高中数学_函数试题
- 格式:doc
- 大小:154.00 KB
- 文档页数:3
高中函数的试题及答案高中函数试题一、选择题1. 函数f(x) = x^2 - 4x + 3的最小值出现在x等于多少?A) 0B) 1C) 2D) 32. 下列哪个函数不是一次函数?A) y = 3x + 2B) y = x + 1C) y = 5D) y = -2x3. 函数y = 2^x的图像经过点(1,2)吗?A) 是B) 否4. 函数f(x) = log_2(x)的定义域是?A) (0, +∞)B) (-∞, +∞)C) [0, +∞)D) (1, +∞)5. 如果函数f(x) = kx + b的斜率k为0,那么这个函数是?A) 一次函数B) 常数函数C) 二次函数D) 不能确定二、填空题6. 给定函数f(x) = √x,当x = 16时,f(x)的值为______。
7. 如果函数g(x) = 3x - 5与x轴相交,求交点的x坐标为______。
8. 函数h(x) = 1/x的渐近线方程是______。
三、解答题9. 已知函数f(x) = x^3 - 6x^2 + 9x - 4,求其导数f'(x)。
10. 函数y = √x + 1在区间[0, 1]上的最大值和最小值分别是多少?四、证明题11. 证明函数f(x) = x^3在(-∞, +∞)上是单调递增的。
答案:一、选择题1. C) 2 (二次函数求顶点公式:x = -b/2a)2. C) y = 5 (常数函数)3. A) 是(代入x=1,y=2^1=2)4. A) (0, +∞) (对数函数的定义域)5. B) 常数函数(斜率k为0,表示函数图像是水平的)二、填空题6. 4 (√16 = 4)7. 5/3 (3x - 5 = 0,解得x = 5/3)8. y = 0 (x不为0时,1/x趋向于0)三、解答题9. f'(x) = 3x^2 - 12x + 9 (求导公式)10. 最大值为√1 + 1 = 2,最小值为√0 + 1 = 1四、证明题11. 证明:对于任意的x1 < x2,我们有f(x2) - f(x1) = x2^3 - x1^3 = (x2 - x1)(x2^2 + x1x2 +x1^2)因为x1 < x2,所以x2 - x1 > 0,且x2^2 + x1x2 + x1^2 > 0(平方和总是正的)所以f(x2) - f(x1) > 0,即f(x2) > f(x1),证明函数f(x)是单调递增的。
高中函数测试题及答案一、选择题(每题3分,共30分)1. 函数f(x) = 2x^2 - 3x + 1在x=2时的值为:A. 5B. 7C. 9D. 112. 函数y = |x|的图像是:A. 一条直线B. 一个V形C. 一个倒V形D. 一个S形3. 若f(x) = x^2 + 1,求f(-1)的值:A. 0B. 1C. 2D. 34. 函数y = 1/x的图像在第一象限和第三象限是:A. 正比例函数B. 反比例函数C. 一次函数D. 二次函数5. 函数y = log2(x)的定义域是:A. x > 0B. x < 0C. x ≥ 0D. x ≤ 06. 函数y = sin(x)的周期是:A. πB. 2πC. 3πD. 4π7. 若f(x) = x^3 - 3x^2 + 2x,求f'(x)的值:A. 3x^2 - 6x + 2B. x^2 - 2x + 1C. 3x^2 - 6xD. x^2 - 2x8. 函数y = cos(x)的图像在x = π/2时的值为:A. 1B. 0C. -1D. 不确定9. 若f(x) = 2^x,求f'(x)的值:A. 2^xB. ln(2) * 2^xC. 1D. 2^(x-1)10. 函数y = x^3的图像是:A. 关于原点对称B. 关于y轴对称C. 关于x轴对称D. 都不是答案:1. B2. B3. C4. B5. A6. B7. A8. B9. B10. A二、填空题(每题4分,共20分)11. 若函数f(x) = x^3 - 6x^2 + 9x + 2,求f(3)的值。
答案:-112. 若函数g(x) = √x,求g(16)的值。
答案:413. 若函数h(x) = 2^x,求h(-1)的值。
答案:1/214. 函数y = 3x - 5的斜率是:答案:315. 若函数k(x) = log10(x) + 1,求k(100)的值。
高中数学中的函数单调性测试题在高中数学的学习中,函数的单调性是一个非常重要的概念。
它不仅在数学理论中有着广泛的应用,也是解决实际问题的有力工具。
为了帮助同学们更好地掌握这一知识点,下面为大家精心准备了一套函数单调性的测试题。
一、选择题1、函数\(f(x) = x^2 2x\)在区间\(0, 2\)上的单调性是()A 单调递增B 单调递减C 先增后减D 先减后增2、下列函数中,在区间\((\infty, 0)\)上单调递增的是()A \(f(x) = x\)B \(f(x) =\frac{1}{x}\)C \(f(x) =x^2\) D \(f(x) = x^2\)3、函数\(f(x) =\ln x\)的单调递增区间是()A \((\infty, 0)\)B \((0, +\infty)\)C \((-1, 1)\)D \((1, +\infty)\)4、已知函数\(f(x) = 2x^3 6x^2 + 7\),则函数\(f(x)\)在区间\(-1, 2\)上的单调性为()A 单调递增B 单调递减C 先增后减D 先减后增5、函数\(f(x) =\frac{x + 1}{x 1}\)的单调递减区间是()A \((\infty, 1)\)和\((1, +\infty)\)B \((\infty, 1)\)C \((1, +\infty)\)D \((\infty, -1)\)和\((-1,+\infty)\)二、填空题1、函数\(f(x) = 3 2x\)的单调递减区间为________。
2、函数\(f(x) = x +\frac{1}{x}\)的单调递增区间为________,单调递减区间为________。
3、若函数\(f(x) = x^2 2ax + 3\)在区间\(-1, 2\)上单调递增,则实数\(a\)的取值范围是________。
4、函数\(f(x) =\log_{05}(x^2 4x + 3)\)的单调递减区间是________。
高中数学_经典函数试题及答案【第一份试题】1. 已知函数 y = f(x) 满足 f(2) = 1,f'(x) = 2x - 3。
求函数 f(x) 的解析式。
解答:根据题意,已知了 f'(x) = 2x - 3,因此函数 f(x) 的原函数为 F(x) = x^2 - 3x + C,其中 C 为常数。
根据 f(2) = 1,可得到 F(2) = 1,代入原函数求得 C = 0。
所以函数 f(x) 的解析式为 f(x) = x^2 - 3x。
2. 若函数 f(x) = 2x^3 + 4x + c 是奇函数,求常数 c 的值。
解答:根据题意,函数 f(x) 是奇函数,即满足 f(-x) = -f(x)。
代入函数 f(x) = 2x^3 + 4x + c,得到 -2x^3 - 4x - c = 2x^3 + 4x + c,整理得到 4x^3 + 8x + 2c = 0。
对比系数可得 -c = 2c,解得 c = 0。
所以常数 c 的值为 0。
3. 已知函数 f(x) = (x - 1) / (x + 1),求函数 f(x) 的反函数。
解答:要求函数 f(x) 的反函数,可以将 y(即 f(x))与 x 对调位置,并解出 x 关于 y 的表达式。
首先,将函数 f(x) 表示为 y = (x - 1) / (x + 1)。
交换 x 和 y,得到 x = (y - 1) / (y + 1)。
解以上方程,可以得到 y = (x + 1) / (x - 1)。
所以函数f(x) 的反函数为 f^(-1)(x) = (x + 1) / (x - 1)。
【第二份试题】1. 已知函数y = f(x) = 3sin(2x + π/4),求 f(x) 的周期和最大值、最小值。
解答:对于函数 y = 3s in(2x + π/4),参数 2 决定了正弦函数的周期。
周期T = 2π / 2 = π。
最大值和最小值可以通过观察正弦函数的图像得出。
高一数学一、选择题(每小题5分,共60分,请将所选答案填在括号内)1.已知A={第一象限角},B={锐角},C={小于90°的角},那么A 、B 、C 关系是( )A .B=A ∩CB .B ∪C=CC .A ⊂CD .A=B=C 2.下列各组角中,终边相同的角是( )A .π2k 与)(2Z k k ∈+ππB .)(3k 3Z k k ∈±πππ与C .ππ)14()12(±+k k 与 )(Z k ∈D .)(66Z k k k ∈±+ππππ与3.已知弧度数为2的圆心角所对的弦长也是2,则这个圆心角所对的弧长是 ( )A .2B .1sin 2C .1sin 2D .2sin 4.设α角的终边上一点P 的坐标是)5sin,5(cos ππ,则α等于 ( )A .5πB .5cotπC .)(1032Z k k ∈+ππD .)(592Z k k ∈-ππ5.将分针拨慢10分钟,则分钟转过的弧度数是( )A .3πB .-3πC .6πD .-6π6.设角α和β的终边关于y 轴对称,则有( )A .)(2Z k ∈-=βπαB .)()212(Z k k ∈-+=βπαC .)(2Z k ∈-=βπαD .)()12(Z k k ∈-+=βπα7.集合A={},322|{},2|Z n n Z n n ∈±=⋃∈=ππααπαα, B={},21|{},32|Z n n Z n n ∈+=⋃∈=ππββπββ,则A 、B 之间关系为( )A .AB ⊂B .B A ⊂C .B ⊂AD .A ⊂B8.某扇形的面积为12cm ,它的周长为4cm ,那么该扇形圆心角的度数为 ( )A .2°B .2C .4°D .4 9.下列说法正确的是( )A .1弧度角的大小与圆的半径无关B .大圆中1弧度角比小圆中1弧度角大≠ ≠≠C .圆心角为1弧度的扇形的弧长都相等D .用弧度表示的角都是正角 10.中心角为60°的扇形,它的弧长为2π,则它的内切圆半径为 ( )A .2B .3C .1D .2311.一个半径为R 的扇形,它的周长为4R ,则这个扇形所含弓形的面积为 ( )A .2)1cos 1sin 2(21R ⋅- B .1cos 1sin 212⋅RC .221RD .221cos 1sin R R ⋅⋅- 12.若α角的终边落在第三或第四象限,则2α的终边落在 ( )A .第一或第三象限B .第二或第四象限C .第一或第四象限D .第三或第四象限二、填空题(每小题4分,共16分,请将答案填在横线上) 13.αααsin 12sin2cos-=-,且α是第二象限角,则2α是第 象限角.14.已知βαπβαππβαπ-2,3,34则-<-<-<+<的取值范围是 .15.已知α是第二象限角,且,4|2|≤+α则α的范围是 .16.已知扇形的半径为R ,所对圆心角为α,该扇形的周长为定值c ,则该扇形最大面积为.三、解答题(本大题共74分,17—21题每题12分,22题14分)17.写出角的终边在下图中阴影区域内角的集合(这括边界)(1) (2) (3)18.一个视力正常的人,欲看清一定距离的文字,其视角不得小于5′. 试问:(1)离人10米处能阅读的方形文字的大小如何?(2)欲看清长、宽约0.4米的方形文字,人离开字牌的最大距离为多少?19.一扇形周长为20cm ,当扇形的圆心角α等于多少弧度时,这个扇形的面积最大?并求此扇形的最大面积?20.绳子绕在半径为50cm 的轮圈上,绳子的下端B 处悬挂着物体W ,如果轮子按逆时针方向每分钟匀速旋转4圈,那么需要多少秒钟才能把物体W 的位置向上提升100cm? 21.已知集合A={}810,150|{},135|≤≤-︒⋅==∈︒⋅=k k B Z k k ββαα求与A ∩B 中角终边相同角的集合S.22.单位圆上两个动点M 、N ,同时从P (1,0)点出发,沿圆周运动,M 点按逆时针方向旋转6π弧度/秒,N 点按顺时针转3π弧度/秒,试求它们出发后第三次相遇时的位置和各自走过的弧度.高一数学参考答案(一)一、1.B 2.C 3.B 4.D 5.A 6.D 7.C 8.B 9.A 10.A 11.D 12.B 二、13.三 14. )6,(ππ-15.]2,2(),23(πππ⋃--16.162C三、17.(1)}1359013545|{Z k k k ∈︒⋅+︒≤≤︒⋅+︒αα;(2)}904590|{Z k k k ∈︒⋅+︒≤≤︒⋅αα;; (3)}360150360120|{Z k k k ∈︒⋅+︒≤≤︒⋅+︒-αα.18.(1)设文字长、宽为l 米,则)(01454.0001454.01010m l =⨯==α; (2)设人离开字牌x 米,则)(275001454.04.02m l x ===.19.221021,220rr rS r-=⋅⋅=-=αα,当2,5==αr 时,)(252maxcm S =.20.设需x 秒上升100cm .则ππ15,100502460=∴=⨯⨯⨯x x (秒).21.}360k 1350360|{Z k k S ∈︒⋅=︒-︒-==ααα或.22.设从P (1,0)出发,t 秒后M 、N 第三次相遇,则πππ636=+t t ,故t =12(秒).故M 走了ππ2126=⨯(弧度),N 走了ππ4123=⨯(弧度).同步测试(2)任意角的三角函数及同角三角函数的基本关系式一、选择题(每小题5分,共60分,请将所选答案填在括号内)1.已知)20(παα<<的正弦线与余弦线相等,且符号相同,那么α的值为 ( )A .ππ434或 B .ππ4745或C .ππ454或D .ππ474或2.若θ为第二象限角,那么)2cos(sin )2sin(cos θθ⋅的值为( )A .正值B .负值C .零D .为能确定 3.已知αααααtan ,5cos 5sin 3cos 2sin 那么-=+-的值为( )A .-2B .2C .1623 D .-16234.函数1sectan sin cos 1sin1cos )(222---+-=x x xxxx x f 的值域是( )A .{-1,1,3}B .{-1,1,-3}C .{-1,3}D .{-3,1} 5.已知锐角α终边上一点的坐标为(),3cos 2,3sin 2-则α= ( )A .3-πB .3C .3-2πD .2π-36.已知角α的终边在函数||x y -=的图象上,则αcos 的值为( )A .22 B .-22 C .22或-22 D .217.若,cos 3sin 2θθ-=那么2θ的终边所在象限为( )A .第一象限B .第二象限C .第三象限D .第四象限 8.1sin 、1cos 、1tan 的大小关系为( )A .1tan 1cos 1sin >>B .1cos 1tan 1sin >>C .1cos 1sin 1tan >>D .1sin 1cos 1tan >>9.已知α是三角形的一个内角,且32cos sin =+αα,那么这个三角形的形状为 ( )A .锐角三角形B .钝角三角形C .不等腰的直角三角形D .等腰直角三角形 10.若α是第一象限角,则ααααα2cos ,2tan,2cos,2sin ,2sin 中能确定为正值的有( )A .0个B .1个C .2个D .2个以上11.化简1csc 2csc csc 1tan 1sec 22+++++ααααα(α是第三象限角)的值等于( )A .0B .-1C .2D .-2 12.已知43cos sin =+αα,那么αα33cos sin -的值为( )A .2312825B .-2312825C .2312825或-2312825D .以上全错二、填空题(每小题4分,共16分,请将答案填在横线上) 13.已知,24,81cos sin παπαα<<=⋅且则=-ααsin cos .14.函数x xy cos lg 362+-=的定义域是_________.15.已知21tan -=x ,则1cos sin 3sin2-+x x x =______.16.化简=⋅++αααα2266cos sin 3cos sin . 三、解答题(本大题共74分,17—21题每题12分,22题14分) 17.已知.1cos sin ,1sin cos =-=+θθθθby a x by a x 求证:22222=+by ax .18.若xxx xx tan 2cos 1cos 1cos 1cos 1-=+---+, 求角x 的取值范围.19.角α的终边上的点P 和点A (b a ,)关于x 轴对称(0≠ab )角β的终边上的点Q 与A 关于直线x y =对称. 求βαβαβαcsc sec cot tan sec sin ⋅+⋅+⋅的值. 20.已知c b a ++=-+θθθθ2424sin sin 7cos 5cos 2是恒等式. 求a 、b 、c 的值. 21已知αsin 、βsin 是方程012682=++-k kx x 的两根,且α、β终边互相垂直.求k 的值.22.已知α为第三象限角,问是否存在这样的实数m ,使得αsin 、αcos 是关于x 的方程012682=+++m mx x 的两个根,若存在,求出实数m ,若不存在,请说明理由.高一数学参考答案(二)一、1.C 2.B 3.D 4.D 5.C 6.C 7.C 8.C 9.B 10.C 11.A 12.C 二、13.23-14. ⎥⎦⎤⎝⎛⎪⎭⎫ ⎝⎛-⎪⎭⎫⎢⎣⎡--6,232,223,6ππππ 15.52 16.1 三、17.由已知⎪⎪⎩⎪⎪⎨⎧-=+=,cos sin ,cos sin θθθθbx ax故 2)()(22=+bxax.18.左|sin |cos 2|sin ||cos 1||sin ||cos 1|x x x x x x =--+==右,).(222,0sin ,sin cos 2|sin |cos 2Z k k x k x xx x x ∈+<<+<-=∴ππππ19.由已知P (),(),,a b Q b a -,ab ab bb a ba b =-=+=+-=βαβαcot ,tan ,sec ,sin 2222,ab aab a2222csc ,sec +=+=βα , 故原式=-1-022222=++ab a ab.20.θθθθθθθ2424224sin 9sin 27sin 55sin 2sin 427cos 5cos 2-=--++-=-+,故0,9,2=-==c b a . 21.设,,22Z k k ∈++=ππαβ则αβcos sin =,由⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=++=⋅=⋅=+=+≥+⨯--=∆,1cos sin ,812cos sin ,43cos sin ,0)12(84)6(22222121212ααααααx x k x x k x x k k 解知910-=k ,22.假设存在这样的实数m ,.则⎪⎪⎪⎩⎪⎪⎪⎨⎧>+=⋅-=+≥+-=∆,0812cos sin ,43cos sin ,0)12(32362m m m m αααα 又18122)43(2=+⨯--m m ,解之m=2或m=.910-而2和910-不满足上式. 故这样的m 不存在.高一数学同步测试(3)—正、余弦的诱导公式一、选择题(每小题5分,共60分,请将所选答案填在括号内) 1.若,3cos )(cos x x f =那么)30(sin ︒f 的值为 ( )A .0B .1C .-1D .232.已知,)1514tan(a =-π那么=︒1992sin( ) A .21||aa + B .21aa + C .21aa +- D .211a+-3.已知函数1tan sin )(++=x b x a x f ,满足.7)5(=f 则)5(-f 的值为 ( )A .5B .-5C .6D .-6 4.设角则,635πα-=)(cos )sin(sin 1)cos()cos()sin(222απαπααπαπαπ+--+++--+的值等于( )A .33 B .-33 C .3 D .-35.在△ABC 中,若)sin()sin(C B A C B A +-=-+,则△ABC 必是 ( )A .等腰三角形B .直角三角形C .等腰或直角三角形D .等腰直角三角形6.当Z k ∈时,])1cos[(])1sin[()cos()sin(απαπαπαπ+++++⋅-k k k k 的值为( )A .-1B .1C .±1D .与α取值有关7.设βαβπαπ,,,(4)cos()sin()(b a x b x a x f ++++=为常数),且,5)2000(=f 那么=)2004(f ( )A .1B .3C .5D .7 8.如果).cos(|cos |π+-=x x 则x 的取值范围是( ) A .)(]22,22[Z k k k ∈++-ππππB .)()223,22(Z k k k ∈++ππππC .)(]223,22[Z k k k ∈++ππππD .)()2,2(Z k k k ∈++-ππππ9.在△ABC 中,下列各表达式中为常数的是 ( )A .CB A sin )sin(++ B . AC B cos )cos(-+C .2tan2tanC B A ⋅+D .2sec2cos A C B ⋅+ 10.下列不等式上正确的是( )A .ππ74sin75sin> B .)7tan(815tanππ->C .)6sin()75sin(ππ->- D .)49cos()53cos(ππ->-11.设,1234tan a =︒那么)206cos()206sin(︒-+︒-的值为( )A .211aa ++ B .-211aa ++ C .211aa +- D .211aa +-12.若)cos()2sin(απαπ-=+,则α的取值集合为 ( )A .}42|{Z k k ∈+=ππαα B .}42|{Z k k ∈-=ππααC .}|{Z k k ∈=πααD .}2|{Z k k ∈+=ππαα二、填空题(每小题4分,共16分,请将答案填在横线上) 13.已知,2cos 3sin =+αα则=+-ααααcos sin cos sin .14.已知,1)sin(=+βα则=+++)32sin()2sin(βαβα . 15.若,223tan 1tan 1+=+-θθ则=⋅--+θθθθθcos sin cot 1)cos (sin .16.设)cos()sin()(21απαπ+++=x n x m x f ,其中m 、n 、1α、2α都是非零实数,若 ,1)2001(=f 则=)2002(f .三、解答题(本大题共74分,17—21题每题12分,22题14分)17.设sin ,(0)()(1)1,(0)x x f x f x x π<⎧=⎨-+≥⎩和1cos ,()2()1(1)1,()2x x g x g x x π⎧<⎪⎪=⎨⎪-+≥⎪⎩求)43()65()31()41(f g f g +++的值.18.已知,1)sin(=+y x 求证:.0tan )2tan(=++y y x19.已知αtan 、αcot 是关于x 的方程0322=-+-k kx x 的两实根,且,273παπ<<求)sin()3cos(απαπ+-+的值.20.已知,3cos 3cot )(tan x x x f -=(1)求)(cot x f 的表达式;(2)求)33(-f 的值.21.设)(x f 满足)2|(|cos sin 4)(sin 3)sin (π≤⋅=+-x xx x f x f ,(1) 求)(x f 的表达式;(2)求)(x f 的最大值.22.已知:∑=+⋅=ni n i i S 1)32cos(ππ ,求.2002S 。
高中数学必修一函数试题一、选择题: 1、若()f x =(3)f = ( )A 、2B 、4 C、 D 、10 2、对于函数()y f x =,以下说法正确的有 ( )①y 是x 的函数;②对于不同的,x y 的值也不同;③()f a 表示当x a =时函数()f x 的值,是一个常量;④()f x 一定可以用一个具体的式子表示出来。
A 、1个B 、2个C 、3个D 、4个 3、下列各组函数是同一函数的是( )①()f x =与()g x =;②()f x x =与2()g x =;③0()f x x =与01()g x x =;④2()21f x x x =--与2()21g t t t =--。
A 、①②B 、①③C 、③④D 、①④4、二次函数245y x mx =-+的对称轴为2x =-,则当1x =时,y 的值为 ( ) A 、7- B 、1 C 、17 D 、25 5、函数y =( )A 、[]0,2B 、[]0,4C 、(],4-∞D 、[)0,+∞ 6、下列四个图像中,是函数图像的是 ( )A 、(1)B 、(1)、(3)、(4)C 、(1)、(2)、(3)D 、(3)、(4) 7、)(x f 是定义在R 上的奇函数,下列结论中,不正确...的是( ) A 、()()0f x f x -+= B 、()()2()f x f x f x --=- C 、()()0f x f x -≤ D 、()1()f x f x =-- 8、如果函数2()2(1)2f x x a x =+-+在区间(],4-∞上是减少的,那么实数a 的取值范围是( ) A 、3a -≤ B 、3a -≥ C 、a ≤5 D 、a ≥5 9、设函数()(21)f x a x b =-+是R 上的减函数,则有 ( )(1)(2)(3)(4)A 、12a >B 、12a <C 、12a ≥D 、12a ≤ 10、下列所给4个图象中,与所给3件事吻合最好的顺序为 ( )(1)我离开家不久,发现自己把作业本忘在家里了,于是立刻返回家里取了作业本再上学; (2)我骑着车一路以常速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间; (3)我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速。
函数的概念试题及答案高中一、选择题1. 下列哪个选项正确描述了函数的概念?A. 函数是一种运算B. 函数是一种关系C. 函数是一种映射D. 函数是一种变量2. 如果f(x) = 2x + 3,那么f(-1)的值是多少?A. -1B. 1C. 3D. 53. 函数y = x^2 + 1在x = -2时的值是多少?A. 5B. 4C. 3D. 1二、填空题4. 如果一个函数f(x)的定义域是所有实数R,那么这个函数被称为_________函数。
5. 函数f(x) = 3x - 2的反函数是_________。
三、简答题6. 函数的三要素是什么?7. 请解释什么是函数的值域,并给出一个例子。
四、计算题8. 给定函数f(x) = x^2 - 4x + 4,求出当x = 0, 1, 2, 3时的函数值。
答案一、选择题1. C. 函数是一种映射2. A. -1(计算过程:f(-1) = 2*(-1) + 3 = -2 + 3 = 1)3. A. 5(计算过程:y = (-2)^2 + 1 = 4 + 1 = 5)二、填空题4. 无界5. f^(-1)(x) = (x + 2) / 3三、简答题6. 函数的三要素包括:定义域(Domain)、值域(Range)和对应法则(Rule of correspondence)。
7. 函数的值域是指函数所有可能的输出值的集合。
例如,函数y =x^2的值域是所有非负实数,即[0, +∞)。
四、计算题8. 当x = 0时,f(x) = 0^2 - 4*0 + 4 = 4;当x = 1时,f(x) = 1^2 - 4*1 + 4 = 1;当x = 2时,f(x) = 2^2 - 4*2 + 4 = 0;当x = 3时,f(x) = 3^2 - 4*3 + 4 = 1。
结束语:通过本试题的练习,希望同学们能够加深对函数概念的理解,掌握函数的基本性质和计算方法。
函数是数学中的基础工具,对后续的数学学习至关重要。
高中函数图像考试题及答案一、选择题1. 函数 \( f(x) = x^2 \) 的图像是一个:A. 直线B. 抛物线C. 双曲线D. 正弦曲线答案:B2. 函数 \( y = |x| \) 的图像在 \( x = 0 \) 处的切线斜率是:A. 0B. 1C. -1D. 不存在答案:A3. 函数 \( y = \sin(x) \) 的图像是:A. 线性的B. 周期性的C. 单调的D. 常数的答案:B二、填空题4. 如果函数 \( f(x) \) 在 \( x = a \) 处取得极值,那么\( f'(a) \) 等于 _______ 。
答案:05. 函数 \( y = x^3 \) 的图像是关于 \( x \) 轴的 _______ 对称。
答案:不三、简答题6. 解释函数 \( y = \ln(x) \) 的图像为什么在 \( x = 0 \) 处没有定义。
答案:函数 \( y = \ln(x) \) 是自然对数函数,其定义域为\( x > 0 \)。
当 \( x = 0 \) 时,没有实数可以作为对数的底数,因为对数函数的底数不能为1,也不能为负数或0。
因此,\( x = 0 \) 处没有定义。
7. 描述函数 \( y = 1/x \) 的图像在第一象限和第三象限的行为。
答案:函数 \( y = 1/x \) 的图像在第一象限和第三象限都是递减的。
当 \( x \) 增大时,\( y \) 减小;当 \( x \) 减小时,\( y \) 增大。
这是因为当 \( x \) 的值增加时,其倒数 \( 1/x \) 的值会减少,反之亦然。
四、计算题8. 给定函数 \( f(x) = 2x^2 + 3x - 5 \),求导数 \( f'(x) \) 并找到函数的极值点。
答案:导数 \( f'(x) = 4x + 3 \)。
令 \( f'(x) = 0 \) 解得\( x = -3/4 \)。
函数开放性试题及答案高中函数是高中数学中的一个重要概念,它描述了变量之间的依赖关系。
以下是一份针对高中学生的函数开放性试题及答案。
试题一:给定函数 \( f(x) = x^2 - 4x + 4 \),求:1. 函数的对称轴;2. 函数的顶点坐标;3. 函数的值域。
答案一:1. 对称轴为 \( x = -\frac{b}{2a} = -\frac{-4}{2} = 2 \);2. 顶点坐标为 \( (2, f(2)) = (2, 4 - 8 + 4) = (2, 0) \);3. 函数的值域为 \( [0, +\infty) \),因为这是一个开口向上的二次函数,最小值为顶点处的函数值。
试题二:已知函数 \( g(x) = 3x - 2 \),求:1. 函数的斜率;2. 函数的截距;3. 函数的图像在 \( x = 1 \) 时的值。
答案二:1. 斜率为 \( 3 \);2. 截距为 \( -2 \);3. 当 \( x = 1 \) 时,\( g(1) = 3 \times 1 - 2 = 1 \)。
试题三:考虑函数 \( h(x) = \frac{1}{x} \),讨论其定义域,并说明其图像的渐近线。
答案三:1. 函数 \( h(x) \) 的定义域为 \( x \neq 0 \) 的所有实数,因为分母不能为零;2. 函数的图像有两条渐近线,分别是 \( x = 0 \) 和 \( y = 0 \)。
当 \( x \) 接近零时,\( h(x) \) 的值会无限增大或减小,而 \( y = 0 \) 是水平渐近线,因为 \( h(x) \) 永远不会等于零。
试题四:对于函数 \( k(x) = 2^x \),求:1. 函数的值域;2. 函数是否具有奇偶性;3. 函数的图像在 \( x = -1 \) 时的值。
答案四:1. 函数 \( k(x) \) 的值域为 \( (0, +\infty) \);2. 函数 \( k(x) \) 是非奇非偶函数,因为它不满足奇偶性的定义;3. 当 \( x = -1 \) 时,\( k(-1) = 2^{-1} = 0.5 \)。
高中数学练习题函数与方程高中数学练习题:函数与方程一、选择题1. 设函数f(x) = 2x - 3,下列说法中正确的是:A. f(0) = 0B. f(x) = -3x + 2C. f(2) = -1D. f(x) = x - 62. 已知函数g(x) = x^2 - 4x + 3,下列说法中错误的是:A. g(1) = 0B. g(x) = (x - 1)(x - 3)C. g(2) = -1D. g(x) = (x - 2)^2 - 13. 给定函数h(x) = 3x^2 + 2x - 1,则满足h(x) = 0的根是:A. x = -1B. x = 1/3C. x = 1D. x = 1/-3二、填空题1. 解方程2x + 1 = 5的解为x = __。
2. 解方程(x - 3)(2x + 1) = 0的解为x = __ 和 x = __。
3. 解方程4x^2 - 9 = 0的解为x = __ 和 x = __。
三、解答题1. 求函数f(x) = x^2 - 4x - 5的顶点坐标。
解:首先我们知道顶点坐标可以表示为(x, y),其中x等于函数的轴对称点的横坐标,y等于函数在轴对称点的纵坐标。
函数f(x) = x^2 - 4x - 5可以通过求导的方法找到轴对称点。
求导得到f'(x) = 2x - 4,令f'(x) = 0,解方程得到x = 2。
将x = 2代入函数f(x)得到y = f(2) = 2^2 - 4(2) - 5 = -9。
所以,函数f(x) = x^2 - 4x - 5的顶点坐标为(2, -9)。
2. 解方程2^(x+2) = 32。
解:首先我们可以将32表示为2的幂,即32 = 2^5。
将2^(x+2) = 2^5转化为指数相等的形式,得到x + 2 = 5。
解方程x + 2 = 5,得到x = 3。
所以,方程2^(x+2) = 32的解为x = 3。
3. 解方程log(x + 1) = 2的解。
一、选择题:本大题共12小题。
每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.函数)12(-=x f y 是偶函数,则函数)2(x f y =的对称轴是 ( )A .0=xB .1-=xC .21=x D .21-=x2.已知1,10-<<<b a ,则函数b a y x+=的图象不经过 ( )A .第一象限B .第二象限C . 第三象限D . 第四象限3.函数62ln -+=x x y 的零点必定位于区间 ( )A .(1,2)B .(2,3)C .(3,4)D .(4,5) 4.给出四个命题:(1)当0=n 时,nx y =的图象是一条直线; (2)幂函数图象都经过(0,1)、(1,1)两点; (3)幂函数图象不可能出现在第四象限;(4)幂函数nx y =在第一象限为减函数,则n 0<。
其中正确的命题个数是 ( )A .1B .2C .3D .4 5.函数xa y =在[0,1]上的最大值与最小值的和为3,则a 的值为 ( )A .21 B .2 C .4 D .416.设)(x f 是奇函数,当0>x 时,,log )(2x x f =则当0<x 时,=)(x f ( )A .x 2log- B .)(log2x - C .x 2logD .)(log2x --7.若方程2(1+m )2x +4023=-+m mx 的两根同号,则m 的取值范围为 ( )A .12-<<-mB .12-<≤-m 或132≤<mC .1-<m 或32>m D .12-<<-m 或132<<m8.已知)(x f 是周期为2的奇函数,当10<<x 时,.lg )(x x f =设),23(),56(f b f a ==),25(f c =则 ( )A .c b a <<B . c a b <<C . a b c <<D . b a c <<9.已知01<<<<a y x ,则有 ( ) A .0)(log<xy aB .1)(log0<<xy aC .1<0)(log<xy aD .2)(log>xy a10.已知10<<a ,,0loglog<<n m aa则 ( )A .m n <<1B .n m <<1C .1<<n mD .1<<m n 11.设,22lg)(x xx f -+=则⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛x f x f 22的定义域为 ( ) A .()4,0()0,4⋃- B .)4,1()1,4(⋃-- C .()2,1()1,2⋃-- D .()4,2()2,4⋃-- 12.已知⎩⎨⎧≥<+-=1,log1,4)13()(x x x a x a x f a是R 上的减函数,那么a 的取值范围是( )A .(0,1)B .(0,)31C .⎪⎭⎫⎢⎣⎡31,71 D .⎪⎭⎫⎢⎣⎡1,71 二、填空题:本大题共4小题,每小题4分,共16分。
把答案填在题中横线上。
13.若函数)34(log2++=kx kxy a的定义域是R,则k 的取值范围是 .14.函数],1,1[,122)(-∈++=x a ax x f 若)(x f 的值有正有负,则实数a 的取值范围为 . 15.光线透过一块玻璃板,其强度要减弱101,要使光线的强度减弱到原来的31以下,至少有这样的玻璃板 块。
(参考数据:)4771.03lg ,3010.02lg ≈≈ 16.给出下列命题:①函数)1,0(≠>=a a a y x与函数xaay log =)1,0(≠>a a 的定义域相同;②函数3x y =与xy 3=的值域相同;③函数12121-+=x y 与函数xx x y 2)21(2⋅+=均是奇函数;④函数2)1(-=x y 与12-=x y 在+R 上都是增函数。
其中正确命题的序号是 .三、解答题:本大题共6小题,共74分。
解答应写出文字说明、证明过程或演算步骤。
17.(本小题满分12分)设0>a ,xxea aex f +=)(是R 上的偶函数。
⑴求a 的值;⑵证明:)(x f 在()+∞,0上是增函数。
18.(本小题满分12分)记函数132)(++-=x x x f 的定义域为A,)1)](2)(1lg[()(<---=a x a a x x g 的定义域为B 。
⑴求A;⑵若B A ⊆,求实数a 的取值范围。
19.(本小题满分12分)绿缘商店每月按出厂价每瓶3元购进一种饮料。
根据以前的统计数据,若零售价定为每瓶4元,每月可售出400瓶;若每瓶售价每降低0.05元,则可多销售40瓶,在每月的进货量当月销售完的前提下,请你给该商店设计一个方案:销售价应定为多少元和从工厂购进多少瓶时,才可获得最大的利润? 20.(本小题满分14分)已知方程022=++ax x ,分别在下列条件下,求实数a 的取值范围。
⑴方程的两根都小于1-;⑵方程的两个根都在区间)0,2(-内;⑶方程的两个根,一个根大于1-,一个根小于1-。
21.(本小题满分14分)已知函数)1,0)(1(log )(),1(log )(≠>-=+=a a x x g x x f a a 且其中 ⑴求函数)()(x g x f +的定义域;⑵判断函数)()(x g x f -的奇偶性,并予以证明;⑶求使)()(x g x f +<0成立的x 的集合。
22.(本小题满分12分)函数)(x f 对任意R b a ∈,都有,1)()()(-+=+b f a f b a f 并且当0>x 时1)(>x f 。
求证:函数)(x f 是R 上的增函数。
⒈D ⒉ A ⒊B ⒋B ⒌B ⒍A ⒎B ⒏D ⒐D ⒑A ⒒ B ⒓ C⒔⎪⎭⎫⎢⎣⎡43,0 ⒕41-<a ⒖11 ⒗①③ ⒘⑴ xxea aex f +=)(是R 上的偶函数 ∴对于任意的x ,都有)()(x f x f =- 即xxxxea aeea ae+=+--,化简得()1)(1=+-xxee aa ,01>+xxee 1=∴a⑵由⑴得xxee xf -+=)(故任取,则2211)()(21x x x x eeeex f x f ----+=-211221)(x x x x x x ee eeee-+-= )11)((2121x x x x eeee--=<>>∴>>0,102121x x eex x 1121<x x e e ∴)11)((2121x xx x ee ee-->0因此)()(21x f x f > 所以)(x f 在)(+∞,0上是增函数。
⒙⑴由,11,011,0132≥-<∴≥+-≥++-x x x x x x 或得即A=),),(∞+⋃-∞-1[1. ⑵由.0)2)(1,0)2)(1(<--->---a x a x x a a x 得( ,1,221,1112,<-≤≥-≤+≥∴⊆a a a a a A B 而或即或2121-≤<≤∴a a 或.故当A B ⊆时,实数a 的取值范围是(.1,21]2,⎪⎭⎫⎢⎣⎡⋃-∞- ⒚设销售价在4元的基础上降低x 05.0,利润为y ,)40400(30)40400)(05.04(x x x y +-+-=4002022++-=x x450)5(22+--=x60075.3505.045瓶元时,工厂购进即定价为当=⨯-=∴x ⒛令.2)(2++=ax xx f 因为方程有两个实根,所以,08,02≥-≥∆a 即 故.2222≥-≤a a 或 ①⑴因为0)(=x f 的两个根都小于,1-所以0)1(>-f ,且对称轴在1-=x 左方,故有⎪⎩⎪⎨⎧-<->-,12,03aa 再综合①得.322<≤a⑵因为两根均在,02)0()0,2(>=-f 内,故,0)2(>-f且对称轴在之间与02=-=x x ,故,03>-a且,022<-<-a 再综合①得.322<≤a⑶因为一根大于,1-一根小于1-,故.3,0)1(><-a f 所以21.⑴由题意得:⎩⎨⎧>->+0101x x 11<<-∴x所以所求定义域为{}R x x x ∈<<-,11| ⑵令H )()()(x g x f x -=x x x x x aaa-+=--+=11log)1(log)1(log )故)(x H 为奇函数,(11log11log 11log)(1H xx x x xx x H a a-=-+-=⎪⎭⎫⎝⎛-+=++-=-- ∴.)()()(为奇函数x g x f x H -=⑶1log0)1(log)1)(1(log)()(2aaax x x x g x f =<-=-+=+ ,0110,11012<<-<<<-<>∴x x x a 或故时,当 当.,11102不等式无解时,>-<<x a 综上:}.0110{1<<-<<>∴x x x a 或的集合为时,所求当22.设任取,0,,2121>>∈x x R x x 且 )()()()(222121x f x x x f x f x f --+=-∴1)()()(2221--+-=x f x f x x f 1)(21--=x x f1)(,1)(,0,21212121>-->-∴>-∴>x x f x x f x x x x 即。