分)1、D2、A3、D4、D5、C6、D7、C8、A9、D10、B二、填空题(本大题共6小题, 每小题3分, 共18分)1、±4.2、3212 ab⎧=⎪⎪⎨⎪=-⎪⎩3.-2≤m<34、55、3a<.6、1三、解答题(本大题共6小题, 共72分)1.(1);(2)2、不等式组的所有非负整数解为:0, 1, 2, 3.3.(1)略;(2) 略.4.(1)∠1+∠2=90°;略;(2)(2)BE∥DF;略.5、(1)30, 补图见解析;(2)扇形B的圆心角度数为50.4°;(3)估计获得优秀奖的学生有400人.6、(1) 每套队服150元, 每个足球100元;(2)甲:100a+14000(元), 乙80a+15000(元);(3)当a=50时, 两家花费一样;当a<50时, 到甲处购买更合算;当a>50时, 到乙处购买更合算。
完整版(完整版)七年级数学下册期中试卷及答案 - 百度文库 一、选择题 1.化简4的结果为()A .16B .4C .2D .2±2.下列四种汽车车标,可以看做是由某个基本图案经过平移得到的是( )A .B .C .D .3.在平面直角坐标系中位于第二象限的点是( )A .()2,3B .()2,3-C .()2,3-D .()2,3-- 4.下列命题:①过直线外一点有且只有一条直线与已知直线平行;②在同一平面内,过一点有且只有一条直线与已知直线垂直;③图形平移的方向一定是水平的;④内错角相等.其中真命题为( )A .①②B .①④C .①②③D .①②④ 5.如果,直线//AB CD ,65A ∠=︒,则EFC ∠等于( )A .105︒B .115︒C .125︒D .135︒ 6.下列运算正确的是( ) A .32-=﹣6 B .31182-=- C .4=±2 D .25×32=5107.如图,AB //CD ,AD ⊥AC ,∠ACD =53°,则∠BAD 的度数为( )A .53°B .47°C .43°D .37°8.在平面直角坐标系xOy 中,对于点(,)P x y ,我们把点(1,1)P y x -++叫做点P 的伴随点,已知点1A 的伴随点为2A ,点2A 的伴随点为3A ,点3A 的伴随点为4A ,…,这样依次得点A 1,A 2,A 3,…,n A ,…,若点1A 的坐标为(3)1,,则点A 2021的坐标为( ) A .(0,2)- B .(0)4, C .(3)1, D .(3,1)-二、填空题9.若102.0110.1=,则± 1.0201=_________.10.点A (2,4)关于x 轴对称的点的坐标是_____.11.如图,点D 是△ABC 三边垂直平分线的交点,若∠A =64°,则∠D =_____°.12.如图,AB ∥DE ,AD ⊥AB ,AE 平分∠BAC 交BC 于点F ,如果∠CAD =24°,则∠E =___°.13.如图,将一条对边互相平行的长方形纸带进行两次折叠,折痕分别为AB 、CD ,若//CD BE ,且156∠=︒,则2∠=_____.14.已知M 是满足不等式36a <<N 是满足不等式372-大整数,则M +N 的平方根为________.15.第二象限内的点()P x,y 满足x =9,2y =4,则点P 的坐标是___. 16.如图,在平面直角坐标系中,将正方形①依次平移后得到正方形②,③,④…;相应地,顶点A 依次平移得到A 1,A 2,A 3,…,其中A 点坐标为(1,0),A 1坐标为(0,1),则A20的坐标为__________.三、解答题17.计算:(1)31 81624-+-;(2)1333⎛⎫+⎪⎝⎭.18.已知a+b=5,ab=2,求下列各式的值.(1)a2+b2;(2)(a﹣b)2.19.如图,已知∠1+∠AFE=180°,∠A=∠2,求证:∠A=∠C+∠AFC证明:∵∠1+∠AFE=180°∴ CD∥EF(,)∵∠A=∠2 ∴()(,)∴AB∥CD∥EF(,)∴∠A= ,∠C= ,(,)∵∠AFE =∠EFC+∠AFC,∴ = .20.在如图的方格中,每个小方格都是边长为1个单位长度的正方形,三角形ABC的三个顶点都在格点(小方格的顶点)上,(1)请建立适当的平面直角坐标系,使点A,C的坐标分别为(﹣2,﹣1),(1,﹣1),并写出点B的坐标;(2)在(1)的条件下,将三角形ABC先向右平移4个单位长度,再向上平移2个单位长度后可得到三角形A'B'C',请在图中画出平移后的三角形A'B'C',并分别写出点A',B',C'的坐标.21.已知55-的整数部分为a,小数部分为b.(1)求a,b的值:(2)若c是一个无理数,且乘积bc是一个有理数,你能写出数c的值吗?并说明理由.22.(1)如图,分别把两个边长为1cm的小正方形沿一条对角线裁成4个小三角形拼成一个大正方形,则大正方形的边长为_______cm;π,设圆的周长为C圆,正方形的周长(2)若一个圆的面积与一个正方形的面积都是22cm为C正,则C圆_____C正(填“=”或“<”或“>”号);(3)如图,若正方形的面积为2400cm,李明同学想沿这块正方形边的方向裁出一块面积为2300cm的长方形纸片,使它的长和宽之比为3:2,他能裁出吗?请说明理由?23.阅读下面材料:小亮同学遇到这样一个问题:已知:如图甲,AB//CD,E为AB,CD之间一点,连接BE,DE,得到∠BED.求证:∠BED=∠B+∠D.(1)小亮写出了该问题的证明,请你帮他把证明过程补充完整.证明:过点E作EF//AB,则有∠BEF=.∵AB//CD,∴//,∴∠FED=.∴∠BED=∠BEF+∠FED=∠B+∠D.(2)请你参考小亮思考问题的方法,解决问题:如图乙,已知:直线a//b,点A,B在直线a上,点C,D在直线b上,连接AD,BC,BE平分∠ABC,DE平分∠ADC,且BE,DE所在的直线交于点E.①如图1,当点B在点A的左侧时,若∠ABC=60°,∠ADC=70°,求∠BED的度数;②如图2,当点B在点A的右侧时,设∠ABC=α,∠ADC=β,请你求出∠BED的度数(用含有α,β的式子表示).【参考答案】一、选择题1.C解析:C【分析】根据算术平方根的的性质即可化简.【详解】4=2故选C.【点睛】此题主要考查算术平方根,解题的关键是熟知算术平方根的性质.2.B【分析】根据平移变换的性质,逐一判断选项,即可得到答案.【详解】A. 可以经过轴对称变换得到,不能经过平移变换得到,故本选项不符合题意;B. 可以经过平移变换得到,故本选项符合题意;C解析:B【分析】根据平移变换的性质,逐一判断选项,即可得到答案.【详解】A. 可以经过轴对称变换得到,不能经过平移变换得到,故本选项不符合题意;B. 可以经过平移变换得到,故本选项符合题意;C. 可以经过轴对称变换得到,不能经过平移变换得到,故本选项不符合题意;D. 可以经过轴对称变换得到,不能经过平移变换得到,故本选项不符合题意;故选B.【点睛】本题主要考查平移变换的性质,掌握平移变换的性质,是解题的关键.3.B【分析】第二象限的点的横坐标小于0,纵坐标大于0,据此解答即可.【详解】解:根据第二象限的点的坐标的特征:横坐标符号为负,纵坐标符号为正,各选项中只有B (-2,3)符合,故选:B .【点睛】本题主要考查了平面直角坐标系中各象限的点的坐标的符号特点,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-). 4.A【分析】根据两直线的位置关系即可判断.【详解】①过直线外一点有且只有一条直线与已知直线平行,正确;②在同一平面内,过一点有且只有一条直线与已知直线垂直,正确;③图形平移的方向不一定是水平的,故错误;④两直线平行,内错角才相等,故错误.故①②正确,故选A.【点睛】此题主要考查两直线的位置关系,解题的关键是熟知两直线的位置关系.5.B【分析】先求∠DFE 的度数,再利用平角的定义计算求解即可.【详解】∵AB ∥CD ,∴∠DFE =∠A =65°,∴∠EFC =180°-∠DFE =115°,故选B .【点睛】本题考查了平行线的性质,平角的定义,熟练掌握平行线的性质是解题的关键. 6.B【分析】分别根据负整数指数幂的运算、立方根和算术平方根的定义及二次根式的乘法法则逐一计算可得.【详解】A 、3311228-==,此选项计算错误;B 12-,此选项计算正确;C 2=,此选项计算错误;D 、故选:B .【点睛】本题考查了负整数指数幂、立方根和算术平方根及二次根式的乘法,熟练掌握相关的运算法则是解题的关键.7.D【分析】因为AD ⊥AC ,所以∠CAD =90°.由AB //CD ,得∠BAC =180°﹣∠ACD ,进而求得∠BAD 的度数.【详解】解:∵AB //CD ,∴∠ACD +∠BAC =180°.∴∠CAB =180°﹣∠ACD =180°﹣53°=127°.又∵AD ⊥AC ,∴∠CAD =90°.∴∠BAD =∠CAB ﹣∠CAD =127°﹣90°=37°.故选:D .【点睛】本题考查了平行线的性质,垂线的定义,掌握平行线的性质是解题的关键. 8.C【分析】根据“伴随点”的定义依次求出各点,得出每4个点为一个循环组依次循环,用2021除以4,根据余数的情况确定点A2021的坐标即可.【详解】解:∵点的坐标为,∴点的伴随点的坐标为,即解析:C【分析】根据“伴随点”的定义依次求出各点,得出每4个点为一个循环组依次循环,用2021除以4,根据余数的情况确定点A 2021的坐标即可.【详解】解:∵点1A 的坐标为(3)1,, ∴点1A 的伴随点2A 的坐标为(11,31)-++,即(0,4) ,同理得:345(3,1),(0,2),(3,1),A A A --∴每4个点为一个循环组依次循环,∵202145051÷=,∴A2021的坐标与A的坐标相同,1即A2021的坐标为(3)1,,故选:C.【点睛】本题主要考查平面直角坐标系中探索点的变化规律问题,解题关键是读懂题目,理解“伴随点”的定义,并能够得出每4个点为一个循环组依次循环.二、填空题9.±1.01【分析】根据算术平方根的意义,把被开方数的小数点进行移动(每移动两位,结果移动一位),进行填空即可.【详解】解:∵,∴,故答案为±1.01.【点睛】本题考查了算术平方根的移解析:±1.01【分析】根据算术平方根的意义,把被开方数的小数点进行移动(每移动两位,结果移动一位),进行填空即可.【详解】解:∵10.1=,∴ 1.01=±,故答案为±1.01.【点睛】本题考查了算术平方根的移动规律的应用,能根据移动规律填空是解此题的关键.10.(2,﹣4)【分析】根据关于x轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数,可直接得到答案.【详解】点A(2,4)关于x轴对称的点的坐标是(2,﹣4),故答案为(2,﹣4).【点睛解析:(2,﹣4)【分析】根据关于x轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数,可直接得到答案.【详解】点A(2,4)关于x轴对称的点的坐标是(2,﹣4),故答案为(2,﹣4).【点睛】此题主要考查了关于x轴对称的点的坐标,关键是掌握点的坐标的变化规律.11.128°【解析】【分析】由点D为三边垂直平分线交点,得到点D为△ABC的外心,根据同弧所对的圆周角等于圆心角的一半即可得到结果【详解】∵D为△ABC三边垂直平分线交点,∴点D为△ABC的解析:128°【解析】【分析】由点D为三边垂直平分线交点,得到点D为△ABC的外心,根据同弧所对的圆周角等于圆心角的一半即可得到结果【详解】∵D为△ABC三边垂直平分线交点,∴点D为△ABC的外心,∴∠D=2∠A∵∠A=64°∴∠D=128°故∠D的度数为128°【点睛】此题考查线段垂直平分线的性质,解题关键在于根据同弧所对的圆周角等于圆心角的一半来解答12.33【分析】由题意易得∠BAD=90°,则有∠BAC=66°,然后根据角平分线的定义可得∠BAE=33°,进而根据平行线的性质可求解.【详解】解:∵AD⊥AB,∴∠BAD=90°,∵∠C解析:33【分析】由题意易得∠BAD=90°,则有∠BAC=66°,然后根据角平分线的定义可得∠BAE=33°,进而根据平行线的性质可求解.【详解】解:∵AD⊥AB,∴∠BAD=90°,∵∠CAD=24°,∴∠BAC=66°,∵AE平分∠BAC,∴∠BAE=∠CAE=33°,∵AB∥DE,∴∠E=∠BAE=33°,故答案为33.【点睛】本题主要考查平行线的性质、角平分线的定义及垂线的定义,熟练掌握平行线的性质、角平分线的定义及垂线的定义是解题的关键.13.68°【分析】利用平行线的性质以及翻折不变性即可得到∠5=∠DCF=∠4=∠3=∠1=56°,进而得出∠2=68°.【详解】解:如图,延长BC到点F,∵纸带对边互相平行,∠1=56°,解析:68°【分析】利用平行线的性质以及翻折不变性即可得到∠5=∠DCF=∠4=∠3=∠1=56°,进而得出∠2=68°.【详解】解:如图,延长BC到点F,∵纸带对边互相平行,∠1=56°,∴∠4=∠3=∠1=56°,由折叠可得,∠DCF=∠5,∵CD∥BE,∴∠DCF=∠4=56°,∴∠5=56°,∴∠2=180°-∠DCF-∠5=180°-56°-56°=68°,故答案为:68°.【点睛】本题考查平行线的判定和性质,解题的关键是熟练掌握:两直线平行,同位角相等;两直线平行,内错角相等.14.±2【分析】首先估计出a的值,进而得出M的值,再得出N的值,再利用平方根的定义得出答案.【详解】解:∵M是满足不等式-的所有整数a的和,∴M=-1+0+1+2=2,∵N是满足不等式x≤的解析:±2【分析】首先估计出a的值,进而得出M的值,再得出N的值,再利用平方根的定义得出答案.【详解】解:∵M36a<a的和,∴M=-1+0+1+2=2,∵N是满足不等式x372-∴N=2,∴M+N的平方根为:4±2.故答案为:±2.【点睛】此题主要考查了估计无理数的大小,得出M ,N 的值是解题关键.15.(-9, 2)【分析】点在第二象限内,那么其横坐标小于,纵坐标大于,进而根据所给的条件判断具体坐标.【详解】∵点在第二象限,∴,,又∵,,∴,,∴点的坐标是.【点睛】本题主要考查解析:(-9, 2)【分析】点在第二象限内,那么其横坐标小于0,纵坐标大于0,进而根据所给的条件判断具体坐标.【详解】∵点()P x y ,在第二象限,∴0x <,0y >,又∵9x =,24y =,∴9x =-,2y =,∴点P 的坐标是()92-,. 【点睛】本题主要考查了绝对值的性质和有理数的乘方以及平面直角坐标系中第二象限的点的坐标的符号特点,记住各象限内点的坐标的符号是解决的关键.16.(-19,8)【分析】求出A3,A6,A9的坐标,观察得出A3n 横坐标为1−3n ,可求出A18的坐标,从而可得结论.【详解】解:观察图形可知:A3(−2,1),A6(−5,2),A9(−8,解析:(-19,8)【分析】求出A3,A6,A9的坐标,观察得出A3n横坐标为1−3n,可求出A18的坐标,从而可得结论.【详解】解:观察图形可知:A3(−2,1),A6(−5,2),A9(−8,3),•••,∵−2=1−3×1,−5=1−3×2,−8=1−3×3,∴A3n横坐标为1−3n,∴A18横坐标为:1−3×6=−17,∴A18(−17,6),把A18向左平移2个单位,再向上平移2个单位得到A20,∴A20(−19,8).故答案为:(−19,8).【点睛】本题主要考查坐标系中点、线段的平移规律.在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.三、解答题17.(1)0.5;(2)4【分析】(1)根据立方根,算术平方根的定义对各项进行化简,最后相加减即可;(2)根据实数的混合运算法则进行求解.【详解】解:(1);(2).【点睛】本题考查实数解析:(1)0.5;(2)4【分析】(1)根据立方根,算术平方根的定义对各项进行化简,最后相加减即可;(2)根据实数的混合运算法则进行求解.【详解】解:(13242=-+-0.5=;(231=+4=.【点睛】本题考查实数的运算,熟练掌握立方根,算术平方根的定义是解题的关键.18.(1)21;(2)17【分析】(1)根据完全平方公式变形,得到a2+b2=(a+b )2﹣2ab ,即可求解; (1)根据完全平方公式变形,得到(a ﹣b )2=a2+b2-2ab ,即可求解.【详解】解析:(1)21;(2)17【分析】(1)根据完全平方公式变形,得到a 2+b 2=(a +b )2﹣2ab ,即可求解;(1)根据完全平方公式变形,得到(a ﹣b )2=a 2+b 2-2ab ,即可求解.【详解】解:(1)∵a +b =5,ab =2,∴a 2+b 2=(a +b )2﹣2ab =52﹣2×2=21;(2))∵a +b =5,ab =2,∴(a ﹣b )2=a 2+b 2-2ab =21-2×2=17.【点睛】本题主要考查了完全平方公式,熟练掌握()2222a b a ab b +=±+ 及其变形公式是解题的关键.19.同旁内角互补两直线平行;AB ∥CD ;同位角相等,两直线平行;两条直线都与第三条直线平行,则这两直线也互相平行;∠AFE ,∠EFC ;两直线平行,内错角相等;∠A ,∠C+∠AFC .【分析】根据同旁解析:同旁内角互补两直线平行;AB ∥CD ;同位角相等,两直线平行;两条直线都与第三条直线平行,则这两直线也互相平行;∠AFE ,∠EFC ;两直线平行,内错角相等;∠A ,∠C +∠AFC .【分析】根据同旁内角互补,两直线平行可得 CD ∥EF ,根据∠A=∠2利用同位角相等,两直线平行,AB ∥CD ,根据平行同一直线的两条直线平行可得AB ∥CD ∥EF 根据平行线的性质可得∠A =∠AFE ,∠C =∠EFC ,根据角的和可得 ∠AFE =∠EFC +∠AFC 即可.【详解】证明:∵ ∠1+∠AFE =180°∴ CD ∥EF (同旁内角互补,两直线平行),∵∠A=∠2 ,∴( AB ∥CD ) (同位角相等,两直线平行),∴ AB ∥CD ∥EF (两条直线都与第三条直线平行,则这两直线也互相平行)∴ ∠A = ∠AFE ,∠C = ∠EFC ,(两直线平行,内错角相等)∵ ∠AFE =∠EFC +∠AFC ,∴ ∠A = ∠C +∠AFC .故答案为同旁内角互补两直线平行;AB∥CD;同位角相等,两直线平行;两条直线都与第三条直线平行,则这两直线也互相平行;∠AFE,∠EFC;两直线平行,内错角相等;∠A,∠C+∠AFC.【点睛】本题考查平行线的性质与判定,角的和差,掌握平行线的性质与判定是解题关键.20.(1)坐标系见解析,B(0,1);(2)画图见解析,A′(2,1),B′(4,3),C′(5,1)【分析】(1)根据A,C两点的坐标确定平面直角坐标系即可,根据点B的位置写出点B的坐标即可.(解析:(1)坐标系见解析,B(0,1);(2)画图见解析,A′(2,1),B′(4,3),C′(5,1)【分析】(1)根据A,C两点的坐标确定平面直角坐标系即可,根据点B的位置写出点B的坐标即可.(2)分别作出A′,B′,C′即可解决问题.【详解】解:(1)平面直角坐标系如图所示:B(0,1).(2)△A′B′C′如图所示.A′(2,1),B′(4,3),C′(5,1).【点睛】本题考查作图-平移变换,平面直角坐标系等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.21.(1);(2)或【分析】(1)先判断在哪两个整数之间,再得出整数部分和小数部分.(2)由的值,由平方差公式,得出的有理化因式即为.【详解】解:(1),,;(2),或.【点睛】本解析:(1)2,3==2)33a b--【分析】(15(2)由b的值,由平方差公式,得出b的有理化因式即为c.【详解】解:(1)23<,∴253<,∴2,3==a b(2)3b=-∴c=33c=-【点睛】本题考查了估计无理数的大小和有理数乘以无理数,是基础知识要熟练掌握.22.(1);(2);(3)不能裁剪出,详见解析【分析】(1)根据所拼成的大正方形的面积为2即可求得大正方形的边长;(2)由圆和正方形的面积公式可分别求的圆的半径及正方形的边长,进而可求得圆和正方形解析:(12)<;(3)不能裁剪出,详见解析【分析】(1)根据所拼成的大正方形的面积为2即可求得大正方形的边长;(2)由圆和正方形的面积公式可分别求的圆的半径及正方形的边长,进而可求得圆和正方形的周长,利用作商法比较这两数大小即可;(3)利用方程思想求出长方形的长边,与正方形边长比较大小即可;【详解】解:(1)∵小正方形的边长为1cm,∴小正方形的面积为1cm2,∴两个小正方形的面积之和为2cm2,即所拼成的大正方形的面积为2 cm2,∴,(2)∵22=,rππ∴r=∴2=2C r π=圆设正方形的边长为a∵22a π=, ∴a∴=4C a =正∴1C C =<圆正故答案为:<;(3)解:不能裁剪出,理由如下:∵长方形纸片的长和宽之比为3:2,∴设长方形纸片的长为3x ,宽为2x ,则32300x x ⋅=,整理得:250x =,∴22(3)9950450x x ==⨯=,∵450>400,∴22(3)20x >,∴320x >,∴长方形纸片的长大于正方形的边长,∴不能裁出这样的长方形纸片.【点睛】本题通过圆和正方形的面积考查了对算术平方根的应用,主要是对学生无理数运算及比较大小进行了考查.23.(1)∠B ,EF ,CD ,∠D ;(2)①65°;②180°﹣【分析】(1)根据平行线的判定定理与性质定理解答即可;(2)①如图1,过点E 作EF ∥AB ,当点B 在点A 的左侧时,根据∠ABC =60°,解析:(1)∠B ,EF ,CD ,∠D ;(2)①65°;②180°﹣1122a β+ 【分析】(1)根据平行线的判定定理与性质定理解答即可;(2)①如图1,过点E 作EF ∥AB ,当点B 在点A 的左侧时,根据∠ABC =60°,∠ADC =70°,参考小亮思考问题的方法即可求∠BED 的度数;②如图2,过点E 作EF ∥AB ,当点B 在点A 的右侧时,∠ABC =α,∠ADC =β,参考小亮思考问题的方法即可求出∠BED 的度数.【详解】解:(1)过点E 作EF ∥AB ,则有∠BEF =∠B ,∵AB ∥CD ,∴EF ∥CD ,∴∠FED =∠D ,∴∠BED =∠BEF +∠FED =∠B +∠D ;故答案为:∠B ;EF ;CD ;∠D ;(2)①如图1,过点E 作EF ∥AB ,有∠BEF =∠EBA .∵AB ∥CD ,∴EF ∥CD .∴∠FED =∠EDC .∴∠BEF +∠FED =∠EBA +∠EDC .即∠BED =∠EBA +∠EDC ,∵BE 平分∠ABC ,DE 平分∠ADC ,∴∠EBA =12∠ABC =30°,∠EDC =12∠ADC =35°,∴∠BED =∠EBA +∠EDC =65°.答:∠BED 的度数为65°;②如图2,过点E 作EF ∥AB ,有∠BEF +∠EBA =180°.∴∠BEF =180°﹣∠EBA ,∵AB ∥CD , ∴EF ∥CD . ∴∠FED =∠EDC . ∴∠BEF +∠FED =180°﹣∠EBA +∠EDC .即∠BED =180°﹣∠EBA +∠EDC ,∵BE 平分∠ABC ,DE 平分∠ADC ,∴∠EBA =12∠ABC =12α,∠EDC =12∠ADC =12β, ∴∠BED =180°﹣∠EBA +∠EDC =180°﹣1122a β+. 答:∠BED 的度数为180°﹣1122a β+.【点睛】本题考查了平行线的判定与性质,解决本题的关键是熟练掌握平行线的判定与性质.。
完整版(完整版)七年级数学下册期中试卷及答案 - 百度文库一、选择题1.116的平方根是() A .-14B .14C .14±D .12± 2.在以下现象中,属于平移的是( )①在荡秋千的小朋友的运动;②坐观光电梯上升的过程;③钟面上秒针的运动;④生产过程中传送带上的电视机的移动过程.A .①②B .②④C .②③D .③④ 3.平面直角坐标系中,点M (1,﹣5)在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 4.下列命题是假命题的是( )A .两个角的和等于平角时,这两个角互为补角B .内错角相等C .两条平行线被第三条直线所截,内错角相等D .对顶角相等5.把一张有一组对边平行的纸条,按如图所示的方式折叠,若∠EFB =35°,则下列结论错误的是( )A .∠C 'EF =35°B .∠AEC =120° C .∠BGE =70°D .∠BFD =110° 6.下列计算正确的是( )A .38-=±2B .(﹣3)0=0C .(﹣2a 2b )2=4a 4b 2D .2a 3÷(﹣2a )=﹣a 37.如图,直线//a b ,三角板ABC 的直角顶点C 在直线b 上,126∠=︒,则2∠=( )A .26°B .54°C .64°D .66°8.在平面直角坐标系中,对于点P (x ,y ),我们把点P ′(y ﹣1,﹣x ﹣1)叫做点P 的友好点,已知点A 1的友好点为点A 2,点A 2的友好点为点A 3,点A 3的友好点为点A 4,⋯⋯以此类推,当点A 1的坐标为(2,1)时,点A 2021的坐为( )A .(2,1)B .(0,﹣3)C .(﹣4,﹣1)D .(﹣2,3)二、填空题9.x x ,则x 的值为______.10.点()3,2A -关于y 轴对称的点的坐标是______.11.如图,直线AB 与直线CD 交于点O ,OE 、OC 是AOC ∠与∠BOE 的角平分线,则AOD ∠=______度.12.如图,现将一块含有60°角的三角板的顶点放在直尺的一边上,若∠1=∠2,那么∠1的度数为__________.13.如图,沿折痕EF 折叠长方形ABCD ,使C ,D 分别落在同一平面内的C ',D 处,若155∠=︒,则2∠的大小是_______︒.14.规定一种关于a 、b 的新运算:2*2a b b ab a =+-+,那么()3*2-=______. 15.在平面直角坐标系中,若点()3,1P a a -+在第二象限,则a 的取值范围为_______. 16.如图,所有正方形的中心均在坐标原点,且各边与x 轴或y 轴平行,从内到外,它们的边长依次为2,4,6,8,…顶点依次用A 1,A 2,A 3,A 4…表示,则顶点A 2021的坐标是________.三、解答题17.(1)()()2249-⨯-- (2)331632701464---+- 18.已知a +b =5,ab =2,求下列各式的值.(1)a 2+b 2;(2)(a ﹣b )2.19.如图//AB DE .试问B 、E ∠、BCE ∠有什么关系?解:B E BCE ∠+∠=∠,理由如下:过点C 作//CF AB则B ∠=______( )又∵//AB DE ,//CF AB∴____________( )∴E ∠=____________( )∴12B E ∠+∠=∠+∠( )即B E ∠+∠=____________20.如图,每个小正方形的边长为1,利用网格点画图和无刻度的直尺画图(保留画图痕迹):(I )在方格纸内将三角形ABC 经过一次平移后得到三角形A B C ''',图中标出了点B 的对应点B ',画出三角形A B C ''';(2)过点A 画线段AD 使//AD BC 且AD BC =;(3)图中AD 与C B ''的关系是______;(4)点E 在线段AD 上,4CE =,点H 是直线CE 上一动点线段BH 的最小值为______. 21.阅读下面的文字,解答问题:大家知道2是无理数,而无理数是无限不循环小数,因此2的小数部分我们不可能全部地写出来,于是小明用2﹣1来表示2的小数部分,因为2的整数部分是1,将这个数减去其整数部分,差就是小数部分又例如:因为4<7<9,即2<7<3,所以7的整数部分为2,小数部分为(7﹣2)请解答:(1)10的整数部分是 ,小数部分是 ;(2)如果5的小数部分为a ,13的整数部分为b ,求a +b ﹣5的值.22.工人师傅准备从一块面积为36平方分米的正方形工料上裁剪出一块面积为24平方分米的长方形的工件.(1)求正方形工料的边长;(2)若要求裁下的长方形的长宽的比为4:3,问这块正方形工料是否满足需要?(参考数据:2 1.414≈,3 1.732≈)23.如图,已知直线//AB 射线CD ,100CEB ∠=︒.P 是射线EB 上一动点,过点P 作PQ //EC 交射线CD 于点Q ,连接CP .作PCF PCQ ∠=∠,交直线AB 于点F ,CG 平分ECF ∠.(1)若点P ,F ,G 都在点E 的右侧,求PCG ∠的度数;(2)若点P ,F ,G 都在点E 的右侧,30EGC ECG ∠-∠=︒,求CPQ ∠的度数; (3)在点P 的运动过程中,是否存在这样的情形,使:4:3EGC EFC ∠∠=?若存在,求出CPQ ∠的度数;若不存在,请说明理由.【参考答案】一、选择题1.C解析:C【分析】根据平方根的定义(如果一个数的平方等于a ,那么这个数叫做a 的平方根)即可得.【详解】解:因为211416⎛⎫±= ⎪⎝⎭,所以116的平方根是14,故选:C.【点睛】本题考查了平方根,熟练掌握平方根的定义是解题关键.2.B【分析】平移是指在平面内,将一个图形上的所有点都按照某个方向作相同距离的移动,这样的图形运动叫作图形的平移运动,简称平移.平移不改变图形的形状和大小.平移可以不是水平的.据此解答.【详解】解析:B【分析】平移是指在平面内,将一个图形上的所有点都按照某个方向作相同距离的移动,这样的图形运动叫作图形的平移运动,简称平移.平移不改变图形的形状和大小.平移可以不是水平的.据此解答.【详解】①在荡秋千的小朋友的运动,不是平移;②坐观光电梯上升的过程,是平移;③钟面上秒针的运动,不是平移;④生产过程中传送带上的电视机的移动过程.是平移;故选:B.【点睛】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转而误选.3.D【分析】根据各个象限点坐标的符号特点进行判断即可得到答案.【详解】解:∵1>0,-5<0,∴点M(1,-5)在第四象限.故选D.【点睛】本题考查了点的坐标,记住各象限内点的坐标的符号特征是解决问题的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).4.B【分析】根据内错角、对顶角、补角的定义一一判断即可.解:A、两个角的和等于平角时,这两个角互为补角,为真命题;B、两直线平行,内错角相等,故错误,为假命题;C、两条平行线被第三条直线所截,内错角相等,为真命题;D、对顶角相等,为真命题;故选:B.【点睛】本题考查命题与定理、内错角、对顶角、补角的定义等知识,解题的关键是熟练掌握基本概念,属于基础题.5.B【分析】根据平行线的性质即可求解.【详解】A.∵AE∥BF,∴∠C'EF=∠EFB=35°(两直线平行,内错角相等),故A选项不符合题意;B.∵纸条按如图所示的方式析叠,∴∠FEG=∠C'EF=35°,∴∠AEC=180°﹣∠FEG﹣∠C'EF=180°﹣35°﹣35°=110°,故B选项符合题意;C.∵∠BGE=∠FEG+∠EFB=35°+35°=70°,故C选项不符合题意;D.∵AE∥BF,∴∠EGF=∠AEC=110°(两直线平行,内错角相等),∵EC∥FD,∴∠BFD=∠EGF=110°(两直线平行,内错角相等),故D选项不符合题意;故选:B.【点睛】本题考查了平行线的性质,解题的关键是根据平行线的性质找出图中角度之间的关系.6.C【分析】根据整式的运算法则,立方根的概念,零指数幂的意义即可求出答案.【详解】A.原式=﹣2,故A错误;B.原式=1,故B错误;C、(﹣2a2b)2=4a4b2,计算正确;D、原式=﹣a2,故D错误;故选C.本题考查学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.7.C【分析】根据平角等于180°列式计算得到∠3,根据两直线平行,同位角相等可得∠3=∠2.【详解】解:如图,∵∠1=26°,∠ACB=90°,∴∠3=90°-∠1=64°,∵直线a∥b,∴∠2=∠3=64°,故选:C.【点睛】本题考查了平行线的性质,平角的定义,熟记性质并准确识图是解题的关键.8.A【分析】根据友好点的定义及点A1的坐标为(2,1),顺次写出几个友好点的坐标,可发现循环规律,据此可解.【详解】解:观察,发现规律:A1(2,1),A2(0,-3),A3(-4,-1),A解析:A【分析】根据友好点的定义及点A1的坐标为(2,1),顺次写出几个友好点的坐标,可发现循环规律,据此可解.【详解】解:观察,发现规律:A1(2,1),A2(0,-3),A3(-4,-1),A4(-2,3),A5(2,1),…,∴A4n+1(2,1),A4n+2(0,-3),A4n+3(-4,-1),A4n+4(-2,3)(n为自然数).∵2021=505×4+1,∴点A2021的坐标为(2,1).故选:A.【点睛】本题考查了规律型的点的坐标,从已知条件得出循环规律:每4个点为一个循环是解题的二、填空题9.0或1【分析】根据算术平方根的定义(一般地说,若一个非负数x 的平方等于a ,即x²=a ,则这个数x 叫做a 的算术平方根)求解.【详解】∵02=0,12=1,∴0的算术平方根为0,1的算术平方根解析:0或1【分析】根据算术平方根的定义(一般地说,若一个非负数x 的平方等于a ,即x²=a ,则这个数x 叫做a 的算术平方根)求解.【详解】∵02=0,12=1,∴0=0,1=1.故答案是:0或1.【点睛】考查了算术平方根的定义,解题关键是利用算术平方根的定义(一般地说,若一个非负数x 的平方等于a ,即x²=a ,则这个数x 叫做a 的算术平方根)求解.10.【分析】根据点坐标关于y 轴对称的变换规律即可得.【详解】点坐标关于y 轴对称的变换规律:横坐标互为相反数,纵坐标不变, 则点关于y 轴对称的点的坐标是,故答案为:.【点睛】本题考查了点坐标解析:()3,2--【分析】根据点坐标关于y 轴对称的变换规律即可得.【详解】点坐标关于y 轴对称的变换规律:横坐标互为相反数,纵坐标不变,则点()3,2A -关于y 轴对称的点的坐标是()3,2--,故答案为:()3,2--.【点睛】本题考查了点坐标规律探索,熟练掌握点坐标关于y轴对称的变换规律是解题关键.11.60【分析】由角平分线的定义可求出∠AOE=∠EOC=∠COB=60°,再根据对顶角相等即可求出∠AOD的度数.【详解】∵OE平分∠AOC,∴∠AOE=∠EOC,∵OC平分∠BOE,∴解析:60【分析】由角平分线的定义可求出∠AOE=∠EOC=∠COB=60°,再根据对顶角相等即可求出∠AOD的度数.【详解】∵OE平分∠AOC,∴∠AOE=∠EOC,∵OC平分∠BOE,∴∠EOC=∠COB∴∠AOE=∠EOC=∠COB,∵∠AOE+∠EOC+∠COB=180︒∴∠COB=60°,∴∠AOD=∠COB=60°,故答案为:60【点睛】本题主要考查了角平分线的应用以及对顶角相等的性质,熟练运用角平分线的定义是解题的关键.12.【分析】根据题意知:,得出,从而得出,从而求算∠1.【详解】解:如图:∵∴又∵∠1=∠2,∴,解得:故答案为:【点睛】本题考查平行线的性质,掌握两直线平行,同位角相等是解析:60︒【分析】根据题意知://AB CD ,得出2GFD ∠=∠,从而得出21+60=180∠︒︒,从而求算∠1.【详解】解:如图:∵//AB CD∴2GFD ∠=∠又∵∠1=∠2,60HFG ∠=︒∴21+60=180∠︒︒,解得:1=60︒∠故答案为:60︒【点睛】本题考查平行线的性质,掌握两直线平行,同位角相等是解题关键.13.70【分析】由题意易图可得,由折叠的性质可得,然后问题可求解.【详解】解:由长方形可得:,∵,∴,由折叠可得,∴;故答案为70.【点睛】本题主要考查平行线的性质及折叠的性质,熟解析:70【分析】由题意易图可得155EFC ∠=∠=︒,由折叠的性质可得55EFC EFC '∠=∠=︒,然后问题可求解.【详解】解:由长方形ABCD 可得://AD BC ,∵155∠=︒,∴155EFC ∠=∠=︒,由折叠可得55EFC EFC '∠=∠=︒,∴218070EFC EFC '∠=︒-∠-∠=︒;故答案为70.【点睛】本题主要考查平行线的性质及折叠的性质,熟练掌握平行线的性质及折叠的性质是解题的关键.14.【分析】根据新定义,将3与-2代入原式求解即可.【详解】.故答案为:.【点睛】本题考查了新定义运算,把新定义运算转换成有理数混合运算是解题关键. 解析:3-【分析】根据新定义,将3与-2代入原式求解即可.【详解】()()()23*223232-=-+⨯--+461=-- 3=-.故答案为:3-.【点睛】本题考查了新定义运算,把新定义运算转换成有理数混合运算是解题关键.15.-1<a <3【分析】根据第二象限内点的横坐标是负数,纵坐标是正数列出不等式组,然后求解即可.【详解】解:∵点P (a-3,a+1)在第二象限,∴,解不等式①得,a <3,解不等式②得,a >解析:-1<a <3【分析】根据第二象限内点的横坐标是负数,纵坐标是正数列出不等式组,然后求解即可.解:∵点P (a-3,a+1)在第二象限,∴3010a a -⎧⎨+⎩<①>②, 解不等式①得,a <3,解不等式②得,a >-1,∴-1<a <3.故答案为:-1<a <3.【点睛】本题考查了各象限内点的坐标的符号特征以及解不等式组,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).16.(-506,-506)【分析】根据正方形的性质找出部分An 点的坐标,根据坐标的变化找出变化规律“A4n+1(-n-1,-n-1),A4n+2(-n-1,n+1),A4n+3(n+1,n+1),A解析:(-506,-506)【分析】根据正方形的性质找出部分A n 点的坐标,根据坐标的变化找出变化规律“A 4n +1(-n -1,-n -1),A 4n +2(-n -1,n +1),A 4n +3(n +1,n +1),A 4n +4(n +1,-n -1)(n 为自然数)”,依此即可得出结论.【详解】解:观察发现:A 1(-1,-1),A 2(-1,1),A 3(1,1),A 4(1,-1),A 5(-2,-2),A 6(-2,2),A 7(2,2),A 8(2,-2),A 9(-3,-3),…,∴A 4n +1(-n -1,-n -1),A 4n +2(-n -1,n +1),A 4n +3(n +1,n +1),A 4n +4(n +1,-n -1)(n 为自然数),∵2021=505×4+1,∴A 2021(-506,-506),故答案为:(-506,-506).【点睛】本题考查了规律型:点的坐标,解题的关键是找出变化规律“A 4n +1(-n -1,-n -1),A 4n +2(-n -1,n +1),A 4n +3(n +1,n +1),A 4n +4(n +1,-n -1)(n 为自然数),”解决该题型题目时,根据点的坐标的变化找出变化规律是关键.三、解答题17.(1);(2).【分析】(1)先求算术平方根,再计算乘法,后加减即可得到答案;(2)先求立方根,算术平方根,再计算加减即可得到答案.解:(1)(2)【点睛】解析:(1)11-;(2)134 -.【分析】(1)先求算术平方根,再计算乘法,后加减即可得到答案;(2)先求立方根,算术平方根,再计算加减即可得到答案.【详解】解:(1)()2-()243=-⨯-8311.=--=-(21302=---+7124=-+13.4=-【点睛】本题考查的是实数的加减运算,考查了求一个数的算术平方根,立方根,掌握以上知识是解题的关键.18.(1)21;(2)17【分析】(1)根据完全平方公式变形,得到a2+b2=(a+b)2﹣2ab,即可求解;(1)根据完全平方公式变形,得到(a﹣b)2=a2+b2-2ab,即可求解.【详解】解析:(1)21;(2)17【分析】(1)根据完全平方公式变形,得到a2+b2=(a+b)2﹣2ab,即可求解;(1)根据完全平方公式变形,得到(a﹣b)2=a2+b2-2ab,即可求解.解:(1)∵a +b =5,ab =2,∴a 2+b 2=(a +b )2﹣2ab =52﹣2×2=21;(2))∵a +b =5,ab =2,∴(a ﹣b )2=a 2+b 2-2ab =21-2×2=17.【点睛】本题主要考查了完全平方公式,熟练掌握()2222a b a ab b +=±+ 及其变形公式是解题的关键.19.∠1;两直线平行,内错角相等;DE ∥CF ;平行于同一条直线的两直线平行;∠2;两直线平行,内错角相等;等量代换;∠BCE【分析】过点作,则∠1,同理可以得到∠2,由此即可求解.【详解】解:,解析:∠1;两直线平行,内错角相等;DE ∥CF ;平行于同一条直线的两直线平行;∠2;两直线平行,内错角相等;等量代换;∠BCE【分析】过点C 作//CF AB ,则B ∠=∠1,同理可以得到E ∠=∠2,由此即可求解.【详解】解:B E BCE ∠+∠=∠,理由如下:过点C 作//CF AB ,则B ∠=∠1(两直线平行,内错角相等),又∵//AB DE ,//CF AB ,∴DE ∥CF (平行于同一条直线的两直线平行),∴E ∠=∠2(两直线平行,内错角相等)∴12B E ∠+∠=∠+∠(等量代换)即B E ∠+∠=∠BCE ,故答案为:∠1;两直线平行,内错角相等;DE ∥CF ;平行于同一条直线的两直线平行;∠2;两直线平行,内错角相等;等量代换;∠BCE .【点睛】本题主要考查了平行线的性质与判定,解题的关键在于能够熟练掌握相关知识进行求解. 20.(1)见解析;(2)见解析;(3),AD ∥;(4)(1)根据平移的性质,按要求作图即可;(2)根据过点A 画线段AD ∥BC ,AD=BC ,即可;(3)由平移的性质可得,∥BC ,,从而可以解析:(1)见解析;(2)见解析;(3)AD B C ''=,AD ∥B C '';(4)154【分析】(1)根据平移的性质,按要求作图即可;(2)根据过点A 画线段AD ∥BC ,AD =BC ,即可;(3)由平移的性质可得B C BC ''=,B C ''∥BC ,,从而可以得到AD B C ''=,AD ∥B C ''; (4)根据点到直线的距离垂线段最短,可知当BH ⊥CE 时BH 最短,由此利用三角形面积公式求解即可.【详解】解:(1)如图所示,即为所求:(2)如图所示,即为所求:(3)平移的性质可得B C BC ''= ,B C ''∥BC ,由AD =BC ,AD ∥BC ,从而可以得到AD B C ''=,AD ∥B C ''; 故答案为:AD B C ''=,AD ∥B C '';(4)根据点到直线的距离垂线段最短,可知当BH ⊥CE 时BH 最短,如图所示:∵AD ∥BC ,∴1115==3134=222BCE ABC S S ⨯⨯+⨯⨯△△ , ∴115=22CE BH , ∴154BH =,∴点H是直线CE上一动点线段BH的最小值为154.故答案为:154.【点睛】本题主要考查了平移作图,点到直线的距离垂线段最短,三角形面积,解题的关键在于能够熟练掌握相关知识进行求解.21.(1)3,﹣3;(2)1.【分析】(1)根据解答即可;(2)根据2<<3得出a,根据3<<4得出b,再把a,b的值代入计算即可.【详解】(1)∵,∴的整数部分是3,小数部分是﹣3,解析:(1)3,103;(2)1.【分析】(1)根据3104解答即可;(2)根据253得出a,根据3134得出b,再把a,b的值代入计算即可.【详解】(1)∵3104<<,∴10310﹣3,故答案为:310﹣3;(2)∵253,a52,∵3134,∴b=3,a+b552+351.【点睛】此题考查无理数的估算,正确掌握数的平方是解题的关键.22.(1)6分米;(2)满足.【分析】(1)由正方形面积可知,求出的值即可;(2)设长方形的长宽分别为4a 分米、3a 分米,根据面积得出方程,求出,求出长方形的长和宽和6比较即可.【详解】解:(解析:(1)6分米;(2)满足.【分析】(1(2)设长方形的长宽分别为4a 分米、3a 分米,根据面积得出方程,求出a ,求出长方形的长和宽和6比较即可.【详解】解:(16分米;(2)设长方形的长为4a 分米,则宽为3a 分米.则4324a a ⋅=,解得:a =∴长为4 5.6566a ≈<,宽为3 4.242 6.a ≈<∴满足要求.【点睛】本题主要考查了算术平方根及实数大小比较,用了转化思想,即把实际问题转化成数学问题.23.(1)40°;(2)65°;(3)存在,56°或20°【分析】(1)依据平行线的性质以及角平分线的定义,即可得到∠PCG 的度数; (2)依据平行线的性质以及角平分线的定义,即可得到∠ECG=∠G 解析:(1)40°;(2)65°;(3)存在,56°或20°【分析】(1)依据平行线的性质以及角平分线的定义,即可得到∠PCG 的度数;(2)依据平行线的性质以及角平分线的定义,即可得到∠ECG =∠GCF =25°,再根据PQ ∥CE ,即可得出∠CPQ =∠ECP =65°;(3)设∠EGC =4x ,∠EFC =3x ,则∠GCF =4x -3x =x ,分两种情况讨论:①当点G 、F 在点E 的右侧时,②当点G 、F 在点E 的左侧时,依据等量关系列方程求解即可.【详解】解:(1)∵∠CEB =100°,AB ∥CD ,∴∠ECQ =80°,∵∠PCF =∠PCQ ,CG 平分∠ECF ,∴∠PCG =∠PCF +∠FCG =12∠QCF +12∠FCE =12∠ECQ =40°;(2)∵AB ∥CD∴∠QCG =∠EGC ,∠QCG +∠ECG =∠ECQ =80°,∴∠EGC+∠ECG=80°,又∵∠EGC-∠ECG=30°,∴∠EGC=55°,∠ECG=25°,∴∠ECG=∠GCF=25°,∠PCF=∠PCQ=12(80°-50°)=15°,∵PQ∥CE,∴∠CPQ=∠ECP=65°;(3)设∠EGC=4x,∠EFC=3x,则∠GCF=∠FCD=4x-3x=x,①当点G、F在点E的右侧时,则∠ECG=x,∠PCF=∠PCD=32 x,∵∠ECD=80°,∴x+x+32x+32x=80°,解得x=16°,∴∠CPQ=∠ECP=x+x+32x=56°;②当点G、F在点E的左侧时,则∠ECG=∠GCF=x,∵∠CGF=180°-4x,∠GCQ=80°+x,∴180°-4x=80°+x,解得x=20°,∴∠FCQ=∠ECF+∠ECQ=40°+80°=120°,∴∠PCQ=12∠FCQ=60°,∴∠CPQ=∠ECP=80°-60°=20°.【点睛】本题主要考查了平行线的性质,解题时注意:两直线平行,同旁内角互补;两直线平行,内错角相等.。
答案第1页,共16页………○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________………○…………内…………○…………装…………○…………订…………○…………线…………○…………绝密★启用前七年级下册数学期中测试卷六(附解析)注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I 卷(选择题)一、单选题1.下列各组数的大小比较正确的是()A B C .5.3D . 3.1- >﹣3.12.在数学课上,同学们在练习过点B 作线段AC 所在直线的垂线段时,有一部分同学画出下列四种图形,正确的是()A .B .C .D .33=,则2(3)x +的值是()A .81B .27C .9D .34.如图,AB //CD ,AD //BC ,∠A :∠B =2:3,则∠CDE =()A .60ºB .65ºC .72ºD .80º5.如图,两个直角三角形重叠在一起,将ABC 沿AB 方向平移2cm 得到DEF ,2cm CH =,4cm EF =,下列结论:①//BH EF ;②AD BE =;③BD CH =:④C BHD ∠=∠;⑤阴影部分的面积为26cm .其中正确的是()答案第2页,共16页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………A .①②③④⑤B .②③④⑤C .①②③⑤D .①②④⑤6.从1-,1,2,4四个数中任取两个不同的数(记作,k k a b )构成一个数组{},K k k M a b =(其中1,2,k S = ,且将{},K k k M a b =与{},K k k M b a =视为同一个数组),若满足:对于任意的{},i i i M a b =和{}(),,1,1i j j M a b i j i S j S =≠≤≤≤≤都有i i j j a b a b +≠+,则S 的最大值()A .10B .6C .5D .47.定义:平面内的直线l 1与l 2相交于点O ,对于该平面内任意一点M ,点M 到直线l 1、l 2的距离分别为a 、b ,则称有序非负实数对(a ,b )是点M 的“距离坐标”,根据上述定义,距离坐标为(2,1)的点的个数有()A .2个B .3个C .4个D .5个8.如图所示,A 1(1,A 2(32,A 3(2,A 4(3,0).作折线A 1A 2A 3A 4关于点A 4的中心对称图形,再做出新的折线关于与x 轴的下一个交点的中心对称图形……以此类推,得到一个大的折线.现有一动点P 从原点O 出发,沿着折线一每秒1个单位的速度移动,设运动时间为t .当t =2020时,点P 的坐标为()A .(1010B .(2020,2)C .(2016,0)D .(1010,2)答案第3页,共16页………○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________………○…………内…………○…………装…………○…………订…………○…………线…………○…………第II 卷(非选择题)二、填空题1.如图,Rt △ABC 中,∠BAC=90°,AB=AC=2,以AB 为直径的圆交BC 于点D ,则阴影部分面积为____________.2.根据题意可知,下列判断中所依据的命题或定理是________.如图,若∠1=∠4,则AB ∥CD ;若∠2=∠3,则AD ∥BC .3.若等式(x 3﹣2)0=1成立,则x 的取值范围是_____.4.定义[x]为不大于x 的最大整数,如[2]=2,=1,[4.1]=4,则满足=70的n 共有_____个(n 为正整数)5.边长为1的正ABO 的顶点O 在原点,点B 在x 轴负半轴上,正方形OEDC 边长为2,点C 在y 轴正半轴上,动点P 从点A 出发,以每秒1个单位的速度沿着ABO 的边按逆时针方向运动,动点Q 从D 点出发,以每秒1个单位的速度沿着正方形OEDC 的边也按逆时针方向运动,点Q 比点P 迟1秒出发,则点P 运动2016秒后,则2PQ 的值是___________.6.观察下列各式:(a -1)(a +1)=a 2-1,(a -1)(a 2+a +1)=a 3-1,(a -1)(a 3+a 2+a +1)=a 4-1…根据前面各式的规律计算:(a -1)(a 4+a 3+a 2+a +1)=_____;22012+22011+…+22+2+1=_____.7.比较大小:__.(填“>”,“<”或“=”)答案第4页,共16页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………8.若四个有理数a b c d ,,,同时满足:a b >,a b c d +=+,a b c d -<-,则这四个数从小到大的顺序是_______.三、解答题1.如图,已知单位长度为1的方格中有个三角形ABC .(1)请画出三角形ABC 向上平移3格,再向右平移2格得到△A’B’C’;(2)请以点A 为坐标原点建立平面直角坐标系,然后写出点B ,点B’的坐标:B (),B’().2.观察下列两个等式:2﹣13=2×13+1,5﹣23=5×23+1,给出定义如下我们称使等式a ﹣b =ab +1成立的一对有理数“a ,b ”为共生有理数对”,记为(a ,b )(1)通过计算判断数对“﹣2,1”,“4,35”是不是“共生有理数对”;(2)若(6,a )是“共生有理数对”,求a 的值;(3)若(m ,n )是“共生有理数对”,则“﹣n ,﹣m ”“共生有理数对”(填“是”或“不是”),并说明理由;(4)若(m ,n )是“共生有理数对”(其中n ≠1),直接用含n 的代数式表示m .3.如图,在平面直角坐标系中,△AOB 的三个顶点的坐标分别是A (-4,3),B (-6,0),O 是原点.点M 是OB 边上异于O ,B 的一动点,过点M 作MN //AB ,点P 是AB 边上的任意点,连接AM ,PM ,PN ,BN .设点(,0)M x .(1)求出OA 所在直线的解析式,并求出点M 的坐标为(-1,0)时,点N 的坐标.答案第5页,共16页………○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________………○…………内…………○…………装…………○…………订…………○…………线…………○…………(2)若S PMN S ANB =23时,求此时点N 的坐标.4.观察下列等式:12-12-121212-1==++()()13-23-232323-2==++()()14-34-343434-3++()()回答下列问题:(1120202019+(无需化为最简二次根式)(21n 1n ++(n 为正整数)(3)利用上面所揭示的规律计算(无需化为最简二次根式):111111223342018201920192020+技+++++++5.对于一个实数m (m ≥0),规定其整数部分为a ,小数部分为b ,如:当m =3时,则a =3,b =0;当m =4.5时,则a =4,b =0.5.(1)当m=π时,b =;当m 11时,a =;(2)当m =97时,求a -b 的值;(3)若a -b 301 ,则m =.答案第6页,共16页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………参考答案1.A 【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【详解】,∴选项A 符合题意;,∴选项B 不符合题意;∵5.3∴选项C 不符合题意;∵ 3.1- <﹣3.1,∴选项D 不符合题意.故选A .2.A 【分析】满足两个条件:①经过点B .②垂直AC ;由此即可判断.【详解】解:根据垂线段的定义可知,图①线段BE ,是点B 作线段AC 所在直线的垂线段,故选A .3.A 【解析】分析:根据乘方运算,可得被开方数,再乘方运算,可得答案.详解:,则,答案第7页,共16页………○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________………○…………内…………○…………装…………○…………订…………○…………线…………○…………故选A..4.C 【解析】∵AD //BC ,∴∠A+∠B=180º,又∵∠A :∠B =2:3,∴∠A=72º,又∵AB //CD ,∴∠CDE=∠A=70º.故选C.5.A 【分析】根据平移的性质可直接判断①②③,根据平行线的性质可判断④,阴影部分的面积=S 梯形BEFH ,于是可判断⑤,进而可得答案.【详解】解:因为将ABC 沿AB 方向平移2cm 得到DEF ,所以//BH EF ,AD BE =,DF ∥AC ,故①②正确;所以C BHD ∠=∠,故④正确;∵AC ∥DF ,点H 是BC 的中点,则有点D 为DE 的中点,则BD=AD=CH=2cm 故③正确;因为2cm CH =,4cm EF BC ==,所以BH=2cm ,又因为BE=2cm ,所以阴影部分的面积=S △ABC -S △DBH =S △DEF -S △DBH =S 梯形BEFH =()12422⨯+⨯=26cm ,故⑤正确;综上,正确的结论是①②③④⑤.故选:A .6.C答案第8页,共16页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………【分析】找出i i a b +的值,结合对于任意的{},i i i M a b =和{},1()1,,j i j j i S j S M a b i ≠≤≤≤≤=都有i i j j a b a b +≠+,即可得出S 的最大值.【详解】∵110-+=,121-+=,143-+=,123+=,145+=,246+=,∴i i a b +共有5个不同的值,又∵对于任意的{},i i i M a b =和{},1()1,,j i j j i S j S M a b i ≠≤≤≤≤=都有i i j j a b a b +≠+,∴S 的最大值为5,故选:C .7.C 【分析】首先根据题意,可得距离坐标为(2,1)的点是到l 1的距离为2,到l 2的距离为1的点;然后根据到l 1的距离为2的点是两条平行直线,到l 2的距离为1的点也是两条平行直线,可得所求的点是以上两组直线的交点,一共有4个,据此解答即可.【详解】解:如图1,,到l 1的距离为2的点是两条平行直线l 3、l 4,到l 2的距离为1的点也是两条平行直线l 5、l 6,∵两组直线的交点一共有4个:A 、B 、C 、D ,∴距离坐标为(2,1)的点的个数有4个.故选C .8.A 【分析】把点P 从O 运动到A 8作为一个循环,寻找规律解决问题即可.答案第9页,共16页………○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________………○…………内…………○…………装…………○…………订…………○…………线…………○…………【详解】由题意OA 1=A 3A 4=A 4A 5=A 7A 8=2,A 1A 2=A 2A 3=A 5A 6=A 6A 7=1,∴点P 从O 运动到A 8的路程=2+1+1+2+2+1+1+2=12,∴t =12,把点P 从O 运动到A 8作为一个循环,∵2020÷12=168余数为4,∴把点A 3向右平移168×3个单位,可得t =2020时,点P 的坐标,∵A 3(2,168×6=1008,1008+2=1010,∴t =2020时,点P 的坐标(1010,故选:A .二、填空题1.2π﹣1【分析】图中S 阴影=S 半圆﹣S △ABD .根据等腰直角△ABC 、圆周角定理可以推知S △ABD =12S △ABC =1.再求图中的半圆的面积即可解题.【详解】解:如图,∵Rt △ABC 中,∠BAC=90°,AB=AC=2,∴,S △ABC =12AC×AB=12×2×2=2.又∵AB 是圆O 的直径,∴∠ADB=90°,即AD ⊥BC ,∴AD 是斜边BC 上的中线,∴S △ABD =12S △ABC =1.∴S 阴影=S 半圆﹣S △ABD =12π×12﹣1=2π﹣1.故答案是:2π﹣1.2.内错角相等,两直线平行【分析】答案第10页,共16页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………根据题意利用平行线的判定方法进而得出答案.【详解】解:∵∠1=∠4,则AB ∥CD ,∠2=∠3,则AD ∥BC ,∴判断所依据的定理是:内错角相等,两直线平行.故答案为:内错角相等,两直线平行.3.【详解】根据零次幂的性质01a =(a≠0),可知x 3﹣2≠0,解得x ,所以x 的取值范围为x .故答案为x .4.141【分析】根据已知条件可得出7071≤<,平方即可得出n 的取值范围,再求n 得个数即可.【详解】解:由已知条件得出:7071≤<∴49005041n ≤<∴则满足]=70的n 共有504049001141-+=个.故答案为:141.5【解析】如图,作AH ⊥DE 于H ,AN ⊥BO 于N ,连接AM .∵2016÷3=672,2016÷8=252,∵点Q 比点P 迟1秒出发,∴运动2016秒后,点P 在点A 处,点Q 在点M 处(DM=ME=1),∴PQ 2=AM 2=AH 2+HM 2∵△ABC 是等边三角形,AB=1,答案第11页,共16页………○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________………○…………内…………○…………装…………○…………订…………○…………线…………○…………∴NO=12,∵∠ANE=∠NEM=∠AME=90°,∴四边形ANEM 是矩形,∴AH=NE ,∴AH=52,HM=1-2∴PQ 2=(52)2+(2故答案为6.a 5-122013-1【解析】观察题目中所给的算式可得(a -1)(a 4+a 3+a 2+a +1)=a 5-1;22012+22011+…+22+2+1=(2-1)(22012+22011+…+22+2+1)=2×(22012+22011+…+22+2+1)-(22012+22011+…+22+2+1)=22013+22012+22011+…+22+2-22012-22011-…-22-2-1=22013-17.<【解析】58;然后根据2298081-=-=-1<0,可知58.故答案为:<.8.d b a c<<<【分析】根据a>b ,a-b<c-d ,可得c>d ,再结合a+b=c+d ,可知c>a ,从而可得b>d ,由此即可确定最终结果.【详解】∵a>b ,a-b<c-d ,∴c-d>0,即c>d ,又∵a+b=c+d ,∴a<c ,b>d ,∴d b a c <<<,答案第12页,共16页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………故答案为:d b a c <<<.三、解答题1.(1)作图见解析;(2)(1,2);(3,5).【详解】分析:(1)根据平移的性质,先表示出三角形三个顶点平移后的点的坐标,连接即可;(2)根据坐标系的建立,直接写出即可.详解:(1)如图所示:(2)如图所示:B (1,2),B′(3,5).2.解:(﹣2,1)不是“共生有理数对”;(4,35)是共生有理数对;(2)a =57;(3)是.(4)11n m n +=--【分析】(1)计算后,根据“共生有理数对”的定义即可判断;(2)根据“共生有理数对”的定义可得:6-a =6a +1,即可求得a 的值;(3)根据(m ,n )是“共生有理数对”可得:m-n=mn+1,再根据“共生有理数对”的定义即可判断;(4)根据“共生有理数对”的定义即可解决问题.【详解】解:(1)﹣2﹣1=﹣3,﹣2×1+1=1,∴﹣2﹣1≠﹣2×1+1,∴(﹣2,1)不是“共生有理数对”;∵4﹣35=235,3241355⨯+=,答案第13页,共16页………○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________………○…………内…………○…………装…………○…………订…………○…………线…………○…………∴(4,35)是共生有理数对;(2)由题意得:6﹣a =6a +1,解得a =57;(3)是.理由:﹣n ﹣(﹣m )=﹣n +m ,﹣n •(﹣m )+1=mn +1,∵(m ,n )是“共生有理数对”,∴m ﹣n =mn +1,∴﹣n +m =mn +1,∴(﹣n ,﹣m )是“共生有理数对”;故答案为:是;(4)∵(m ,n )是“共生有理数对”,∴m ﹣n =mn +1,即mn ﹣m =﹣(n +1),∴(n ﹣1)m =﹣(n +1),∴11n m n +=--.3.(1)34y x =-;N (23-,12);(2)N (83-,2)【详解】(1)设y =kx (k ≠0),将点A 的坐标代入解析式求出k 的值,写出解析式;(2)因为MN //AB ,所以N 点的横坐标与A 点的横坐标之比为16,又因为A 的坐标已知,故可求出N 点的横坐标,将N 点的横坐标代入直线OA 的解析式,即可求出N 的纵坐标;(3)因为MN //AB ,根据平行线间的距离相等,所以S △PMN =S △BMN ,S △ANB =S △ABM ,所以将PMN ANB S S 转化为NAh h ,已知h A ,不难求出h N ,将点N 的坐标代入直线OA 解析式即可求出N 纵坐标.解:(1)由于A (-4,3),设直线OA 为y =kx (k ≠0),得y =-34x ;又因OA=5,OB =6,OM =1,且MN //AB ,所以N 点的横坐标与A 点的横坐标之比为16,答案第14页,共16页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………即点N 的横坐标为-23,代入y =-34x 得,N (-23,12);(2)∵MN //AB ,根据平行线间的距离相等,∴S △PMN =S △BMN ,S△ANB =S △ABM ,∴PMN ANB S S =BMNABM S S =1212NA BM h BM h ⋅⋅=23(其中A h 、N h 为A 、N 点的纵坐标),∴23N A h h =,又∵A (-4,3),∴h N =2,即y N =2,将y N =2代入y =-34x ,得x=-83,∴N (-83,2).4.(1(2(3【分析】(1)根据已知得出式子变化规律写出答案即可;(2)进而由(1)的规律得出答案;(3)利用发现的规律化简各式进而求出即可.【详解】解:(1(21=-(n 为正整数);(3¼+1=+-++¼1=.5.(1)π-3,3;(2)3;(3)11【分析】正确估算无理数的大小即可求解.答案第15页,共16页………○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________………○…………内…………○…………装…………○…………订…………○…………线…………○…………【详解】解:(1)当m=π时∵3π4<<∴a=3,b=π-3当m 时∵91116<<<<∴34<<(2)当m =9时∵479<<<<∴23<<∴32-<<-∴93992-<<-∴697<<∴a 6,b 963===∴(a b 633-=-=(3)∵a -b 1-∴()()a 11b 1-+-=∴a-11-的整数部分,1-b 1的小数部分.∵253036<<<<∴56<答案第16页,共16页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………∴51161--<-∴45<∴a-1=4145--∴a=5,b=6∴m a b 5611=+=+--。
人教版数学七年级下册期中测试卷一、选择题(每题3分,共30分)1.4的算术平方根是()A.±2 B. 2 C.±2 D.22.在平面直角坐标系中,点A(-2,a)位于x轴的上方,则a的值可以是() A.0 B.-1 C. 3 D.±33.下列实数:3,0,12,-2,0.35,其中最小的实数是()A.3 B.0 C.- 2 D.0.354.如图,小聪把一块含有60°角的直角三角板的两个顶点放在直尺的对边上.若∠1=25°,则∠2的度数是()A.25°B.30°C.35°D.60°(第4题)(第6题)(第7题)(第8题)(第9题) 5.下列命题中,假命题是()A.若A(a,b)在x轴上,则B(b,a)在y轴上B.如果直线a,b,c满足a∥b,b∥c,那么a∥cC.两直线平行,同旁内角互补D.相等的两个角是对顶角6.如图是围棋棋盘的一部分,将它放置在某个平面直角坐标系中,若白棋②的坐标为(-3,-1),白棋④的坐标为(-2,-5),则黑棋①的坐标为() A.(-1,-4) B.(1,-4) C.(3,1) D.(-3,-1) 7.如图,数轴上有A,B,C,D四点,根据图中各点的位置,所表示的数与5-11最接近的点是()A.A B.B C.C D.D8.如图,将正方形网格放置在平面直角坐标系中,其中每个小正方形的边长均为1,三角形ABC经过平移后得到三角形A1B1C1,若AC上一点P(1.2,1.4)平移后对应点为P1,点P1绕原点顺时针旋转180°,对应点为P2,则点P2的坐标为()A.(2.8,3.6) B.(-2.8,-3.6)C.(3.8,2.6) D.(-3.8,-2.6)9.如图,将长方形纸片ABCD沿BD折叠,得到三角形BC′D,C′D与AB交于点E.若∠1=35°,则∠2的度数为()A.20°B.30°C.35°D.55°10.如图,下列命题:(第10题)①若∠1=∠2,则∠D=∠4;②若∠C=∠D,则∠4=∠C;③若∠A=∠F,则∠1=∠2;④若∠1=∠2,∠C=∠D,则∠A=∠F;⑤若∠C=∠D,∠A=∠F,则∠1=∠2.其中正确的个数为()A.1 B.2 C.3 D.4二、填空题(每题3分,共24分)11.在实数:8,0,364,1.010 010 001,4.2·1·,π,247中,无理数有________个.12.将点A(-2,-3)向右平移3个单位长度得到点B,则点B在第________象限.13.命题“平行于同一条直线的两条直线互相平行”的题设是_______________________________________________________________,结论是______________________.14.如图,直线a∥b,AC⊥AB,∠1=60°,则∠2的度数是________.(第14题)(第18题)15.若(2a+3)2+b-2=0,则a b=________.16.已知点M(3,2)与点N(x,y)在同一条垂直于x轴的直线上,且点N到x轴的距离为5,那么点N的坐标是______________.17.用“*”表示一种新运算:对于任意正实数a,b,都有a*b=b+1.例如8*9=9+1=4,那么15*196=________,m*(m*16)=________.18.将杨辉三角中的每一个数都换成分数,得到一个如图所示的分数三角形,称为莱布尼茨三角形.若用有序实数对(m,n)表示第m行,从左到右第n个数,如(4,3)表示分数112,则(9,2)表示的分数是________.三、解答题(19~21题每题8分,22~24题每题10分,25题12分,共66分) 19.计算:(1)16+38-(-5)2;(2)(-2)3+|1-2|×(-1)2 021-3125.20.如图,已知EF∥AD,∠1=∠2.求证:∠DGA+∠BAC=180°.请将下列证明过程填写完整:(第20题) 证明:∵EF∥AD(已知),∴∠2=________(________________________________).又∵∠1=∠2(已知),∴∠1=∠3(________________).∴AB∥________(________________________________).∴∠DGA+∠BAC=180°(________________________________).21.如图,直线AB与CD相交于点O,EO⊥CD于点O,OF平分∠AOD,且∠BOE=50°.求∠COF的度数.(第21题)22.如图,方格纸中每个小方格都是边长为1个单位长度的正方形,已知三角形ABC的顶点都在格点上,在建立平面直角坐标系后,A的坐标为(2,-4),B 的坐标为(5,-4),C的坐标为(4,-1).(1)画出三角形ABC;(2)求三角形ABC的面积;(3)若把三角形ABC向上平移2个单位长度,再向左平移4个单位长度得到三角形A′B′C′,在图中画出三角形A′B′C′,并写出B′的坐标.(第22题)23.如图,在四边形ABCD中,∠D=100°,CA平分∠BCD,且∠ACB=40°,∠BAC=70°.(第23题)(1)AD与BC平行吗?试写出推理过程.(2)若点E在线段BA的延长线上,求∠DAC和∠EAD的度数.24.观察等式:3+32=332,2+23=4×23,5+54=554,….(1)请用含n(n≥3,且n为整数)的式子表示出上述等式的规律________________;(2)按上述规律,若10+ab=10a9,则a+b=________;(3)仿照上面内容,另编一个等式,验证你在(1)中得到的规律.25.如图,在长方形OABC中,O为平面直角坐标系的原点,点A的坐标为(a,0),点C的坐标为(0,b),且a,b满足a-4+|b-6|=0,点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着O-C-B-A-O的线路移动.(第25题) (1)a=________,b=________,点B的坐标为__________;(2)当点P移动4 s时,请指出点P的位置,并求出点P的坐标;(3)在移动过程中,当点P到x轴的距离为5个单位长度时,求点P移动的时间.答案一、1.D 2.C 3.C 4.C 5.D 6.B7.D8.A9.A点拨:∵∠1=35°,CD∥AB,∠C=90°,∴∠ABD=35°,∠DBC=55°.由折叠可得∠DBC′=∠DBC=55°,∴∠2=∠DBC′-∠DBA=55°-35°=20°.10.C点拨:①因为∠1=∠3,所以若∠1=∠2,则∠3=∠2,则DB∥EC,则∠D=∠4,故①正确;②由∠C=∠D,并不能得到DF∥AC,则不能得到∠4=∠C,故②错误;③若∠A=∠F,则DF∥AC,并不能得到DB∥EC,则不能得到∠1=∠2,故③错误;④因为∠1=∠3,所以若∠1=∠2,则∠3=∠2,所以DB∥EC,所以∠4=∠D,又∠C=∠D,则∠4=∠C,所以DF∥AC,所以∠A=∠F,故④正确;⑤若∠A=∠F,则DF∥AC,所以∠4=∠C,又∠C=∠D,则∠4=∠D,所以DB∥EC,所以∠3=∠2,又∠1=∠3,则∠1=∠2,故⑤正确.所以正确的有3个.故选C.二、11.212.四13.两条直线平行于同一条直线;这两条直线平行14.30°15.3216.(3,5)或(3,-5)17.15;5+118.172点拨:观察题图可得以下规律:是第几行就有几个分数;每行每个分数的分子都是1;每行第一个分数的分母为行数,第n(n为大于1的整数)行的第二个分数的分母为n(n-1).故(9,2)表示的分数为19×8=172.三、19.解:(1)原式=4+2-5=1;(2)原式=-8+(2-1)×(-1)-5=-8+1-2-5=-12- 2.20.∠3;两直线平行,同位角相等;等量代换;DG;内错角相等,两直线平行;两直线平行,同旁内角互补 21.解:∵EO ⊥CD ,∴∠DOE =90°.∴∠BOD =∠DOE -∠BOE =90°-50°=40°. ∴∠AOC =∠BOD =40°, ∠AOD =140°. 又∵OF 平分∠AOD , ∴∠AOF =12∠AOD =70°.∴∠COF =∠AOC +∠AOF =40°+70°=110°. 22.解:(1)如图所示.(第22题)(2)S 三角形ABC =12×3×3=92. (3)如图,B ′(1,-2).23.解:(1)AD ∥BC .推理过程如下:∵CA 平分∠BCD ,∠ACB =40°, ∴∠BCD =2∠ACB =80°. ∵∠D =100°, ∴∠D +∠BCD =180°. ∴AD ∥BC .(2)由(1)知AD ∥BC , ∴∠DAC =∠ACB =40°. ∵∠BAC =70°,∴∠DAB =∠DAC +∠BAC =40°+70°=110°. ∴∠EAD =180°-∠DAB =180°-110°=70°.24.解:(1)n+nn-1=n nn-1(2)10+9(3)11+1110=111110.(答案不唯一)25.解:(1)4;6;(4,6)(2)∵点P从原点出发,以每秒2个单位长度的速度沿着O-C-B-A-O的线路移动,OA=4,OC=6,∴当点P移动4 s时,点P在线段CB上,离点C的距离为4×2-6=2.∴点P的坐标是(2,6).(3)由题意可得,在移动过程中,当点P到x轴的距离为5个单位长度时,存在两种情况:第一种情况,当点P在线段OC上时,点P移动的时间是5÷2=2.5(s);第二种情况,当点P在线段BA上时,点P移动的时间是(6+4+1)÷2=5.5(s).故在移动过程中,当点P到x轴的距离为5个单位长度时,点P移动的时间是2.5 s或5.5 s.人教版数学七年级下册期中试卷一、选择题1.下列各数中,是无理数的为()A. B.3.14 C.D.﹣2.9的算术平方根是()A.±3 B.3 C.D.3.的相反数是()A.﹣B.C.﹣D.4.点P(﹣3,2)位于()A.第一象限B.第二象限C.第三象限D.第四象限5.下列图中,∠1和∠2是对顶角的是()A.B.C.D.6.如图,点A、B、C、D在直线n上,且PC⊥n,则图中点P到直线n的距离是线段()的长度.A.PA B.PB C.PC D.PD7.如图,直线l截两平行直线a,b,则下列式子不一定成立的是()A.∠1=∠5 B.∠2=∠4 C.∠3=∠5 D.∠5=∠28.如图,CO⊥AB,点O为垂足,则下列说法不一定成立的是()A.∠1与∠2相等B.∠AOD与∠2互补C.∠AOC与∠BOC相等D.∠1与∠2互余9.已知∠A,∠B互余,∠A比∠B大30度.设∠A,∠B的度数分别为x°、y°,下列方程组中符合题意的是()A.B.C.D.10.如果电影票上的“5排2号”记作(5,2),那么(4,1)表示()A.4排5号B.5排4号C.1排4号D.4排1号11.已知点A(a,b)在第一象限,那么点B(﹣b,﹣a)在()A.第一象限B.第二象限C.第三象限D.第四象限12.下列命题中:①有理数是有限小数;②有限小数是有理数;③无理数都是无限小数;④无限小数都是无理数.正确的是()A.①②B.①③C.②③D.③④13.比较﹣π与﹣3.14的大小是()A.﹣π=﹣3.14 B.﹣π>﹣3.14 C.﹣π<﹣3.14 D.无法比较14.方程3x﹣2y=7的解是()A.B.C.D.15.下列各式中,没有意义的是()A.B.C.D.﹣二、解答题16.计算:(1)++|π﹣3|;(2)()2+3﹣6.17.解答题(1)解方程组;(2)填出括号里的理由.已知:∠1+∠2=180°,求证:a∥b.证明:∵∠1=∠3,∠1+∠2=180°∴∠3+∠2=180°∴a∥b.18.如图,△AOB在平面直角坐标系中,A(1,4),B(3,1),D(5,1);(1)求△AOB的面积;(2)将△AOB平移得到△CDE,使点O与点D对应,画出△CDE,并写出点C 和点E的坐标.19.如图,已知AB∥CD,点D在BE上,且BE平分∠ABC,∠CDE=150°,求∠C的度数.20.列方程(或方程组)解应用题:在学校举行的一次数学竞赛中,某班小勇同学得了88分,赛制规定:试题一共20小题,答对一题得5分,答错或不答一题倒扣1分,请问小勇在竞赛中答对几道题?21.如图,已知:∠A=∠1,∠2+∠3=180°,∠BDE=70°,(1)AB与DF平行吗?说明理由;(2)求∠ACB的度数.22.已知=3,=4﹣b,求a+b的平方根.23.某厂决定投入一定的资金用于改善该厂生产、生活条件,投入的资金用于两个方面:第一方面是提升职工待遇;第二方面是改善该厂生产设施.2014年投入的总资金为t万元,其中用于第一方面的资金是第二方面的两倍.2015年第一、第二方面资金都有不同程度的增长,两方面资金增长的百分数之和为70%,投入的总资金比2014年增长了40%,(1)用含t的代数式分别表示2014年用于两个方面的资金;(2)分别求第一第二方面增长的百分数.24.将长方形OABC的顶点O与直角坐标系的原点重合,点A,C分别在X轴,Y轴上,点B(a,b),且a,b满足+(b+6)2=0.(1)求点B的坐标;(2)若点P从点B出发,以1单位/秒的速度向C点运动(不超过C点),同时点Q从C点出发以2单位/秒的速度向原点运动(不超过原点),试探讨四边形AQCP的面积在运动中是否会发生变化?求其值,若变化,求变化范围.(3)若过O点的直线OD交长方形的边于点D,且直线OD把长方形的周长分为3:5两部分,求点D的坐标;(4)若H(0,﹣1),点P(m,﹣3)在第三象限内运动,则是否存在点P使四边形HBCP的面积等于△AHB的面积,若存在,求P点坐标,不存在,说明理由.参考答案与试题解析一、选择题(共15小题,每小题3分,满分45分)1.下列各数中,是无理数的为()A. B.3.14 C.D.﹣【考点】26:无理数.【分析】根据无理数是无限不循环小数,可得答案.【解答】解:A、是无限不循环小数,故A正确;B、是有限小数,故B错误;C、是有限小数,故C错误;D、是无限循环小数,故D错误;故选:A.【点评】本题考查了无理数,无理数是无限不循环小数,有理数是有限小数或无限循环小数.2.9的算术平方根是()A.±3 B.3 C.D.【考点】22:算术平方根.【分析】根据开方运算,可得算术平方根.【解答】解:9的算术平方根是3,故选:B.【点评】本题考查了算术平方根,注意一个正数只有一个算术平方根.3.的相反数是()A.﹣B.C.﹣D.【考点】28:实数的性质.【专题】11 :计算题.【分析】由于互为相反数的两个数和为0,由此即可求解.【解答】解:∵+(﹣)=0,∴的相反数是﹣.故选A.【点评】此题主要考查了求无理数的相反数,无理数的相反数和有理数的相反数的意义相同,无理数的相反数是各地中考的重要考点.4.点P(﹣3,2)位于()A.第一象限B.第二象限C.第三象限D.第四象限【考点】D1:点的坐标.【分析】根据平面直角坐标系中各个象限的点的坐标的符号特点可知:点P(﹣3,2)位于第二象限.【解答】解:因为点P(﹣3,2)的横坐标为负,纵坐标为正,所以其在第二象限,故选B.【点评】本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).5.下列图中,∠1和∠2是对顶角的是()A.B.C.D.【考点】J2:对顶角、邻补角.【分析】根据对顶角的两边互为反向延长线对各图形分析判断后进行解答.【解答】解:根据对顶角的定义:A中∠1和∠2不是对顶角;B中∠1和∠2不是对顶角;C中∠1和∠2不是对顶角;D中∠1和∠2是对顶角;故选:D【点评】本题考查了对顶角的定义,对正确识图有一定要求.6.如图,点A、B、C、D在直线n上,且PC⊥n,则图中点P到直线n的距离是线段()的长度.A.PA B.PB C.PC D.PD【考点】J5:点到直线的距离.【分析】根据“从直线外一点到这条直线的垂线段的长度,叫做点到直线的距离”,即可解答.【解答】解:∵PC⊥n,∴点P到直线n的距离是线段PC的长度,故选:C.【点评】此题主要考查了点到直线的距离,解决本题的关键是熟记从直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.7.如图,直线l截两平行直线a,b,则下列式子不一定成立的是()A.∠1=∠5 B.∠2=∠4 C.∠3=∠5 D.∠5=∠2【考点】JA:平行线的性质;J2:对顶角、邻补角.【分析】根据平行线的性质,同位角相等、内错角相等、同旁内角互补及对顶角相等即可解答.【解答】解:A、已知a∥b,∠1和∠5为同位角,由两直线平行,同位角相等可知,∠1=∠5,故正确;B、∠2和∠4是内错角,由两直线平行,内错角相等可知,∠2=∠4,故正确;C、∠3和∠5为对顶角,由对顶角相等可知,∠3=∠5,故正确;D、∵a∥b,∴∠2+∠3=180°,∵∠5=∠3,∴∠2+∠5=180°,故错误.故选D.【点评】本题主要考查平行线的性质,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键.8.如图,CO⊥AB,点O为垂足,则下列说法不一定成立的是()A.∠1与∠2相等B.∠AOD与∠2互补C.∠AOC与∠BOC相等D.∠1与∠2互余【考点】J3:垂线;IL:余角和补角.【分析】根据垂直的定义、互补的定义、互余的定义一一判断即可解决问题.【解答】解:∵OC⊥AB,∴∠AOC=∠COB=90°,故C正确,∵∠AOD+∠DOB=180°,∴∠AOD与∠DOB互补,故B正确,∵∠1+∠2=∠COB=90°,∴∠1与∠2互余,故D正确,故选A【点评】本题考查互余、互补、垂线等知识,解题的关键是熟练应用这些知识解决问题,属于中考常考题型.9.已知∠A,∠B互余,∠A比∠B大30度.设∠A,∠B的度数分别为x°、y°,下列方程组中符合题意的是()A.B.C.D.【考点】IL:余角和补角;99:由实际问题抽象出二元一次方程组.【分析】考查角度与方程组的综合应用,∠A与∠B的度数用未知量表示,然后列出方程.【解答】解:∠A比∠B大30°,则有x=y+30,∠A,∠B互余,则有x+y=90.故选C.【点评】运用已知条件,列出方程组.10.如果电影票上的“5排2号”记作(5,2),那么(4,1)表示()A.4排5号B.5排4号C.1排4号D.4排1号【考点】D3:坐标确定位置.【分析】根据所给数对第一个表示排数,第二个表示号可得:(4,1)表示4排1号.【解答】解:(4,1)表示4排1号,故选:D.【点评】此题主要考查了坐标确定位置,关键是理解所给的数对所表示的意义.11.已知点A(a,b)在第一象限,那么点B(﹣b,﹣a)在()A.第一象限B.第二象限C.第三象限D.第四象限【考点】D1:点的坐标.【分析】根据第一象限内点的横坐标与纵坐标都是正数判断出a、b,再根据各象限内点的坐标特征解答.【解答】解:∵点A(a,b)在第一象限,∴a>0,b>0,∴﹣b<0,﹣a<0,∴点B(﹣b,﹣a)在第三象限.故选C.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).12.下列命题中:①有理数是有限小数;②有限小数是有理数;③无理数都是无限小数;④无限小数都是无理数.正确的是()A.①②B.①③C.②③D.③④【考点】27:实数.【分析】①②根据有理数的即可判定;③④根据无理数的定义即可判定.【解答】解:①有理数不一定是有限小数,整数也是有理数,故说法错误,②有限小数是有理数,故说法正确;③无理数都是无限小数,故说法正确;④无限小数都不一定是无理数,其中无限循环小数为有理数,故说法错误.故选C.【点评】本题考查了实数的分类,重点是掌握有理数和无理数的定义.13.比较﹣π与﹣3.14的大小是()A.﹣π=﹣3.14 B.﹣π>﹣3.14 C.﹣π<﹣3.14 D.无法比较【考点】2A:实数大小比较.【分析】根据两个负数比较大小,绝对值大的反而小即可得出答案.【解答】解:∵π>3.14,∴﹣π<﹣3.14;故选C.【点评】此题主要考查了实数的大小比较,掌握两个负数比较大小,绝对值大的反而小解答此题的关键.14.方程3x﹣2y=7的解是()A.B.C.D.【考点】92:二元一次方程的解.【分析】将x、y的值分别代入原方程,左右相等即可得.【解答】解:A、当时,3x﹣2y=7,此选项正确;B、当时,3x﹣2y=1,此选项错误;C、当时,3x﹣2y=﹣1,此选项错误;D、当时,3x﹣2y=﹣7,此选项错误;故选:A.【点评】本题主要考查二元一次方程的解,掌握二元一次方程的解得定义:使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解是关键.15.下列各式中,没有意义的是()A.B.C.D.﹣【考点】72:二次根式有意义的条件;24:立方根.【分析】根据二次根式有意义的条件和立方根的概念进行判断即可.【解答】解:∵x2≥0,∴有意义;有意义;∵4<,∴4﹣<0,∴无意义;﹣有意义,故选:C.【点评】本题考查的是二次根式有意义的条件,立方根的概念,掌握二次根式中的被开方数必须是非负数是解题的关键.二、解答下列各题16.(8分)计算:(1)++|π﹣3|;(2)()2+3﹣6.【考点】2C:实数的运算.【专题】11 :计算题;511:实数.【分析】(1)原式利用二次根式性质,立方根定义,以及绝对值的代数意义化简,计算即可得到结果;(2)原式利用二次根式性质化简,合并即可得到结果.【解答】解:(1)原式=﹣2+5+π﹣3=π;(2)原式=3﹣3.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.17.(8分)解答题(1)解方程组;(2)填出括号里的理由.已知:∠1+∠2=180°,求证:a∥b.证明:∵∠1=∠3(对顶角相等),∠1+∠2=180°(已知)∴∠3+∠2=180°(等量代换)∴a∥b(同旁内角互补,两直线平行).【考点】98:解二元一次方程组;J9:平行线的判定.【分析】(1)方程组利用加减消元法求出解即可;(2)由对顶角相等及已知角互补,等量代换得到同旁内角互补,利用同旁内角互补两直线平行即可得证.【解答】解:(1),①+②×3得:10x=0,即x=0,把x=0代入①得:y=2,则方程组的解为;(2)证明:∵∠1=∠3(对顶角相等),∠1+∠2=180°(已知),∴∠3+∠2=180°(等量代换),∴a∥b(同旁内角互补,两直线平行),故答案为:(对顶角相等);(已知);(等量代换);(同旁内角互补,两直线平行)【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.18.(6分)如图,△AOB在平面直角坐标系中,A(1,4),B(3,1),D (5,1);(1)求△AOB的面积;(2)将△AOB平移得到△CDE,使点O与点D对应,画出△CDE,并写出点C 和点E的坐标.【考点】Q4:作图﹣平移变换.【分析】(1)直接利用△AOB所在矩形面积减去周围三角形面积进而得出答案;(2)直接利用平移的性质得出对应点位置,进而得出已知点坐标即可.【解答】解:(1)如图所示:△AOB的面积:3×4﹣×1×4﹣﹣=12﹣2﹣1.5﹣3=5.5;(2)如图所示:C(6,5),E(8,2).【点评】此题主要考查了平移变换以及三角形面积求法,正确得出平移后对应点位置是解题关键.19.(6分)如图,已知AB∥CD,点D在BE上,且BE平分∠ABC,∠CDE=150°,求∠C的度数.【考点】JA:平行线的性质.【分析】先利用邻补角可计算出∠BDC=30°,再利用平行线的性质得∠ABD=∠BDC=30°,接着根据角平分线定义得∠CBD=∠ABD=30°,然后根据三角形内角和计算∠C的度数.【解答】解:∵∠CDE=150°,∴∠BDC=180°﹣150°=30°,∵AB∥CD,∴∠ABD=∠BDC=30°,∵BE平分∠ABC,∴∠CBD=∠ABD=30°,∴∠C=180°﹣∠BDC﹣∠CBD=180°﹣30°﹣30°=120°.【点评】本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.20.(6分)列方程(或方程组)解应用题:在学校举行的一次数学竞赛中,某班小勇同学得了88分,赛制规定:试题一共20小题,答对一题得5分,答错或不答一题倒扣1分,请问小勇在竞赛中答对几道题?【考点】9A:二元一次方程组的应用;8A:一元一次方程的应用.【分析】根据题意可以列出相应的一元一次方程,从而可以解答本题.【解答】解:设小勇在竞赛中答对x道题,5x﹣(20﹣x)×1=88解得,x=18即小勇在竞赛中答对18道题.【点评】本题考查一元一次方程的应用,解题的关键是明确题意,找出所求问题需要的条件.21.(8分)如图,已知:∠A=∠1,∠2+∠3=180°,∠BDE=70°,(1)AB与DF平行吗?说明理由;(2)求∠ACB的度数.【考点】JB:平行线的判定与性质.【分析】(1)根据已知条件得到∠BEC=∠3,由平行线的判定定理即可得到结论.(2)由平行线的性质得到∠BED=∠1,等量代换得到∠BED=∠A,推出DE∥AC,根据平行线的性质即可得到结论.【解答】解:(1)AB与DF平行,理由:∵∠2+∠BEC=180°,∵∠2+∠3=180°,∴∠BEC=∠3,∴AB∥DF;(2)∵AB∥DF,∴∠BED=∠1,∵∠A=∠1,∴∠BED=∠A,∴DE∥AC,∴∠ACB=∠BDE=70°.【点评】本题考查了平行线的性质和判定,熟练掌握平行线的判定和性质是解题的关键.22.(10分)已知=3,=4﹣b,求a+b的平方根.【考点】24:立方根;21:平方根.【分析】先根据平方根、立方根的定义得到关于a、b的一元一次方程,解方程组即可求出a、b的值,进而得到a+b的平方根.【解答】解:由题意有:2a+1=9,解得a=4,4﹣b=﹣1,解得b=5,或4﹣b=0,解得b=4,或4﹣b=1,解得b=3,则a+b的平方根为±3或±2或±.【点评】本题考查了平方根、立方根的定义.如果一个数的平方等于a,这个数就叫做a的平方根,也叫做a的二次方根.如果一个数x的立方等于a,那么这个数x就叫做a的立方根.23.(11分)某厂决定投入一定的资金用于改善该厂生产、生活条件,投入的资金用于两个方面:第一方面是提升职工待遇;第二方面是改善该厂生产设施.2014年投入的总资金为t万元,其中用于第一方面的资金是第二方面的两倍.2015年第一、第二方面资金都有不同程度的增长,两方面资金增长的百分数之和为70%,投入的总资金比2014年增长了40%,(1)用含t的代数式分别表示2014年用于两个方面的资金;(2)分别求第一第二方面增长的百分数.【考点】9A:二元一次方程组的应用.【分析】(1)设2014年用于第二方面的资金为a万元,则用于第一方面的资金为2a万元,根据“2014年投入的总资金为t万元”得出a=可得答案;(2)设第一方面的增长率为x,第二方面的增长率为y,根据“两方面资金增长的百分数之和为70%,投入的总资金比2014年增长了40%”列方程组求解可得.【解答】解:(1)设2014年用于第二方面的资金为a万元,则用于第一方面的资金为2a万元,则a+2a=t,∴a=,答:2014年用于第一方面的资金为万元,用于第二方面的资金为万元;(2)设第一方面的增长率为x,第二方面的增长率为y,根据题意得:,解得:,答:第一方面的增长率为50%,第二方面的增长率为20%.【点评】本题主要考查一元一次方程和二元一次方程组的应用,理解题意找到题目蕴含的相等关系是解题的关键.24.(12分)将长方形OABC的顶点O与直角坐标系的原点重合,点A,C分别在X轴,Y轴上,点B(a,b),且a,b满足+(b+6)2=0.(1)求点B的坐标;(2)若点P从点B出发,以1单位/秒的速度向C点运动(不超过C点),同时点Q从C点出发以2单位/秒的速度向原点运动(不超过原点),试探讨四边形AQCP的面积在运动中是否会发生变化?求其值,若变化,求变化范围.(3)若过O点的直线OD交长方形的边于点D,且直线OD把长方形的周长分为3:5两部分,求点D的坐标;(4)若H(0,﹣1),点P(m,﹣3)在第三象限内运动,则是否存在点P使四边形HBCP的面积等于△AHB的面积,若存在,求P点坐标,不存在,说明理由.【考点】LO:四边形综合题.【分析】(1)根据非负数的性质列式求出得到a ﹣3=0,b +6=0,然后解方程求出a 与b 的值,再写出B 点坐标;(2)设运动的时间为t ,则BP=t ,CQ=2t (0≤t ≤3),则可根据三角形面积公式和S 四边形AQCP =S 矩形ABCO ﹣S △AOQ ﹣S △APB 计算得到S 四边形AQCP =9,即四边形AQCP 的面积在运动中不发生变化;(3)分类讨论:当点D 在AB 上,如图1,设D (3,n ),则AD=﹣n ,BD=6+n ,根据题意得(3﹣n ):(6+n +3+6)=3:5,然后解方程求出n 即可得到D 点坐标;当点D 在BC 上,如图2,设D (m ,﹣6),则CD=m ,BD=3﹣m ,根据题意得(6+m ):(3﹣m +3+6)=3:5,然后解方程求出n 即可得到D 点坐标;(4)根据四边形HBCP 的面积等于△AHB 的面积得到×5×|m |+×5×3=×6×3,然后解方程可得到满足条件的m 的值,从而得到P 点坐标.【解答】解:(1)∵+(b +6)2=0, ∴a ﹣3=0,b +6=0,∴a=3,b=﹣6,∴B 点坐标为(3,﹣6);(2)四边形AQCP 的面积在运动中不会发生变化.如图1,设运动的时间为t ,则BP=t ,CQ=2t (0≤t ≤3),S 四边形AQCP =S 矩形ABCO ﹣S △AOQ ﹣S △APB=3×6﹣×3×(6﹣2t )﹣×6×t=9;(3)当点D 在AB 上,如图3,设D (3,n ),则AD=﹣n ,BD=6+n , ∵直线OD 把长方形的周长分为3:5两部分,∴(3﹣n ):(6+n +3+6)=3:5,解得n=﹣,∴D 点坐标为(3,﹣); 当点D 在BC 上,如图2,设D (m ,﹣6),则CD=m ,BD=3﹣m , ∵直线OD 把长方形的周长分为3:5两部分,∴(6+m ):(3﹣m +3+6)=3:5,解得m=,∴D点坐标为(,﹣6),综上所述,D点坐标为(3,﹣)或(,﹣6);(4)存在.如图4,∵四边形HBCP的面积等于△AHB的面积,∴×5×|m|+×5×3=×6×3,而m<0,∴m=﹣,∴P点坐标为(﹣,﹣3).【点评】本题考查了坐标与图形性质:利用点的坐标特征计算线段的长和判断线段与坐标轴的位置关系.也考查了三角形的面积公式.人教版数学七年级下册期中试卷一、选择题1.在下列各数:3.1415926、、0.2、、、、中无理数的个数是()A.2 B.3 C.4 D.52.下列各式中,正确的是()A.±=±B.±=C.±=±D.=±3.若|3﹣a|+=0,则a+b的值是()A.2 B.1 C.0 D.﹣14.估算﹣2的值()A.在1到2之间B.在2到3之间C.在3到4之间D.在4到5之间5.已知下列命题:①若a>0,b>0,则a+b>0;②若a≠b,则a2≠b2;③两点之间,线段最短;④同位角相等,两直线平行.其中真命题的个数是()A.1个B.2个C.3个D.4个6.同桌读了:“子非鱼焉知鱼之乐乎?”后,兴高采烈地利用电脑画出了几幅鱼的图案,请问:由图中所示的图案通过平移后得到的图案是()A.B.C.D.7.如图,小明从A处出发沿北偏东60°方向行走至B处,又沿北偏西20°方向行走至C处,此时需把方向调整到与出发时一致,则方向的调整应是()A.右转80°B.左转80°C.右转100°D.左转100°8.已知点P位于y轴右侧,距y轴3个单位长度,位于x轴上方,距离x轴4个单位长度,则点P坐标是()A.(﹣3,4) B.(3,4)C.(﹣4,3) D.(4,3)9.在平面直角坐标系中,将点B(﹣3,2)向右平移5个单位长度,再向下平移3个单位长度后与点A(x,y)重合,则点A的坐标是()A.(2,5)B.(﹣8,5) C.(﹣8,﹣1)D.(2,﹣1)10.如图,已知棋子“车”的坐标为(﹣2,﹣1),棋子“马”的坐标为(1,﹣1),则棋子“炮”的坐标为()A.(3,2)B.(﹣3,2) C.(3,﹣2) D.(﹣3,﹣2)11.已知点A(1,0),B(0,2),点P在x轴上,且△PAB的面积为5,则点P的坐标为()A.(﹣4,0) B.(6,0)C.(﹣4,0)或(6,0)D.无法确定12.如图,AB∥CD,DE⊥CE,∠1=34°,则∠DCE的度数为()A.34°B.56°C.66°D.54°13.如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1等于()A.132°B.134°C.136°D.138°14.如图a是长方形纸带,∠DEF=20°,将纸带沿EF折叠成图b,再沿BF折叠成图c,则图c中的∠CFE的度数是()A.110°B.120°C.140°D.150°二、填空题15.把命题“同角的余角相等”改写成“如果…那么…”的形式.16.3﹣的相反数是,绝对值是.17.若一个正数的平方根是2a﹣3与5﹣a,则这个正数是.18.点P(2a,1﹣3a)是第二象限内的一个点,且点P到两坐标轴的距离之和为4,则点P的坐标是.19.直线m外有一定点A,A到直线m的距离是7cm,B是直线m上的任意一点,则线段AB的长度:AB7cm.(填>或者<或者=或者≤或者≥).20.如图是某公园里一处矩形风景欣赏区ABCD,长AB=50米,宽BC=25米,为方便游人观赏,公园特意修建了如图所示的小路(图中非阴影部分),小路的宽均为1米,那么小明沿着小路的中间出口A到出口B所走的路线(图中虚线)长为米.三、解答题(共60分)21.(10分)(1)计算:(﹣2)2×+||+×(﹣1)2016(2)解方程:3(x﹣2)2=27.22.(10分)完成下面推理过程:如图,已知DE∥BC,DF、BE分别平分∠ADE、∠ABC,可推得∠FDE=∠DEB 的理由:∵DE∥BC(已知)∴∠ADE=()∵DF、BE分别平分∠ADE、∠ABC,∴∠ADF=()∠ABE=()∴∠ADF=∠ABE∴∥()∴∠FDE=∠DEB.()23.(10分)如图,直角坐标系中,△ABC的顶点都在网格点上,其中,C点坐标为(1,2),(1)写出点A、B的坐标:A(,)、B(,)(2)将△ABC先向左平移1个单位长度,再向上平移2个单位长度,得到△A′B′C′,画出△A′B′C′(3)写出三个顶点坐标A′(、)、B′(、)、C′、)(4)求△ABC的面积.24.(10分)如图,在A、B两处之间要修一条笔直的公路,从A地测得公路走向是北偏东46°,A、B两地同时开工,若干天后公路准确接通.(1)B地修公路的走向是南偏西多少度?(2)若公路AB长12千米,另一条公路BC长6千米,且BC的走向是北偏西44°,试求A到公路BC的距离?。
2024年最新人教版初一数学(下册)期中考卷一、选择题(每题3分,共30分)1. 下列哪个数是正数?A. 3B. 0C. 1/2D. 1/22. 一个数的绝对值是它本身的数是?A. 正数B. 负数C. 零D. 正数和零3. 下列哪个数是分数?A. 0.5B. 3/4C. 0.333D. 14. 下列哪个数是无理数?A. 3B. 2/3C. √2D. 0.255. 下列哪个数是整数?A. 1/2B. 0.5C. 3D. 0.3336. 下列哪个数是正整数?A. 0B. 1C. 1D. 1/27. 下列哪个数是负整数?A. 0B. 1C. 1D. 1/28. 下列哪个数是奇数?A. 0B. 2C. 3D. 49. 下列哪个数是偶数?A. 1B. 2C. 3D. 410. 下列哪个数是质数?A. 0B. 1C. 2D. 4二、填空题(每题4分,共20分)1. 5的绝对值是______。
2. 2的相反数是______。
3. 3/4的倒数是______。
4. 5的平方是______。
5. 2的立方根是______。
三、解答题(每题10分,共50分)1. 解方程:2x 3 = 7。
2. 解不等式:3x + 4 > 11。
3. 解方程组:x + y = 5, x y = 1。
4. 解不等式组:x > 2, x < 5。
5. 计算下列表达式的值:(3 + 4) × (5 2) ÷ 2。
四、应用题(每题15分,共30分)1. 小明买了5本书,每本书的价格是8元。
他付了50元,应该找回多少元?2. 一个长方形的长是6厘米,宽是4厘米。
求这个长方形的面积。
五、附加题(每题10分,共20分)1. 证明:对于任意实数a,a的平方总是非负的。
2. 解析几何:在平面直角坐标系中,点A(2, 3),点B(5, 1)。
求线段AB的长度。
选择题答案:1. C2. D3. B4. C5. C6. C7. C8. C9. B10. C填空题答案:1. 52. 23. 4/34. 255. 1.2599210498948732(约等于1.26)解答题答案:1. x = 52. x > 33. x = 3, y = 24. 2 < x < 55. 13应用题答案:1. 找回的金额为10元。
七年级第二学期期中考试数学试卷(满分100分,考试时间为90分钟)注意事项:1.答题前,考生必须先将自己的班别、姓名、学号端正地填写在答卷指定位置上,凡填写不清或不齐全的作零分处理。
2.试卷共3页,另有答卷4页。
请各位考生把答案填写在答卷相应的位置上,写在试卷上的答案一律无效。
3.考试结束后,考生只须交答卷,试卷不用交回。
一、选择题:(本题共有7小题,每小题3分,共21分。
每小题只有一个答案是正确的,请把正确答案的代号填在答卷相应空格里) 1.下列各方程中,是一元一次方程的是( )(A )42=-y x (B )4=xy (C )441-x (D )413=-y2.下列那对数值不能满足二元一次方程32=+y x ( )(A )⎩⎨⎧==11y x (B )⎪⎩⎪⎨⎧==230y x (C )⎩⎨⎧=-=21y x (D )⎪⎪⎩⎪⎪⎨⎧==2323y x 3.下列图形中,是属于轴对称图形的是( )(A ) (B ) (C ) (D )4.在三角形的三个内角中,锐角最多只有( )(A )3个 (B )2个 (C )1个 (D )0个 5.把三角形分成两个面积相等的小三角形的线段是三角形的( ) (A )中线 (B )内角平分线 (C )高 (D )不能确定6.如果4个大盒、3个小盒与2个大盒、9个小盒的容积相同,那么1个大盒的容积相当于( )个小盒的容积。
(A )1 (B )2 (C )3 (D )4 7.若方程组()⎩⎨⎧=-=--2331y x ky x k 有无数个解,则k 值为( )(A )1 (B )2 (C )3 (D )不存在这样的数 二、填空题:(本题共有5小题,每小题4分,共20分。
请把正确答案填在答卷相应空格里)8.右图是从镜中看到的一串数字,这串数字应为 。
9.在二元一次方程8512-=-y x 中,用含x 的代数式表示y ,则y = ; 用含y 的代数式表示x ,则x = 。
第1题
第2题
2009-2010学年七年级第二学期期中数学考试及答案
总分100分 时间120分钟
一、选择题(每题2分,共16分) 1.如图AB∥CD,则∠1=( ) A .75
B .80
C .85
D .95
2.如图,在△ABC 中,90C ∠=︒,EF//AB ,150∠=︒,则B ∠的度数为( ) A .50︒ B .60︒ C.30︒ D. 40︒ 3.下列命题中,真命题有( )
(1)直线外一点与直线上各点连接的所有线段中,垂线段最短 (2)两条直线被第三条直线所截,内错角相等 (3)经过两点有一条直线,并且只有一条直线
(4)如果一条直线和两条直线中的一条垂直,那么这条直线也和另一条垂直 A .1个 B .2个 C .3个 D .4个
4.如果mn<0,且m>0,那么点P(m 2
,m-n)在( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限
5.点P 为直线l 外一点,点A 、B 、C 为直线l 上三点,PA =4cm ,PB=5cm ,PC=2cm ,则点P 到直线l 的距离为( )
A .4cm
B .5cm
C .小于2cm
D .不大于2cm
6.已知△ABC 平移后得到△A 1B 1C 1,且A 1(﹣2,3),B 1(﹣4,﹣1),C 1(m ,n ),C (m+5,n+3),则A ,B 两点的坐标为( )
A .(3,6),(1,2)
B .(-7,0),(-9,-4)
C .(1,8),(-1,4)
D .(-7,-2),(0,-9)
7.如果∠A 与∠B 的两边分别平行,且∠A 比∠B 的3倍少360
,则∠A 的度数是( ) A .36 B .54 C .108 D .126
A B G F
C
D
E
1
2
8.若二元一次联立方程式⎪⎩
⎪⎨⎧=-+=-0
35151546
32y x y
x 的解为x =a ,y =b ,则a -b =?( )
A .
35 B .59 C . 329 D . -3
139
二、填空题(每题3分,共30分)
9.已知坐标平面内的三个点A (5,4),B (2,4),C (4,2),则⊿ABC 的面积为 . 10.方程组25211
x y x y -=-⎧⎨
+=⎩,
的解是 .
11.将点A (1,-3)向右平移2个单位,再向下平移2个单位后得到点B (a ,b ),则ab
= .
12.如图,把长方形ABCD 沿EF 对折,若∠1=500
,则∠AEF 的度数等于 .
13.图中有 对对顶角.
14.如图是我们生活中经常接触的小刀,刀柄外形是一个直角梯形(下底挖去一小半圆),
刀片上、下是平行的,转动刀片时会形成∠1、∠2,则∠1+∠2=__ _. 15.六边形共有 条对角线,它的内角和是 度. 16.一个多边形的内角和是外角和的3倍,它是 边形;
一个多边形的各内角都等于1200
,它是 边形. 17.如图所示,将△ABC 沿着DE 翻折,若∠1+∠2=80O
,
则∠B=_____________.
18.观察图中每一个大三角形中白色三角形的排列规律,
(第12题)
(第7题)
则第5个大三角形中白色三角形有 个 .
三、解答题:(共10小题,共54分)
19.(4分)如图,已知,AB∥CD,直线EF 分别交AB 、CD 于点E 、F ,EG 平分∠AEF,∠1=
400
,求∠2的度数.
20.(6分)(1)在平面直角坐标系中画出下列各点:A (-2,-1)B (4,0)C (3,2)D (0,
2)
(2)顺次连接ABCD ,计算四边形ABCD 的面积.
21.(4分)孔明同学在解方程组2y kx b
y x
=+⎧⎨
=-⎩的过程中,错把b 看成了6,他其余的解题过
程没有出错,解得此方程组的解为12=-⎧⎨=⎩x y ,又已知3
1
x y =⎧⎨=⎩是方程=+y kx b 的一组解,
则b 的正确值应该是多少?
第1个第2个
第3个
22.(5分)如图,∠A=∠F,∠C=∠D,试说明∠BMN与∠CNM互补吗?为什么?
23.(6分)已知点A(-2,0)B(4,0)C(-2,-3).
(1)求A、B两点之间的距离.
(2)求点C到X轴的距离.
(3)求△ABC的面积.
24.(6分)2008 年北京奥运会,中国运动员获得金、银、铜牌共 100 枚,金牌数位列世界第一。
其中金牌比银牌与铜牌之和多 2 枚,银牌比铜牌少 7 枚.问金、银、铜牌各多少枚?
25.(5分)如图,已知∠ABC.请你再画一个∠DEF,使DE∥AB,EF∥BC,且DE 交BC 边与
点P .探究:∠ABC 与 ∠DEF 有怎样的数量关系?并说明理由(需要证明).
26.(6分)如图,AD 为△ABC 的中线,BE 为△ABD 的中线. (1)∠ABE=15°,∠BAD=40°,求∠BED 的度数; (2)在△BED 中作BD 边上的高;
(3)若△ABC 的面积为40,BD=5,则△BDE 中BD 边上的高为多少?
27.(6分)6.(2009年湖南长沙
某中学拟组织九年级师生去韶山举行毕业联欢活动.下面是年级组长李老师和小芳、小明同学有关租车问题的对话:
李老师:“平安客运公司有60座和45座两种型号的客车可供租用,60座客车每辆每天的租金比45座的贵200元.”
小芳:“我们学校八年级师生昨天在这个客运公司租了4辆60座和2辆45座的客车到韶山参观,一天的租金共计5000元.”
小明:“我们九年级师生租用5辆60座和1辆45座的客车正好坐满.” 根据以上对话,解答下列问题:
(1)平安客运公司60座和45座的客车每辆每天的租金分别是多少元? (2)按小明提出的租车方案,九年级师生到该公司租车一天,共需租金多少元?
A
B
C
28.(6分)如图①是长方形纸带,将纸带沿EF折叠成图②,再沿BF折叠成图③.(1)若∠DEF=200,则图③中∠CFE度数是多少?
(2)若∠DEF=α,把图③中∠CFE用α表示.
参考答案
一、选择题
1-4CDBA 5-8 DBDC
二、填空题
9.3
10.
3
4 x
y
=⎧
⎨
=⎩
11.-15 12.1150
13.9
14.90度15.9, 720 度16.8, 6 17.40°18.121
三、解答题
图③
A E
F C
D
图①
100,
19.∠2=0
20.(1)图略(2)11
21.11
22.略
23.(1)6 ;(2)3 ;(3)9
24.金、银、铜牌分别为51枚、21枚、28 枚.
25.相等或互补,需证明
26.(1)55°;(2)图略;(3)4
27.(1)60座每天900元,45座每天700元;(2)5200元
28.(1)因为长方形的对边是平行的,所以∠BFE=∠DEF=200;图①中的∠CFE=1800-∠BFE,以下每折叠一次,减少一个∠BFE,所以则图③中的∠CFE度数是1200 .(2)由(1)中的规律,可得∠CFE=1800-3α.。