2011年保定市初中毕业生第一次模拟考试数学试题(word版)
- 格式:doc
- 大小:387.00 KB
- 文档页数:9
2013年河北省保定市中考数学一模试卷一、选择题(共12小题,1~6小题,每小题2分,7~12小题,每小题2分,共30分,在每小题给出的四个选项中只有一项是符合题目要求的)1.(2分)(2013•红河州)﹣的倒数是()解:﹣的倒数为﹣25523.(2分)(2013•保定一模)如图是每个面上都有一个汉字的正方体的平面展开图,在此正方体与“保”字相对的面上的汉字是()4.(2分)(2013•聊城)PM2.5是大气压中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学记5.(2分)(2013•保定一模)如图,已知△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于()6.(2分)(2012•珠海)某同学对甲、乙、丙、丁四个市场二月份每天的白菜价格进行调查,计算后发现这个月四个市场的价格平均值相同,方差分别为,,,.二月份白解:因为甲、乙、丙、丁四个市场的方差分别为,7.(3分)(2013•保定一模)如图,△ABC的三个顶点都在正方形网格的格点上,则tan∠A的值为().tanA=.8.(3分)(2013•保定一模)在菱形ABCD中,两条对角线AC=6,BD=8,则此菱形的边长为()∴AB==59.(3分)(2005•仙桃)若点(﹣2,y1)、(1,y2)、(3,y3)都在反比例函数的图象上,则y1,y2,10.(3分)(2013•保定一模)如图⊙O是Rt△ABC的内切圆,D,E,F分别为切点,∠ACB=90°,则∠EDF 的度数为()∠EDF=∠EOF,代入求出即可.∴∠EDF=∠EOF=45°,的度数和求出∠EDF=11.(3分)(2013•保定一模)如图,点D是等边△ABC内一点,将△DBC绕点B旋转到△EBA的位置,则∠EBD 的度数是()12.(3分)(2013•保定一模)已知抛物线y=ax2+bx+3在坐标系中的位置如图所示,它与x,y轴的交点分别为A,B,P是其对称轴x=1上的动点,根据图中提供的信息,给出以下结论:①2a+b=0,②x=3是ax2+bx+3=0的一个根,③△PAB周长的最小值是+3.其中正确的是()=1∴BA′=3.即△PAB3.二、填空题(本大题共6个小题,每小题3分,满分18分,把答案写在题中横线上)13.(3分)(2013•保定一模)在实数范围内分解因式:a﹣4a3= a(1+2a)(1﹣2a).14.(3分)(2013•保定一模)若规定运算符号“★”具有性质:a★b=a2﹣ab.例如(﹣1)★2=(﹣1)2﹣(﹣1)×2=3,则1★(﹣2)= 3 .15.(3分)(2010•河南)如图矩形ABCD中,AB=1,AD=,以AD的长为半径的⊙A交BC于点E,则图中阴影部分的面积为.AE=AD=AE=AD=﹣﹣.16.(3分)(2012•呼和浩特)一组数据﹣1,0,2,3,x,其中这组数据的极差是5,那么这组数据的平均数是 1.6或0.4 .17.(3分)(2007•荆州)如图有一张简易的活动小餐桌,现测得OA=OB=30cm,OC=OD=50cm,桌面离地面的高度为40mm,则两条桌腿的张角∠COD的度数为120 度.18.(3分)(2013•保定一模)将从1开始的正整数按如图方式排列.字母P,Q,M,N表示数字的位置,则2013这个数应排的位置是N .(填P,Q,M,N)三、解答题(本大题共8个小题;共72分,解答应写出文字说明、证明过程或演算步骤)19.(8分)(2013•安阳一模)先化简,再求代数式的值.,其中a=(﹣1)2012+tan60°.•=•,时,原式.20.(8分)(2010•福州)近日从省家电下乡联席办获悉,自2009年2月20日我省家电下乡全面启动以来,最受农户热捧的四种家电是冰箱、彩电、洗衣机和空调,其销售比为5:4:2:1,其中空调已销售了15万台.根据上述销售情况绘制了两个不完整的统计图:请根据以上信息解答问题:(1)补全条形统计图;(2)四种家电销售总量为180 万台;(3)扇形统计图中彩电部分所对应的圆心角是120 度;(4)为跟踪调查农户对这四种家电的使用情况,从已销售的家电中随机抽取一台家电,求抽到冰箱的概率.心角=360×=120°;=.答:抽到冰箱的概率是21.(8分)(2013•保定一模)如图,AB表示的是某单位办公楼的高,AE表示从楼顶垂挂下的宣传条幅,其长为30米,CD表示张明同学所处的位置与高度,张明同学测得条幅顶端A的仰角为60°,测得条幅底端E的仰角为30°.求张明同学到办公楼的水平距离(精确到整米数).(参考数据:≈1.41,≈1.73)DF==∴DF=22.(8分)(2012•温州)如图,△ABC中,∠ACB=90°,D是边AB上一点,且∠A=2∠DCB.E是BC边上的一点,以EC为直径的⊙O经过点D.(1)求证:AB是⊙O的切线;(2)若CD的弦心距为1,BE=EO,求BD的长.∵OD=OE=BE=BD=2∴DE=.23.(9分)(2010•河南)如图,直线y=k1x+b与反比例函数(x>0)的图象交于A(1,6),B(a,3)两点.(1)求k1、k2的值.(2)直接写出时x的取值范围;(3)如图,等腰梯形OBCD中,BC∥OD,OB=CD,OD边在x轴上,过点C作CE⊥OD于点E,CE和反比例函数的图象交于点P,当梯形OBCD的面积为12时,请判断PC和PE的大小关系,并说明理由.(的图象上,﹣=∴n=CE24.(9分)(2013•保定一模)阅读:Rt△ABC和Rt△DBE,AB=BC,DB=EB,D在AB上,连接AE,AC,如图1求证:AE=CD,AE⊥CD.证明:延长CD交AE于K在△AEB和△CDB中∵∴△AEB≌△CDB(SAS)∴AE=CD∠EAB=∠DCB∵∠DCB+∠CDB=90°∠ADK=∠CDB∴∠ADK+∠DAK=90°∴∠ADK=90°∴AE⊥CD(2)类比:若关系和位置关系还成立吗?若成立,请给与证明;若不成立,请说明理由.将(1)中的Rt△DBE 绕点逆时针旋转一个锐角,如图2所示,问(1)中线段AE,CD间的数量;(3)拓展:在图2中,将“AB=BC,DB=EB”改成“BC=kAB,DB=kEB,k>1”其它条件均不变,如图3所示,问(1)中线段AE,CD间的数量关系和位置关系还成立吗?若成立,请给与证明;若不成立,请说明理由.得出===AE=CD==,=,==,∠EAB=∠DCB,∴AE=25.(10分)(2009•三明)为把产品打入国际市场,某企业决定从下面两个投资方案中选择一个进行投资生产.方案一:生产甲产品,每件产品成本为a万美元(a为常数,且3<a<8),每件产品销售价为10万美元,每年最多可生产200件;方案二:生产乙产品,每件产品成本为8万美元,每件产品销售价为18万美元,每年最多可生产120件.另外,年销售x件乙产品时需上交0.05x2万美元的特别关税.在不考虑其它因素的情况下:(1)分别写出该企业两个投资方案的年利润y1、y2与相应生产件数x(x为正整数)之间的函数关系式,并指出自变量的取值范围;(2)分别求出这两个投资方案的最大年利润;(3)如果你是企业决策者,为了获得最大收益,你会选择哪个投资方案?26.(12分)(2013•保定一模)如图1,图2所示,直线l:y=x+b过点P,点P自原点O开始,沿x轴正半轴以每秒1个单位的速度运动.设运动时间为t(s),(0≤t≤7).直角梯形ABCD,AB∥CD,∠D=90°,A(1,O),B(7,0),C(4,3).直线l与折线DC﹣CB交于N,与折线DA﹣AB交于M,与y轴交于点Q.设△BMN的面积为S.(1)用含t的代数式表示b;(2)确定S与t之间的函数关系式;(3)t为何值时,S最大;(4)t为何值时,S等于梯形ABCD面积的一半;(5)直接写出t为何值时,△POQ与以P,B,C为顶点的三角形相似.()×3﹣((﹣t+7∴NE=PB=(∴S=)×(﹣+﹣)∵a=﹣<,(∵a==)×3=﹣)=(,7±3.,BC=3PQ=,。
机密★2011年6月22日江西省2011年初中毕业暨中等学校招生考试数学试题卷(B卷)说明:1.本卷共有六个大题,25个小题,全卷满分120分,考试时间120分钟.2.本卷分为试题卷和答题卷,答案要求写在答题卷上,不得在试题卷上作答,否则不给分.一、选择题(本大题共8个小题,每小题3分,共24分)每小题只有一个正确选项.1.下列各数中,最小的是().A. 0.1B. 0.11C.0.02D.0.122.根据2010年第六次全国人口普查主要数据公报,广东省常住人口约为10430万人.这个数据可以用科学计数法表示为().A. 1.043×108人B. 1.043×107人C.1.043×104人D. 1043×105人3.如图,是一个实物在某种状态下的三视图,与它对应的实物图应是().4.下列运算不.正确的是().A.-(a-b)=-a + bB. a2·a3=a6C.a2-2ab+b2=(a-b)2D.3a-2a=a5.已知一次函数y=-x+b的图象经过第一、二、四象限,则b的值可以是( ).A .-2 B.-1 C. 0 D. 26.已知二次函数y=x2+bx-2的图象与x轴的一个交点为(1,0),则它与x轴的另一个交点坐标是().A .(1,0) B.(2,0) C.(-2,0) D.(-1,0)7. 一组数据:2,3,4,x中若中位数与平均数相等,则数x不.可能是()A.1B.2C.3D.58. 如图,将矩形ABCD对折,得折痕PQ,再沿MN翻折,使点C 恰好落在折痕PQ上的点C′处,点D落在D′处,其中M是BC的中点.连接AC′,BC′,则图中共有等腰三角形的个数是().A .1 B.2 C.3 D.4 ABD′PCDMNEC′QF第8题二、填空题(本大题共8小题,每小题3分,共24分) 9. 计算:(-2)2-1=__________. 10. 分式方程xx 112=-的解是__________. 11. 在⊙O 中,点B 在⊙O 上,四边形AOCB 是矩形,对角线AC 的长为5,则⊙O的半径长为 . 12. 试写一个..有两个不相等实根的一元二次方程: 13. 因式分解:3a+12a 2+12a 3= . 14.如图,在△A BC 中,A B =AC ,∠A =80°,E ,F ,P 分别是A B ,A C ,BC 边上一点,且BE =BP ,CP =CF ,则∠EPF = 度.15.一块直角三角板放在两平行直线上,如图所示,∠1+∠2=___________度.16. 在直角坐标系中,已知A (1,0)、B (-1,-2)、C (2,-2)三点坐标,若以 A 、B 、C 、D 为顶点的四边形是平行四边形,那么点D 的坐标可以是 .(填序号,多填或填错得0分,少填酌情给分) ①(-2,0) ②(0,-4) ③(4,0) ④(1,-4) . 三、(本大题共3小题,每小题6分,共18分) 17.先化简,再求值:2211()11a a a a++÷--,其中2a =第11题11 2第15题18.解不等式组:{215,3 5.x x ->-+<-19.如图,在△ABO 中,已知A (0,4),B (-2,0), D 为线段AB 的中点. (1)求点D 的坐标;(2)求经过点D 的反比例函数解析式. 四、(本大题共2小题,每小题8分,共16分)20. 某学校决定:每周一举行的升旗仪式,若遇下雨或其它恶劣天气,学生就在教室内参加升旗活动. 针对这一决定,校学生会在学生中作了一个抽样调查,调查问卷中有三个选项:A 、赞成;B 、不赞成;C 、无所谓.参加调查的学生共300人,调查结果用条形统计图表示﹙如图所示﹚. (1)①请补全条形统计图; ②还可以用哪类统计图表示调查结果?(2)据此推测,全校2100位学生中,持“无所谓”观点的学生有多少? (3)针对持B,C 两种观点的学生,你有什么建议?21.某教室的开关控制板上有四个外形完全相同的开关,其中两个分别控制A 、B 两盏电灯,另两个分别控制C 、D 两个吊扇.已知电灯、吊扇均正常,且处于不工作状态,开关与电灯、电扇的对应关系未知.(1)若四个开关均正常,则任意按下一个开关,正好一盏灯亮的概率是多少?(2)若其中一个控制电灯的开关坏了,则任意按下两个开关,正好一盏灯亮和一个扇转的概率是多少?请用树状图法或列表法加以说明.开关开关开关开关开关控制板3060 90 120 150180 210学生数/位调查选项 A B C五、(本大题共2小题,每小题9分,共18分) 22.如图,将△ABC 的顶点A 放在⊙O 上,现从AC 与⊙O 相切于点A (如图1)的位置开始,将△ABC 绕着点A 顺时针旋转,设旋转角为α(0°<α<120°),旋转后AC ,AB 分别与⊙O 交于点E ,F ,连接EF (如图2). 已知∠BAC =60°,∠C =90°,AC =8,⊙O 的直径为8.(1)在旋转过程中,有以下几个量:①弦EF 的长 ② EF的长 ③∠AFE 的度数 ④点O 到EF 的距离.其中不变的量是 (填序号); (2)当BC 与⊙O 相切时,请直接写出α的值,并求此时△AEF 的面积.23.小明家需要用钢管做防盗窗,按设计要求需要用同种规格、每根长6米的钢管切割成长0.8m 的钢管及长2.5m 的钢管.﹙余料作废﹚ (1)现切割一根长6m 的钢管,且使余料最少.问能切出长0.8米及2.5米的钢管各多少根? (2)现需要切割出长0.8米的钢管89根,2.5米的钢管24根.你能用23根长6m 的钢管完成切割吗?若能,请直接写出切割方案;若不能,请说明理由.六、(本大题共2小题,每小题10分,共20分) 24.已知:抛物线2(2)y a x b =-+ (0)ab <的顶点为A ,与x 轴的交点为B ,C (点B 在点C 的左侧).(1)直接写出抛物线对称轴方程;(2)若抛物线经过原点,且△ABC 为直角三角形,求a ,b 的值;(3)若D 为抛物线对称轴上一点,则以A ,B ,C ,D 为顶点的四边形能否为正方形?若能,请写出a ,b 满足的关系式;若不能,说明理由.25.某课题学习小组在一次活动中对三角形的内接正方形的有关问题进行了探讨:定义:如果一个正方形的四个顶点都在一个三角形的边上,那么我们就把这个正方形叫做三角形的内接正方形.结论:在探讨过程中,有三位同学得出如下结果:甲同学:在钝角、直角、不等边锐角三角形中分别存在____个、________个、A O 备用图 A BC O 图1 A B C O E F图2________个大小不同的内接正方形.乙同学:在直角三角形中,两个顶点都在斜边上的内接正方形的面积较大.丙同学:在不等边锐角三角形中,两个顶点都在较大边上的内接正方形的面积反而较小.任务:(1)填充甲同学结论中的数据;(2)乙同学的结果正确吗?若不正确,请举出一个反例并通过计算给予说明,若正确,请给出证明;(3)请你结合(2)的判定,推测丙同学的结论是否正确,并证明(如图,设锐角△ABC 的三条边分别为,,,a b c 不妨设a b c >>,三条边上的对应高分别为,,a b c h h h ,内接正方形的边长分别为,,a b c x x x .若你对本小题证明有困难,可直接用“111a b ca hb hc h <<+++”这个结论,但在证明正确的情况下扣1分).·机密2011年6月22日江西省2011年中等学校招生考试数学试题卷(B 卷)参考答案及评分意见说明:1.如果考生的解答与本答案不同,可根据试题的主要考查内容参考评分标准制定相应的评分细则后评卷.2.每题都要评阅到底,不要因为考生的解答中出现错误而中断对该题的评阅,当考生的解答在某一步出现错误,影响了后续部分时,如果该步以后的解答未改变这一题的内容和难度,则可视影响的程度决定后面部分的给分,但不得超过后面部分应给分数的一半,如果这一步以后的解答有较严重的错误,就不给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数.一、选择题(本大题共8个小题,每小题3分,共24分)1.C 2.A 3.A 4.B 5.D 6.C 7.B 8.C 二、填空题(本大题共8个小题,每小题3分,共24分)9.3 10.1x =- 11.5 12.如:2450x x +-= 13. ()2312a a + 14.50 15.90° 16.①②③ 三、(本大题共3个小题,每小题各6分,共18分) 17.解:原式=()()()()21111111a a a a a a a⎡⎤++-⨯⎢⎥+-+-⎢⎥⎣⎦=211a -. ………………3分 当2a =时, 原式=1121=-. ………………6分 18.解:由①得 3x >, ………………2分由②得 8x >, ………………4分 ∴原不等式组的解集是8x >. ………………6分19.解:(1) ∵(0,4),(2,0)A B -, ∴2,4OB OA ==.过点D 作D E ⊥x 轴于点E ,则122DE OA ==,112BE OB ==,∴OE =1, ∴()1,2D -. …………3分 (2)设经过点D 的反比例函数解析式为ky x=. 把()1,2-代入k y x =中,得:21k =-, ∴2k =-,∴2y x=-. ……6分四、(本大题共2个小题,每小题8分,共16分)20.解:(1)①图略. ………………2分②还可以用扇形统计图表示调查结果.………………4分(2)全校2100位学生中,持“无所谓”观点的学生有302100210300⨯=(人).………………6分(3)答案合理、上进即可.………………8分21.解:(1)P(正好一盏灯亮)=2142=. ………………2分(2)不妨设控制灯A的开关坏了.画树状图如下:所有出现的等可能性结果共有12种,其中满足条件的结果有4种.∴P(正好一盏灯亮和一个扇转)=41123=. ………………6分方法二列表格如下:A B C DA A、B A、C A、DB B、A B、C B、DC C、A C、B C、DD D、A D、B D、C所有出现的等可能性结果共有12种,其中满足条件的结果有4种.∴P(正好一盏灯亮和一个扇转)=41123=. ………………6分(3) P(正好一盏灯亮和一个扇转)=41123=. ………………8分五、(本大题共2个小题,每小题9分,共18分).22.解:(1)①,②,③.(多填或填错得0分,少填酌情给分)…………3分(2)α=90°. …………5分依题意可知,△ACB旋转90°后AC为⊙O直径,且点C与点E重合,因此∠AFE=90°. …………6分∵AC=8,∠BAC=60°,ABCDCABDBACDDA B C 第一次第二次306090120150180210学生数/位调查选项A B CABC(E)OF∴AF =142AC =,EF =43, …………8分∴S △AEF =1443832⨯⨯=. …………9分23.解:(1)若只切割1根长2.5米的钢管,则剩下3.5米长的钢管还可以切割长0.8米的钢管4根,此时还剩余料0.3米;若切割2根长2.5米的钢管,则剩下1米长的钢管还可以切割长0.8米的钢管1根,此时还剩余料0.2米;∴当切割2根长2.5米的钢管、1根长0.8米的钢管时,余料最少. …………5分(2)用22根长6m 的钢管每根切割1根长2.5米的钢管,4根长0.8米的钢管;用1根长6m 的钢管切割2根长2.5米的钢管,1根长0.8米的钢管;…………9分 或用12根长6m 的钢管每根切割2根长2.5米的钢管,1根长0.8米的钢管;用11根长6m 的钢管每根切割7根长0.8米的钢管. …………9分六、(本大题共2个小题,每小题10分,共20分)24.解:(1)抛物线对称轴方程:2x =. ………2分(2)设直线2x =与x 轴交于点E ,则E (2,0).∵抛物线经过原点, ∴B (0,0),C (4,0). ………3分 ∵△ABC 为直角三角形,根据抛物线的对称性可知AB AC =,∴AE BE EC ==, ∴A (2,-2)或(2,2).当抛物线的顶点为A (2,-2)时,()222y a x =--,把(0,0)代入,得:12a =,此时,2b =-. ………5分当抛物线的顶点为A (2,2)时,()222y a x =-+,把(0,0)代入,得:12a =-,此时,2b =.∴12a =,2b =-或12a =-,2b =. ………7分(3)依题意,B 、C 关于点E 中心对称,当A,D 也关于点E 对称,且BE AE =时, 四边形ABDC 是正方形. ∵()0,A b , ∴AE b =, ∴()2,0B b -,把()2,0B b -代入()22y a x b =-+,得 20ab b +=,∵0b ≠, ∴1ab =-. ………10分O xyAB CE25.解: (1)1,2,3. ………………3分 (2)乙同学的结果不正确. ………………4分 例如:在R t △ABC 中,∠B =90°,1,AB BC ==则2AC =. 如图①,四边形DEFB 是只有一个顶点在斜边上的内接正方形.设它的边长为a ,则依题意可得:111a a -=,∴12a =.如图②,四边形DEFH 两个顶点都在斜边上的内接正方形.设它的边长为b ,则依题意可得:22222b b -=,∴23b =. ∴a b >. ………………7分(3)丙同学的结论正确.设△ABC 的三条边分别为,,,a b c 不妨设a b c >>,三条边上的对应高分别为,,a b c h h h ,内接正方形的边长分别为,,a b c x x x . 依题意可得:a a a a x h x a h -=, ∴a a a ah x a h =+.同理 bb bbh x b h =+. ∵()()()22112()2a b a b a b a b a bb a a b ah bh S S x x S a h b h a h b h a h b h Sb h a h a h b h -=-=-=-++++++=+--++=()()222a b S S S b a a h b h ba ⎛⎫+-- ⎪++⎝⎭ =()221()()a b S S b a a h b h ab ⎛⎫∙-- ⎪++⎝⎭=()21()()a a b h S b a a h b h b ⎛⎫∙-- ⎪++⎝⎭又∵,a b a h b <<, ∴()10ah b a b ⎛⎫--< ⎪⎝⎭, ∴a b x x <,即22a b x x <.∴在不等边锐角三角形中,两个顶点都在较大边上的内接正方形的面积反而较小. ………………10分A BCD EF图①ABCD E FH图②。
A OBCD A B C ED 中考数学试题一、选择题(本题共32分,每小题4分)1.- 34的绝对值是【 】A .- 4 3B . 4 3C .- 3 4D . 342.我国第六次全国人口普查数据显示,居住在城镇的人口总数达到665 575 306人.将665 575 306用科学记数法表示(保留三个有效数字)约为【 】A .66.6×107B .0.666×108C .6.66×108D .6.66×107 3.下列图形中,即是中心对称又是轴对称图形的是【 】A .等边三角形B .平行四边形C .梯形D .矩形 4.如图,在梯形ABCD 中,AD ∥BC ,对角线AC 、BD 相交于点O , 若AD =1,BC =3,则OAOC的值为【 】 A . 1 2 B . 1 3 C . 1 4 D . 195则这10个区县该日最高气温的人数和中位数分别是【 】A .32,32B .32,30C .30,32D .32,316.一个不透明的盒子中装有2个白球,5个红球和8个黄球,这些球除颜色外,没有任何其他区别,现从这个盒子中随机摸出一个球,摸到红球的概率为【 】 A .5 18 B . 1 3 C . 2 15 D . 1157.抛物线y =x 2-6x +5的顶点坐标为【 】A .(3,-4)B .(3,4)C .(-3,-4)D .(-3,4)8.如图,在△ABC 中,∠ACB =90°,∠BAC =30°,AB =2,D 是AB 边上的一个动点(不与点A 、B 重合),过点D 作CD 的垂线交射线CA 于点E .设AD =x ,CE =y ,则下列图象中,能表示y 与x 的函数关系图象大致是【 】二、填空题(本题共16分,每小题4分)9.若分式x ―8x的值为0,则x 的值等于________. 10.分解因式:a 3―10a 2+25a =______________.11.若右图是某几何体的表面展开图,则这个几何体是__________.12.在右表中,我们把第i 行第j 列的数记为a ij (其中i ,j 都是不大于5的正整数),对于表中的每个数a ij ,规定如下:当i ≥j 时,a ij =1;当i <j 时,a ij =0.例如:当i =2,j =1时,a =a =1.按此规定,a =_____;表中的25个数中,共有_____A .B .C .D .FE x13.计算:01)2(2730cos 221π-++-⎪⎭⎫⎝⎛- .14.解不等式:4(x -1)>5x -6.15.已知a 2+2ab +b 2=0,求代数式a (a +4b )-(a +2b )(a -2b )的值.16.如图,点A 、B 、C 、D 在同一条直线上,BE ∥DF ,∠A =∠F ,AB =FD .求证:AE =FC .17.如图,在平面直角坐标系xOy 中,一次函数y =-2x 的图象与反比例函数y = kx 的图象的一个交点为A (-1,n ).(1)求反比例函数y = kx的解析式;(2)若P 是坐标轴上一点,且满足P A =OA ,直接写出点P 的坐标.18.列方程或方程组解应用题:京通公交快速通道开通后,为响应市政府“绿色出行”的号召,家住通州新城的小王上班由自驾车改为乘坐公交车.已知小王家距上班地点18千米.他用乘公交车的方式平均每小时行驶的路程比他自用驾车的方式平均每小时行驶的路程的2倍还多9千米,他从家出发到达上班地点,乘公交车方式所用时间是自驾车方式所用时间的 37.小王用自驾车方式上班平均每小时行驶多少千米?A B C D19.如图,在△ABC 中,∠ACB =90°,D 是BC 的中点,DE ⊥BC ,CE ∥AD .若AC =2,CE =4,求四边形ACEB 的周长.21.以下是根据北京市国民经济和社会发展统计公报中的相关数据,绘制统计图的一部分.请根据以上信息解答下列问题:(1)2008年北京市私人轿车拥有是多少万辆(结果保留三个有效数字)? (2)补全条形统计图;(3)汽车数量增多除造成交通拥堵外,还增加了碳排放量,为了了解汽车碳排放量的情况,小明同学通过网络了解到汽车的碳排放量与汽车排量有关.如:一辆排量为1.6L 的轿车,如果一年行驶1万千米,这一年,它碳排放量约为2.7吨.于是他调查了他所居住小区的150辆私人轿车,不同排量的轿车数量如下表所示.如果按照小明的统计数据,请你通过计算估计,2010年北京市仅排量为1.6L 的这类私人轿车(假设每辆车平均一行行驶1万千米)的碳排放总量约为多少万吨? 北京市2001~2010年私人轿车拥有量的年增长率统计图 北京市2001~2010年 私人轿车拥有量统计图A E F 图3 22.阅读下面材料:小伟遇到这样一个问题:如图1,在梯形ABCD 中,AD ∥BC ,对角线AC 、BD 相交于点O .若梯形ABCD 的面积为1,试求以AC 、BD 、AD +BC 的长度为三边长的三角形的面积.小伟是这样思考的:要想解决这个问题,首先应想办法移动这些分散的线段,构造一个三角形,再计算其面积即可.他先后尝试了翻折、旋转、平移的方法,发现通过平移可以解决这个问题.他的方法是过点D 作AC 的平行线交BC 的延长线于点E ,得到的△BDE 即是以AC 、BD 、AD +BC 的长度为三边长的三角形(如图2).参考小伟同学的思考问题的方法,解决下列问题:如图3,△ABC 的三条中线分别为AD 、BE 、CF .(1)在图3中利用图形变换画出并指明以AD 、BE 、CF的长度为三边长的一个三角形(保留画图痕迹); (2)若△ABC 的面积为1,则以AD 、BE 、CF 的长度为三边长的三角形的面积等于_______.24.(7分)在□ABCD 中,∠BAD 的平分线交直线BC 于点E ,交直线DC 于点F .(1)在图1中,证明:CE =CF ; (2)若∠ABC =90°,G 是EF 的中点(如图2),直接写出∠BDG 的度数; (3)若∠ABC =120°,FG ∥CE ,FG =CE ,分别连结DB 、DG (如图3),求∠BDG 的度数.B BADADC C EE G FABC DE GF 图1图2图3BBCADOADCEO图2图1数学试卷答案及评分参考13、解:()0122730221π-++-⎪⎭⎫⎝⎛- cos=1332322++⨯- =13332++- =332+.14、解:去括号,得6544->-x x移项, 得6454->-x x合并, 得2->-x 解得 2<x所以原不等式的解集是2<x . 15、解:()()()b a b a b a a 224-+-+ =()22244b a ab a --+ =244b ab +∵0222=++b ab a ∴0=+b a∴原式=()b a b +4=0. 16、证明:∵BE ∥DF , ∴∠ABE=∠D .在△ABE 和△FDC 中,∴△ABE ≌△FDC . ∴AE =FC .17、解(1)∵A (-1,n )在一次函数x y 2-=∴n =2-×(1-)=2.∴点A 的坐标为(-1,2).∵点A 在反比例函数xky =的图象上,∴2-=k .∴反比例函数的解析式为xy 2-=. ∠ABE=∠D AB=FD∠A=∠F18、解:设小王用自驾车方式上班平均每小时行使x 千米. 依题意,得xx 18739218⨯=+ 解得 27=x .经检验,27=x 是原方程的解,且符合题意. 答;小王用自驾车方式上班平均每小时行使27千米. 四、解答题19、解:∵∠ACB=90°,DE ⊥BC , ∴AC ∥DE .又∵CE ∥AD ,∴四边形ACED 的是平行四边形. ∴DE=AC=2.在Rt △CDE 中,由勾股定理得3222=-=DE CE CD . ∵D 是BC 的中点, ∴BC=2CD=34.在Rt △ABC 中,由勾股定理得13222=+=BC AC AB . ∵D 是BC 的中点,DE ⊥BC , ∴EB=EC=4.∴四边形ACEB 的周长= AC+CE+EB+BA=10+132. 21、解(1)146×(1+19%) =173.74≈174(万辆).∴2008年北京市私人轿车拥有量约是174万辆.(2)如右图. (3)276×15075×2.7=372.6(万吨) 估计2010年北京市仅排量为1.6L的这类私人轿车的碳排放总量约为372.6万吨.22、解:△BDE 的面积等于1 . (1)如图.以AD 、BE 、CF 的长度为三边长的一个三角形是 △CFP . (2)以AD 、BE 、CF 的长度为三边长的三角形的面积等于43. . 24、(1)证明:如图1. ∵AF 平分∠BAD , ∴∠BAF=∠DAF .∵四边形ABCD 是平行四边形, ∴AD ∥BC ,AB ∥CD .∴∠DAF=∠CEF ,∠BAF=∠F .E∴CE =CF .(2)∠BDG =45°.(3)分别连结GB 、GE 、GC (如图2) ∵AB ∥DC ,∠ABC =120°, ∴∠ECF=∠ABC=120°.∵FG ∥CE 且FG =CE ,∴四边形CEGF 是平行四边形. 由(1)得CE =CF , ∴□CEGF 是菱形.∴EG =EC ,∠GCF=∠GCE=21∠ECF= 60°.∴△ECG 是等边三角形.∴EG =CG , ① ∠GEC=∠EGC=60°. ∴∠GEC=∠GCF .∴∠BEG=∠DCG . ②由AD ∥BC 及AF 平分∠BAD 可得∠BAE =∠AEB . ∴AB=BE .在□ABCD 中,AB=DC . ∴BE=DC . ③ 由①②③得△BEG ≌△DCG . ∴BG=DG ,∠1=∠2.∴∠BGD=∠1+∠3=∠2+∠3=∠EGC=60°. ∴∠BDG=2180BGD∠- =60°.图2。
2011年广东省初中毕业生学业考试数 学 试 题全卷共6页,考试用时100分钟,满分为120分。
一、选择题(本大题5小题,每小题3分,共15分)在每小题列出的四个选项中,只有一个是正确的, 1.-3的相反数是( )A .3B .31C .-3D .31-2.如图,已知∠1 = 70º,如果CD ∥BE ,那么∠B 的度数为( )A .70ºB .100ºC .110ºD .120º3.某学习小组7位同学,为玉树地震灾区捐款,捐款金额分别为5元,10元,6元,6元,7元,8元,9元,则这组数据的中位数与众数分别为( ) A .6,6B .7,6C .7,8D .6,84.左下图为主视方向的几何体,它的俯视图是( )5.下列式子运算正确的是( )A .123=-B .248=C .331=D .4321321=-++二、填空题(本大题5小题,每小题4分,共20分)6. 据中新网上海6月1日电:世博会开园一个月来,客流平稳,累计至当晚19时,参观者已超过8000000人次。
试用科学记数法表示8000000=_______________________。
7.化简:11222---+-y x y xy x=_______________________。
8.如图,已知Rt △ABC 中,斜边BC 上的高AD=4,cosB=54,则AC=____________。
9.已知一次函数b x y -=与反比例函数xy 2=的图象,有一个交点的纵坐标是2,则b 的值为________。
10.如图(1),已知小正方形ABCD 的面积为1,把它的各边延长一倍得到新正方形A 1B 1C 1D 1;把正方形A 1B 1C 1D 1边长按原法延长一倍得到正方形A 2B 2C 2D 2(如图(2));以此下去···,则正方形A 4B 4C 4D 4的面积为__________。
郑州市2011年高中毕业年级第一次质量预测数学试题(文科)第Ⅰ卷 (选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.下列四个命题中的真命题为A .Z x ∈∃0,3410<<xB .Z x ∈∃0,0150=+xC .R x ∈∀,012=-xD .R x ∈∀,022>++x x2.若向量、满足1||||==,且23)(=⋅+,则向量、的夹角为 A .030B .045C .060D .0903.若复数i R a iia ,(213∈-+为虚数单位)是纯虚数,则实数a 的值为 A .2-B .4C .6-D .64.已知集合}3,2{=A ,}06|{=-=mx x B ,若A B ⊆,则实数=mA .3B .2C .2或3D .0或2或35.设a 、b 是实数,且3=+b a ,则ba22+的最小值是A .6B .24C .62D .86.直线1+=kx y 与曲线b ax x y ++=3相切于点)3,1(A ,则=-b aA .4-B .1-C .3D .2-7.设α、β是两个不同的平面,a 、b 是两条不同的直线,给出下列四个命题,其中真命题是A .若α//a ,α//b ,则b a //B .若α//a ,β//b ,b a //,则βα//C .若α⊥a ,β⊥b ,b a ⊥,则βα⊥D .若a 、b 在平面α内的射影互相垂直,则b a ⊥ 8.已知等差数列}{n a 的前n 项和为n S ,且3184=S S ,则=168S S正视图 侧视图俯视图A .81 B .31 C .91 D .103 9.右图是一个空间几何体的三视图,如果直角三角形的直角 边长均为1,那么这个几何体的体积为A .1B .21 C .31 D .61 10.将函数)46sin(π+=x y 的图象上各点的横坐标伸长到原来的3倍,再向右平移8π个单位,得到的函数的一个对称中 心是A .)0,2(πB .)0,4(πC .)0,9(πD .)0,16(π11.已知双曲线的方程为)0,0(12222>>=-b a by a x ,双曲线一个焦点到一条渐近线的距离为c 35(c 为半焦距),则双曲线的离心率为 A .25 B .23 C .553 D .32 12.设a ,b ,c 分别是函数x x f x2log )21()(-=,x g 2)(=x x h x 21log 21()(-=的零点,则a ,b ,c 的大小关系是A .a c b <<B .c b a <<C .c a b <<D .a b c <<第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4小题每小题5分,共20分.)13.阅读右图所示的程序框图,若运行该程序后输出的y 实数x 值为 . 14.已知)2,0(πα∈,53sin =α,计算αα2tan 2cos 1+的值为 .。
2022年中考数学一轮复习:二次根式 专项练习题中考试题汇编一、选择题1. (2021•甘肃省定西市)下列运算正确的是( ) A .+=3B .4﹣=4C .×=D .÷=42. (2021•湖南省常德市)计算:5151122⎛⎫++-⋅=⎪⎝⎭( ) A. 0B. 1C. D.512- 3. (2021•湖南省衡阳市)下列计算正确的是( ) A .=±4B .(﹣2)0=1C .+=D .=34. (2021•株洲市) 计算:142-⨯=( ) A. 22-B. -2C. 2-D. 225. (2021•江苏省苏州市)计算()2的结果是( )A .B .3C .2D .96. (2021•河北省)与结果相同的是( )A .3﹣2+1B .3+2﹣1C .3+2+1D .3﹣2﹣17. (2021•广东省)若22391240a a ab b -+-+=,则ab =() A .3B .92C .43D .98. (2021•广东省)设610-的整数部分为a ,小数部分为b ,则()210a b +的值是()A .6B .210C .12D .9109(2021•湖北省恩施州)从,﹣,﹣这三个实数中任选两数相乘,所有积中小于2的有( )个. A .0B .1C .2D .310. (2021•青海省)已知a ,b 是等腰三角形的两边长,且a ,b 满足+(2a +3b﹣13)2=0,则此等腰三角形的周长为( )A .8B .6或8C .7D .7或811. (2021•浙江省杭州)下列计算正确的是( ) A .=2B .=﹣2C .=±2D .=±212. (2021•浙江省湖州市)化简8的正确结果是.A .4B .±4C .22D .22±13. (2021•浙江省嘉兴市)能说明命题“若x 为无理数,则x 2也是无理数”是假命题的反例是( ) A .x =﹣1B .x =+1C .x =3D .x =﹣14. (2021•湖北省荆门市)下列运算正确的是( ) A .(﹣x 3)2=x 5 B .=xC .(﹣x )2+x =x 3D .(﹣1+x )2=x 2﹣2x +115. (2021•重庆市B )下列计算中,正确的是( ) A .5﹣2=21 B .2+=2C .×=3D .÷=316. (2021•重庆市A )1472 ) A. 7B. 62C. 72D. 2717. (2021•襄阳市)3x +x 的取值范围是( ) A. 3x ≥-B. 3x ≥C. 3x ≤-D. 3x >-18. (2021•绥化市)01x +x 的取值范围是( )A. –1x >B. 1x ≥-且0x ≠C. 1x >-且0x ≠D. 0x ≠19. (2021•湖南省娄底市)2,5,m 22(3)(7)m m --( ) A. 210m - B. 102m -C. 10D. 4二.填空题1.(2021·安徽省)埃及胡夫金字塔是古代世界建筑奇迹之一,其底面是正方形,侧面是全等51,它介于整数n 和1n +之间,则n 的值是______. 2. (2021•湖北省黄冈市)式子在实数范围内有意义,则a 的取值范围是 a ≥﹣2 .3. (2021•江苏省连云港) 计算()25-=__________.4. (2021•江苏省南京市) 计算982-的结果是________. 5. (2021•宿迁市)若代数式22x +有意义,则x 的取值范围是____________. 6. (2021•山东省聊城市)计算:121882⎛⎫-⎪⎝⎭=_______. 7. (2021•上海市)已知43x +=,则x =___________.8. (2021•湖北省随州市)2021年5月7日,《科学》杂志发布了我国成功研制出可编程超导量子计算机“祖冲之”号的相关研究成果.祖冲之是我国南北朝时期杰出的数学家,他是第一个将圆周率π精确到小数点后第七位的人,他给出π的两个分数形式:227(约率)和355113(密率).同时期数学家何承天发明的“调日法”是程序化寻求精确分数来表示数值的算法,其理论依据是:设实数x 的不足近似值和过剩近似值分别为b a 和d c (即有b dx a c<<,其中a ,b ,c ,d 为正整数),则b d a c ++是x 的更为精确的近似值.例如:已知15722507π<<,则利用一次“调日法”后可得到π的一个更为精确的近似分数为:1572217950757+=+;由于179 3.140457π≈<,再由17922577π<<,可以再次使用“调日法”得到π的更为精确的近似分数……现已知73252<<,则使用两次“调日法”可得到2的近似分数为______.9. (2021•四川省达州市)已知a ,b 满足等式a 2+6a +9+=0,则a 2021b 2020= .10. (2021•四川省眉山市)观察下列等式:x 1===1+;x 2===1+;x 3===1+;…根据以上规律,计算x 1+x 2+x 3+…+x 2020﹣2021= . 11. (2021•遂宁市)若20a a b -++=,则b a =_____. 12. (2021•天津市)计算(101)(101)+-的结果等于_____. 13. (2021•青海省)观察下列各等式: ①; ②; ③;…根据以上规律,请写出第5个等式: . 14. (2021•山东省威海市)计算624455-⨯的结果是____________________. 15. (2021•贵州省铜仁市)计算()()271832+-=______________;三、解答题1. (2021•湖北省江汉油田)计算:03(32)4(236)812-⨯--+-+2. (2021•海南省)计算:23+|﹣3|÷3﹣×5﹣1;3. (2021•内蒙古通辽市)计算:()﹣1+(π﹣3)0﹣2cos30°+|3﹣|.答案一、选择题1.(2021•甘肃省定西市)下列运算正确的是()A.+=3B.4﹣=4C.×=D.÷=4【分析】根据二次根式的加减法对A、B进行判断;根据二次根式的乘法法则对C进行判断;根据二次根式的除法法则对D进行判断.【解答】解:A、原式=2,所以A选项的计算错误;B、原式=3,所以B选项的计算错误;C、原式==,所以C选项的计算正确;D、原式===2,所以D选项的计算错误.故选:C.2.(2021•湖南省常德市)计算:5151122⎛⎫++-⋅=⎪⎝⎭()A. 0B. 1C.D. 51 2 -【答案】C【解析】【分析】先将括号内的式子进行通分计算,最后再进行乘法运算即可得到答案.【详解】解:5151122⎛⎫++-⋅⎪⎪⎝⎭=5151 22 -+⋅=51 2 -=2.故选:C.3.(2021•湖南省衡阳市)下列计算正确的是()A.=±4B.(﹣2)0=1C.+=D.=3【分析】根据相关概念和公式求解,选出正确答案即可.【解答】解:16的算术平方根为4,即,故A不符合题意;根据公式a0=1(a≠0)可得(﹣2)0=1,故B符合题意;、无法运用加法运算化简,故,故C 不符合题意;,故D 不符合题意;故选:B .4. (2021•株洲市) 计算:142-⨯=( ) A. 22- B. -2C. 2-D. 22【答案】A5. (2021•江苏省苏州市)计算()2的结果是( )A .B .3C .2D .9【分析】按照二次根式的乘法法则求解. 【解答】解:()2=4.故选:B . 6. (2021•河北省)与结果相同的是( )A .3﹣2+1B .3+2﹣1C .3+2+1D .3﹣2﹣1【分析】化简===2,再逐个选项判断即可. 【解答】解:===2,∵3﹣2+1=2,故A 符合题意; ∵3+2﹣1=4,故B 不符合题意; ∵3+2+1=6,故C 不符合题意; ∵3﹣2﹣1=0,故D 不符合题意. 故选:A .7. (2021•广东省)若22391240a a ab b -+,则ab =() A 3B .92C .43D .9【答案】B【解析】因为22391240a a ab b -+,且30a 2291240a ab b -+ 所以3=0a ()222912432320a ab b a b a b -+--=所以3a 3332a b ==33932ab ==,考查绝对值、二次根式的非负性。
2024年河北省初中毕业生升学文化课模拟考试数学试题(二)一、单选题1.如图,围绕在正方形四周的四条线段a ,b ,c ,d 中,长度最小的是( )A .aB .bC .cD .d2.下列各式的值最小的是( )A .112-- B .112-+ C .112- D .112+ 3.如图将矩形纸片ABCD 进行折叠,如果84AEF ∠=︒,那么EHC ∠的度数为( )A .96︒B .168︒C .132︒D .144︒4.5纳米芯片非常小,相比之下,人类头发的直径大约为100000纳米,即5纳米只有人类头发直径的120000,120000用科学记数法表示为( ) A .4210-⨯ B .4510-⨯ C .5210-⨯ D .5510-⨯ 5.如图,点A ,D ,B ,C 是圆O 上的四个点,连接AB ,CD ,相交于点E ,若∠BOD =40°,∠AOC =120°,则∠AEC 等于( )A .70°B .75°C .80°D .85°6.在平面直角坐标系中,点P (﹣5,m 2+3)关于原点的对称点在( )A .第一象限B .第二象限C .第三象限D .第四象限7.计算211a a a ---的正确结果是( ) A .11a -- B .11a - C .211a a --- D .211a a -- 8.列选项中的尺规作图,能推出PA=PC 的是( )A .B .C .D .9.已知实数a ,b 满足0a b +=,0a ≠,0b ≠,则a b b a+=( ) A .1 B .2 C .-2 D .-110.如图,在平面直角坐标系中,正方形ABCD 的顶点A 的坐标为()64-,,点B ,C 在x 轴上,将正方形ABCD 平移后,点O 成为新正方形的对称中心,则正方形ABCD 的平移过程可能是( )A .向右平移8个单位长度,再向下平移4个单位长度B .向右平移4个单位长度,再向下平移4个单位长度C .向右平移2个单位长度,再向下平移4个单位长度D .向右平移4个单位长度,再向下平移2个单位长度11.如图,168∠=︒,直线a 平移后得到直线b ,则23∠-∠的度数为( )A .68°B .78°C .108°D .112°12.如图,点O 为ABC ∠内部一点,且2OB =,E 、F 分别为点O 关于射线BA ,射线BC 的对称点.当90ABC ∠=︒时,则EF 的长为( )A .4B .6C .8D .1013.给出四个命题:①若a b >,c d =,则ac bd >;②若ac bc >,则a b >;③若22ac bc >,则a b >;④若a b >,则22ac bc >.真命题是( )A .①B .②C .③D .④14.某射击运动员在训练中射击了10次,成绩如图,下列结论正确的是( )A .平均数是8B .众数是8C .中位数是9D .方差是115.将二次函数y =x 2-4x -4化为y =a(x -h)2+k 的形式,正确的是( )A .y =(x -2)2B .y =(x +2)2-8C .y =(x +2)2D .y =(x -2)2-816.我国古代数学经典著作《九章算术》中记载了一个“圆材埋壁”的问题“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?”意思是:今有一圆柱形木材,埋在墙壁中,不知大小,用锯子去锯这个木材,锯口深1DE =寸,锯道1AB =尺(1尺10=寸),则这根圆柱形木材的直径是( )A .12寸B .13寸C .24寸D .26寸二、填空题17.幻方是相当古老的数学问题,我国古代的《洛书》中记载了最早的幻方---九宫图.将数字1~9分别填入如图所示的幻方中,要求每一横行、每一竖行以及两条斜对角线上的数字之和都是15,则m 的值为.18.如图,网格纸上每个小正方形的边长为1,点A ,点C 均在格点上,点P 为x 轴上任意一点,则PAC V 周长的最小值为.19.在平面直角坐标系中,直线()0y kx b k =+<,经过点()6,0,且与坐标轴围成的三角形的面积是9,与曲线()20y x x=>的图象G 交于A ,B 两点. (1)则直线的表达式为;(2)横、纵坐标都是整数的点叫作整点.记图象G 在点A 、B 之间的部分与线段AB 围成的区域(不含边界)为W .则区域W 内的整点的坐标是.三、解答题20.请你根据下图中所给的内容,完成下列各小题.我们定义一个关于非零常数a ,b 的新运算,规定:a b ax by =+◎.例如:3232x y =+◎.(1)如果5x =-,2418=-◎,求y 的值;(2)118=◎,4220=◎,求x ,y 的值.21.某工厂进行厂长选拔,从中抽出一部分人进行筛选,其中有“优秀”,“良好”,“合格”,“不合格”.(1)本次抽查总人数为,“合格”人数的百分比为.(2)补全条形统计图.(3)扇形统计图中“不合格人数”的度数为.(4)在“优秀”中有甲乙丙三人,现从中抽出两人,则刚好抽中甲乙两人的概率为. 22.设5n 表示一个两位数,其中n 是十位上的数字(19n ≤≤),例如,当4n =时,5n 表示的两位数是45.观察以下等式:①当1n =时,2152251210025=⨯⨯+=;②当2n =时,2256252310025==⨯⨯+;③当3n =时,23512253410025==⨯⨯+;……根据以上规律,解决下列问题(1)写出第六个等式:______(2)写出你猜想的第n 个等式(用含n 的式子表示),并证明:(3)运用:若25n 与100n 的差为2525.求n 的值.23.一个不透明的口袋中放有6个涂有红、黑、白三种颜色的小球(除颜色外都相同),其中红球个数比黑球个数多2个从口袋中随机取出一个球是白球的概率为13. (1)求红球的个数;(2)如下表,不同颜色小球分别标上数字“1”,“2”,“3”,则6个球上面的数字的众数是,中位数是;取走一个红球后,剩下球上数字的中位数是;(3)从口袋中随机取出一个球后不放回,之后又随机取出一个球,用列表法或画树状图的方法,求两次都取出红球的概率.24.如图,在平面直角坐标系中,一次函数y x n =-+的图象与正比例函数2y x =的图象交于点(),4A m .(1)求m ,n 的值;(2)设一次函数y x n =-+的图象与x 轴交于点B ,与y 轴交于点C ,求点B ,点C 的坐标;(3)写出使函数y x n =-+的值小于函数2y x =的值的自变量x 的取值范围;(4)在x 轴上是否存在点P 使PAB V 为等腰三角形,若存在,请直接写出点P 的坐标;若不存在,请说明理由.25.某班级同学从学校出发去白鹿原研学旅行,一部分坐大客车先出发,余下的几人20min 后乘坐小轿车沿同一路线出行,大客车中途停车等候,5min 后小轿车赶了上来,大客车随即开动,以出发时速度的107继续行驶,小轿车保持原速度不变,最终两车相继到达了景点入口,两车距学校的路程(S 单位:km)和行驶时间(t 单位:min)之间的函数关系如图所示,请结合图象解决下列问题.(1)求大客车在途中等候时距学校的路程有多远?(2)在小轿车到达景点入口时,大客车离景点入口还有多远?26.勾股定理是人类最伟大的十个科学发现之一,西方国家称之为毕达哥拉斯定理.在我国古书《周髀算经》中就有“若勾三,股四,则弦五”的记载,我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”(如图1)后人称之为“赵爽弦图”,流传至今.(1)①请叙述勾股定理;②勾股定理的证明,人们已经找到了400多种方法,请从下列几种常见的证明方法中任选一种来证明该定理;(以下图形均满足证明勾股定理所需的条件)(2)①如图4、5、6,以直角三角形的三边为边或直径,分别向外部作正方形、半圆、等边三角形,这三个图形中面积关系满足123S S S +=的有_______个;②如图7所示,分别以直角三角形三边为直径作半圆,设图中两个月形图案(图中阴影部分)的面积分别为1S ,2S ,直角三角形面积为3S ,请判断1S ,2S ,3S 的关系并证明;(3)如果以正方形一边为斜边向外作直角三角形,再以该直角三角形的两直角边分别向外作正方形,重复这一过程就可以得到如图8所示的“勾股树”.在如图9所示的“勾股树”的某部分图形中,设大正方形M 的边长为定值m ,四个小正方形A ,B ,C ,D 的边长分别为a ,b ,c ,d ,已知123α∠=∠=∠=∠,则当α∠变化时,回答下列问题:(结果可用含m 的式子表示)①2222a b c d +++=_______;②b 与c 的关系为_______,a 与d 的关系为_______.。
第4题图灯三角尺 投影湖北省荆门市二○一一年初中毕业生学业考试数 学 试 题注意事项:1.本卷满分为120分,考试时间为120分钟.2.本卷是试题卷,不能答题,答题必须写在答题卡上.解题中的辅助线和标注角的字母、符号等务必添在答题卡的图形上.3.在答题卡上答题,选择题必须用2B铅笔填涂,非选择题必须用0.5毫米黑色签字笔或黑色墨水钢笔作答.★ 祝 考 试 顺 利 ★一、选择题(本大题共12小题,每小题只有唯一正确答案,每小题3分,共36分) 1.有理数21-的倒数是( ▲ ) A .2- B .2 C .21 D .21-2.下列四个图案中,轴对称图形的个数是( ▲ )A .1B .2C .3D .43.将代数式142-+x x 化成q p x ++2)(的形式为( ▲ )A .3)2(2+-x B .4)2(2-+x C .5)2(2-+x D .4)4(2++x4.如图,位似图形由三角尺与其灯光照射下的中心投影组成,相似比为2∶5,且三角尺的一边长为8cm ,则投影三角形的对应边长为( ▲ )A .8cmB .20cmC .3.2cmD .10cm5.有13位同学参加学校组织的才艺表演比赛,已知他们所得的分数互不相同,共设7个获奖名额.某同学知道自己的比赛分数后,要判断自己能否获奖,在下列13名同学成绩的统计量中只需知道一个量,它是( ▲ )A .众数B .方差C .中位数D .平均数 6.对于非零的两个实数a 、b ,规定11a b b a⊗=-.若1(1)1x ?=,则x 的值为( ▲ ) 第2题图A .23 B .31 C .21 D .21- 7. 如图,P 为线段AB 上一点,AD 与BC 交于E ,∠CPD =∠A =∠B ,BC 交PD 于F ,AD 交PC 于G ,则图中 相似三角形有( ▲ )A .1对B .2对C .3对D .4对 8.若等式1)23(0=-x成立,则x 的取值范围是( ▲ ) A .12x ≠ B .0x ≥且12x ≠ C .0x ≥ D .>0x 且12x ≠ 9.如图,长方体的底面边长分别为2cm 和4cm ,高为5cm .若一只蚂蚁从P 点开始经过4个侧面爬行一圈到达Q 点,则蚂蚁爬行的最短路径长为( ▲ )A .13cmB .12cmC .10cmD .8cm 10.在△ABC 中,∠A =120°,AB =4,AC =2,则sin B 的值是( ▲ )A .51714B .35C .217D .211411.关于x 的方程0)1(2)13(2=+++-a x a ax 有两个不相等的实根1x 、2x ,且有a x x x x -=+-12211,则a 的值是( ▲ )A .1B .1-C . 1或1-D .212.图①是一瓷砖的图案,用这种瓷砖铺设地面, 图②铺成了一个2×2的近似正方形,其中完整 菱形共有5个;若铺成3×3的近似正方形图案 ③,其中完整的菱形有13个;铺成4×4的近 似正方形图案④,其中完整的菱形有25个; 如此下去,可铺成一个n n ⨯的近似正方形图 案.当得到完整的菱形共181个时,n 的值为 ( ▲ )A .7B .8C .9D .10二、填空题(本大题共5小题,每小题3分,共15分)13.计算1112()2232----= ▲ .14.已知A =2x ,B 是多项式,在计算B +A 时,小马虎同学把B +A 看成了B ÷A ,结果得212x x +,则B +A = ▲ .15.如图,⊙O 是△ABC 的外接圆,CD 是直径,∠B =40°,则∠ACD 的度数是 ▲ .16.请将含60°顶角的菱形分割成至少含一个等腰梯形且面积相等的六部分,用实线画出分PC ADBEFG第7题图2cm5cmQ第9题图第12题图OCD第15题图第16题图第17题图B'yxOCBA割后的图形. 17.如图,双曲线xy 2=(x >0)经过四边形OABC 的顶点A 、C ,∠ABC =90°,OC 平分OA 与x 轴正半轴的夹角,AB ∥x 轴,将△ABC 沿AC 翻折后得△AB C ¢,B '点落在OA上,则四边形OABC 的面积是 ▲ .三、解答题(本大题共7个小题,共69分)18.(本题满分8分)解不等式组,并把解集在数轴上表示出来.331 213(1)8. x x x x ì-+?ïíï---î; ①<②19.(本题满分9分)如图,P 是矩形ABCD 下方一点,将△PCD 绕P 点顺时针旋转60°后恰好D 点与A 点重合,得到△PEA ,连接EB ,问△ABE 是什么特殊三角形?请说明理由.DCB APE第19题图20.(本题满分10分)2011年国家对“酒后驾车”加大了处罚力度,出台了不准酒后驾车的禁令.某记者在一停车场对开车的司机进行了相关的调查,本次调查结果有四种情况:①偶尔喝点酒后开车;②已戒酒或从来不喝酒;③喝酒后不开车或请专业司机代驾;④平时喝酒,但开车当天不喝酒.将这次调查情况整理并绘制了如下尚不完整的统计图,请根据相关信息,解答下列问题.(1)该记者本次一共调查了▲ 名司机; (2)求图甲中④所在扇形的圆心角,并补全图乙;(3)在本次调查中,记者随机采访其中的一名司机,求他属第②种情况的概率; (4)请估计开车的10万名司机中,不违反“酒驾”禁令的人数.21.(本题满分10分)某河道上有一个半圆形的拱桥,河两岸筑有拦水堤坝,其半圆形桥洞的横截面如图所示.已知上、下桥的坡面线ME 、NF 与半圆相切,上、下桥斜面的坡度i =1∶3.7,桥下水深OP =5米,水面宽度CD =24米.设半圆的圆心为O ,直径AB 在坡角顶点M 、N 的连线上,求从M 点上坡、过桥、下坡到N 点的最短路径长.(参考数据:π≈3,3≈1.7,tan15°=321 )第21题图图乙27021201008060402029%③④③①4②①1%人数第20题图图甲22.(本题满分10分)如图,等腰梯形ABCD 的底边AD 在x 轴上,顶点C 在y 轴正半轴上,B (4,2),一次函数1y kx =-的图象平分它的面积,关于x 的函数()232y mx m k x m k =-+++的图象与坐标轴只有两个交点,求m 的值.23.(本题满分10分)2011年长江中下游地区发生了特大旱情,为抗旱保丰收,某地政府制定了农户投资购买抗旱设备的补贴办法,其中购买Ⅰ型、Ⅱ型抗旱设备所投资的金额 型号 金额Ⅰ型设备Ⅱ型设备投资金额x (万元) x5x2 4 补贴金额y (万元))0(1≠=k kx y2)0(22≠+=a bxax y2.43.2(1)分别求1和2的函数解析式;(2)有一农户同时对Ⅰ型、Ⅱ型两种设备共投资10万元购买,请你设计一个能获得最大补贴金额的方案,并求出按此方案能获得的最大补贴金额.第22题图y =kx 1yxODC BA24.(本题满分12分)如图甲,分别以两个彼此相邻的正方形OABC 与CDEF 的边OC 、OA 所在直线为x 轴、y 轴建立平面直角坐标系(O 、C 、F 三点在x 轴正半轴上).若⊙P 过A 、B 、E 三点(圆心在x 轴上),抛物线214y x bx c =++经过A 、C 两点,与x 轴的另一交点为G ,M 是FG 的中点,正方形CDEF 的面积为1. (1)求B 点坐标;(2)求证:ME 是⊙P 的切线;(3)设直线AC 与抛物线对称轴交于N ,Q 点是此对称轴上不与N 点重合的一动点,①求△ACQ 周长的最小值;②若FQ =t ,S △ACQ =s ,直接写出....s 与t 之间的函数关系式.图甲yxP OM GF E DCBA图乙(备用图)ABCDE FGO xy湖北省荆门市二○一一年初中毕业生学业考试数学试题参考答案及评分标准一、选择题 (每选对一题得3分,共36分)1.A2.C3.C4.B5.C6.D7.C8.B9.A 10.D 11.B 12.D二、填空题(每填对一题得3分,共15分)13.0 14.x x x 2223++ 15.50° 16.方法很多,参照给分 17.2三、解答题(按步骤给分,其它解法参照此评分标准给分)18.解:由①得:x ≤1 ………………………………………………………………………2分 由②得:x >2- …………………………………………………………………………4分 综合得:-2<x ≤1 …………………………………………………………………………6分 在数轴上表示这个解集…………………………8分 【考点】解一元一次不等式组;在数轴上表示不等式的解集. 【专题】计算题;数形结合.【分析】先解每一个不等式,再求解集的公共部分即可.【点评】本题考查了解一元一次不等式组,解集的数轴表示法.关键是先解每一个不等式,再求解集的公共部分.19.解:△ABE 是等边三角形.理由如下:………………………………………………… 2分 由旋转得△P AE ≌△PDC∴CD =AE ,PD =P A ,∠1=∠2……………………4分 ∵∠DP A =60°,∴△PDA 是等边三角形…………5分 ∴∠3=∠P AD =60°.由矩形ABCD 知,CD =AB ,∠CDA =∠DAB =90°. ∴∠1=∠4=∠2=30° ………………………7分 ∴AE =CD =AB ,∠EAB =∠2+∠4=60°,∴△ABE 为等边三角形.…………………………9分【考点】旋转的性质;全等三角形的判定与性质;等边三角形的判定;矩形的性质. 【专题】几何图形问题.第16题图【分析】根据旋转的性质,图形的旋转是图形上的每一点在平面上绕某个固定点旋转固定角度的位置移动,其中对应点到旋转中心的距离相等,旋转前后图形的大小和形状没有改变,根据图形求出旋转的角度,即可得出三角形的形状. 【点评】本题主要考查了图形的旋转是图形上的每一点在平面上绕某个固定点旋转固定角度的位置移动,其中对应点到旋转中心的距离相等,旋转前后图形的大小和形状没有改变,难度适中.20.解:(1)2÷1%=200 …………………………………………………………………… 2分(2)360°×70200=126°,∴④所在扇形的圆心角为126° ………………………… 4分 200×9%=18(人)200-18-2-70=110(人)第②种情况110人,第③种情况18人.注:补图②110人,③18人………………………………………………………………6分(3)P (第②种情况)=1101120020=∴他是第②种情况的概率为1120…………………………………………………………8分(4)10×(1-1%)=9.9(万人)即:10万名开车的司机中,不违反“酒驾”禁令的人数为9.9万人 ………………10分 【考点】扇形统计图;用样本估计总体;条形统计图;概率公式. 【专题】图表型. 【分析】(1)从扇形图可看出①种情况占1%,从条形图知道有2人,所以可求出总人数. (2)求出④所占的百分比然后乘以360°就可得到圆心角度数,然后求出其他情况的人,补全条形图.(3)②种情况的概率为②中调查的人数除以调查的总人数.(4)2万人数减去第①种情况的人数就是不违反“酒驾”禁令的人数. 【点评】本题考查对扇形图和条形图的认知能力,知道扇形图表现的是部分占整体的百分比,条形图告诉我们每组里面的具体数据,从而可求答案.21.解:连接OD 、OE 、OF ,由垂径定理知:PD =12CD =12(m ) ………… 1分在Rt △OPD 中,OD =2222125+=+OP PD =13(m )∴OE =OD =13m …………………………………………………………………………2分 ∵tan ∠EMO =i = 1∶3.7 ,tan15°=321+=32-≈1:3.7∴∠EMO =15°……………………………………………………………………………4分 由切线性质知∠OEM =90°∴∠EOM =75°同理得∠NOF =75°∴∠EOF =180°-75°×2=30° ………………………………6分在Rt △OEM 中,tan15°=321+=32-≈1∶3.7∴EM =3.7×13=48.1(m ) …………………………………………………………7分 又∵EF⌒ 的弧长=1801330⋅π=6.5(m ) ………………………………………9分 ∴48.1×2+6.5=102.7(m ),即从M 点上坡、过桥、再下坡到N 点的最短路径长为102.7米. ……………… 10分(注:答案在102.5m —103m 间只要过程正确,不扣分)【考点】解直角三角形的应用-坡度坡角问题. 【专题】几何图形问题.【分析】首先明确从M 点上坡、过桥、下坡到N 点的最短路径长应为如图ME +EF ⌒ +FN ,连接如图,把实际问题转化为直角三角形问题,由已知求出OD 即半径,再由坡度i =1∶3.7和tan15°=321+=32-≈1∶3.7,得出∠M =∠N =15°,因此能求出ME 和FN ,所以求出∠EOM =∠FON =90°-15°=75°,则得出EF ⌒ 所对的圆心角∠EOF ,相继求出EF ⌒ 的长,从而求出从M 点上坡、过桥、下坡到N 点的最短路径长.【点评】此题考查的知识点是解直角三角形的应用,解题的关键是由已知先求出半圆的半径和∠M 和∠N ,再由直角三角形求出MF 和FN ,求出EF⌒ 的长.22.解:过B 作BE ⊥AD 于E ,连接OB 、CE 交于点P , ∵P 为矩形OCBE 的对称中心,则过P 点的直线平分矩形OCBE 的面积. ∵P 为OB 的中点,而B (4,2) ∴P 点坐标为(2,1)………………2分 在Rt △ODC 与Rt △EAB 中, OC =BE ,AB =CD∴Rt △ODC ≌Rt △EAB (HL ), ∴S △ODC =S △EBA∴过点(0,-1)与P (2,1)的直线平分等腰梯形面积,这条直线为1y kx =-∴211k -=, ∴1k = ………………………………………………………………4分 ∵()232y mx m k x m k =-+++的图象与坐标轴只有两个交点,①当m =0时,1y x =-+,其图象与坐标轴有两个交点(0,1),(1,0) ………6分 ②当m ≠0时,函数()232y mx m k x m k =-+++的图象为抛物线,且与y 轴总有一个交点(0,2m +1)若抛物线过原点时,2m +1=0,即m =12-, EPy =kx 1yxODCBA此时2(31)4(21)m m m D=+-+=2(1)m +>0∴抛物线与x 轴有两个交点且过原点,符合题意. ……………………………8分 若抛物线不过原点,且与x 轴只有一个交点,也合题意,此时2(31)4(21)m m m ¢D=+-+=0,∴121m m ==-综上所述,m 的值为m =0或21-或-1 …………………………………………10分 【考点】梯形的性质,函数与图象与坐标轴的交点. 【专题】图形与坐标.【分析】过B 作BE ⊥AD 于E ,连接OB 、CE 交于点P ,根据矩形OCBE 的性质求出B 、P 坐标,然后再根据相似三角形的性质求出k 的值,将解析式()232y mx m k x m k =-+++中的k 化为具体数字,再分m =0和m ≠0两种情况讨论,得出m 的值.【点评】此题考查了抛物线与坐标轴的交点,同时结合了梯形的性质和一次函数的性质,要注意数形结合,同时要进行分类讨论,得到不同的m 值.23.解:(1)由题意得:①5k =2,k =52, ∴ x y 521=……………………………………2分②42 2.4,164 3.2,a b a b +=⎧⎨+=⎩∴15a =-, 85b =. ∴x x y 585122+-=………………………4分(2)设购Ⅱ型设备投资t 万元,购Ⅰ型设备投资(10-t )万元,共获补贴Q 万元.∴t t y 524)10(521-=-=,t t y 585122+-= ∴529)3(5145651585152422221+--=++-=+--=+=t t t t t t y y Q …………7分∵51-<0,∴Q 有最大值,即当3t =时,Q 最大=529∴107t -= (万元) ………………………………………………………………………9分 即投资7万元购Ⅰ型设备,投资3万元购Ⅱ型设备,共获最大补贴5.8万元………10分【考点】二次函数的应用. 【分析】(1)根据图表得出函数上点的坐标,利用待定系数法求出函数解析式即可; (2)根据12y y y =+得出关于x 的二次函数,求出二次函数最值即可.【点评】此题主要考查了待定系数法求一次函数和二次函数解析式以及二次函数的最值问题,利用函数解决实际问题是中考的热点问题.24.解:(1)如图甲,连接PE 、PB ,设PC =n ,∵正方形CDEF 面积为1,∴CD =CF =1. 根据圆和正方形的对称性知OP =PC =n , ∴BC =2PC =2n . ………1分 而PB =PE ,22222254n n n PC BC PB =+=+=,1)1(2222++=+=n EF PF PE ,x yxPOM GFE DC BA∴2251)1(n n =++, 解得1n = (21-=n 舍去) . …………… 2分 ∴BC =OC =2,∴B 点坐标为(2,2). ………3分 (2)如图甲,由(1)知A (0,2),C (2,0),∵A ,C 在抛物线上,∴2412++=bx x y ,∴23-=b ∴抛物线的解析式为223412+-=x x y即41)3(412--=x y …………………………………………………………… 4分∴抛物线的对称轴为3x =即EF 所在直线∵C 与G 关于直线3x =对称, ∴CF =FG =1,∴FM =12FG =12在Rt △PEF 与Rt △EMF 中,EF PF =2,221:1==FM EF , ∴EF PF =FMEF,∴△PEF ∽△EMF …………5分 ∴∠EPF =∠FEM ,∴∠PEM =∠PEF +∠FEM =∠PEF +∠EPF =90°∴ME 与⊙P 相切. ……………………………………………………………………6分 (注:其他方法,参照给分)(3)①如图乙,延长AB 交抛物线于A ',连接A C '交对称轴x =3于Q ,连接AQ , 则有AQ =A 'Q ,△ACQ 周长的最小值为(AC +A 'C )的长.……7分 ∵A 与A '关于直线3x =对称, ∴A (0,2),A '(6,2),∴A 'C =522)26(22=+-,而AC =222222=+ …………………8分∴△ACQ 周长的最小值为2225+……9分 ②当Q 点在F 点上方时,1S t =+ ……10分 当Q 点在线段FN 上时,1S t =- ……11分当Q 点在N 点下方时,1S t =- ……12分【考点】二次函数综合题. 【分析】(1)如图甲,连接PE 、PB ,设PC =n ,由正方形CDEF 的面积为1,可得CD =CF =1,根据圆和正方形的对称性知:OP =PC =n ,由PB =PE ,根据勾股定理即可求得n 的值,继而求得B 的坐标;(2)由(1)知A (0,2),C (2,0),即可求得抛物线的解析式,然后求得FM 的长,则可得△PEF ∽△EMF ,则可证得∠PEM =90°,即ME 是⊙P 的切线; (3)①如图乙,延长AB 交抛物线于A ′,连CA ′交对称轴3x =于Q ,连接AQ ,则有AQ =A ′Q ,△ACQ 周长的最小值为AC +A ′C 的长,利用勾股定理即可求得△ACQ 周长的最小值; ②分别当Q 点在F 点上方时,当Q 点在线段FN 上时,当Q 点在N 点下方时去分析即可求得答案.【点评】此题考查了待定系数法求二次函数的解析式,圆的性质,相似三角形的判定与性质QN A'x =3ABCDE F GOxy图乙以及勾股定理等知识.此题综合性很强,题目难度较大,解题的关键是方程思想、分类讨论与数形结合思想的应用.。
2019年河北省初中毕业生升学文化课考试数 学 试 卷本试卷分卷Ⅰ和卷Ⅱ两部分;卷Ⅰ为选择题,卷Ⅱ为非选择题. 本试卷总分120分,考试时间为120分钟.卷Ⅰ(选择题,共42分)注意事项:1.答卷Ⅰ前,考生务必将自己的姓名、准考证号、科目填涂在答题卡上,考试结束,监考人员将试卷和答题卡一并收回.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.答在试卷上无效.一、选择题(本大题共16个小题,共42分.1~10小题各3分,11~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.下列图形为正多边形的是DC B A2.规定:(→2)表示向右移动2记作+2,则(←3)表示向左移动3记作的个数为A .+3B .–3C .–13D .+133.如图1,从点C 观测点D 的仰角是A .∠DAB B .∠DCEC .∠DCAD .∠ADC4.语句“x 的18与x 的和不超过5”可以表示为A .x8+x ≤5B .x8+x ≥5 C .8x +5≤5D .8x +x =5图1水平地面5.如图2,菱形ABCD 中,∠D =150°,则∠1=A .30°B .25°C .20°D .15°6.小明总结了以下结论:①a (b +c )=ab +ac②a (b –c )=ab –ac③(b –c )÷a =b ÷a –c ÷a (a ≠0) ④a ÷(b +c )=a ÷b +a ÷c (a ≠0) 其中一定成立的个数是 则正确的配对是 A .1 B .2 C .3D .47则回答正确的是 A .◎代表∠FEC B .@代表同位角 C .▲代表∠EFCD .※代表AB8.一次抽奖活动特等奖的中奖率为15000,把15000用科学记数法表示为 A .5⨯10–4 B .5⨯10–5 C .2⨯10–4D .2⨯10–59.如图3,在小正三角形组成的网格中,已有6角形,使它们与原来涂黑的小正三角形组成的新图案 恰有三条对称轴,则n 的最小值为 A .10 B .6 C .3D .2图310.根据圆规作图的痕迹,可用直尺成功找到三角形外心的是A B C D70°50°50°70°11.某同学要统计本校图书馆最受学生欢迎的图书种类.以下是排乱的统计步骤:①从扇形图中分析出最受学生欢迎的各类; ②去图书馆收集学生借阅图书的记录; ③绘制扇形图来表示各个各类所占的百分比; ④整理借阅图书记录并绘制频数分布表. 正确统计步骤的顺序是 A .②→③→①→④ B .③→④→①→② C .①→②→④→③ D .②→④→③→①12.如图4,函数y =⎩⎪⎨⎪⎧1x (x >0)–1x (x >0)的图象所在坐标系的原点是A .点MB .点NC .点PD .点Q13.如图5,若x 为正整数...,则表示(x +2)2x 2+4x +4–1x +1的值的点落在 A .段① B .段② C .段③ D .段④图4图514.图6-2是图6-1中长方体的三视图,若用S 表示 面积,且S 主=x 2+2x ,S 左=x 2+x ,则S 俯=A .x 2+3x +2B .x 2+2C .x 2+2x +1D .2x 2+3x15.小刚在解关于x 的方程ax 2+bx +c =0(a ≠0)时,只抄对了a =1,b =4,解出其中 一个根是x =–1.他核对时发现所抄的c 比原方程的c 值小2.则原方程的根的情况是A .不存在实数根B .有两个不相等的实数根C .有一个根是x =–1D .有两个相等的实数根16.对于题目“如图7-1,平面上,正方形内有一长为12为6的矩形,它可以在正方形的内部及边界.....通过(即平移或旋转)的方式,自由地从横放移转到竖放,求正方形边长的最小整数n .”甲、乙、丙作了自认为 边长最小的正方形,先求出该边长x ,再取最小整数n . 甲:如图7-2,思路是当x 为矩形对角线长时就可以移转过去; 结果取n =13.乙:如图7-3,思路是当x 为矩形外接圆直径长时就可移转过去;结果取n =14.丙:如图7-4,思路是当x 为矩形的长与宽之和的22倍时就可移转过去;结果取n =13.下列正确的是A .甲的思路错,他的n 值对B .乙的思路和他的n 值都对C .甲和丙的n 值都对D .甲、乙的思路都错,而丙的思路对图6-2图6-1正面俯视图图7-2图7-12019年河北省初中毕业生升学文化课考试数学试卷卷Ⅱ(非选择题,共78分)注意事项:1.答卷Ⅱ前,将密封线左侧的项目填写清楚.2.答卷Ⅱ时,将答案用黑色字迹的钢笔、签字笔或圆珠笔直接写在试卷上.二、填空题(本大题有3个小题,共11分.17小题3分,18~19小题各有2个空,每空2分.把答案写在题中横线上)17.若7–2⨯7–1⨯70,则p的值为________.18.如图8,约定:上方相邻两数之和等于这两数下方箭头共同指向的数.即4+3=7则(1)用含x的式子表示m=_________;(2)当y=–2时,n的值为_________.19.勘测队按实际需要构建了平面直角坐标系,并标示了A,B,C三地的坐标,数据如图9(单位:km).笔直铁路经过A,B两地.(1)A,B间的距离_________km;(2)计划修一条从C到铁路AB的最短公路....l,并在l上建一个维修站D,使D到A,C的距离相等,则C,D间的距离为_________km.图8图9(0,-17)1)三、解答题(本大题共7个小题,共67分.解答应写出文字说明、证明过程或演算步骤)有个填写运算符号的游戏:在“1□2□6□9”中的每个□内,填入+,–,⨯,÷中的某一个(可重复使用),然后计算结果.(1)计算:1+2–6–9;(2)若1÷2⨯6□9=–6,请推算□的符号;(3)若“1□2□6–9”的□内填入符号后,使计算所得数最小,直接..写出这个最小数.已知:整式A =(n 2–1)2+(2n )2,整式B >0. 尝试 化简整式A发现 A =B 2.求整式B .联想 由上可知,B 2=(n 2–1)2+(2n )2,当n >1时,n 2–1,2n ,B 为直角三角形的 三边长,如图10.填写下表中B 的值:图10Bn 2–12n某球室有三种品牌的4个乒乓球,价格是7,8,9(单位:元)三种,从中随机拿出一个球,已知P (一次拿到8元球)=12.(1)求这4个球价格的众数;(2)若甲组已拿走一个7元球训练,乙组准备从剩余3个球中随机拿一个训练. ①所剩的3个球价格的中位数与原来4个球价格的 中位数是否相同?并简要说明理由;②乙组先随机拿出一个球后放回,之后又随机拿一个,用列表法...(如图11)求乙组两次都拿到8元球的概率.图1123.(本小题满分9分)如图12,△ABC 和△ADE 中,AB =AD =6,BC =DE ,∠B =∠D =30°,边AD 与 边BC 交于点P (不与点B ,C 重合),点B ,E 在AD 异侧,I 为△APC 的内心. (1)求证:∠BAD =∠CAE ;(2)设AP =x ,请用含x 的式子表示PD ,并求PD 的最大值;(3)当AB ⊥AC 时,∠AIC 的取值范围为m °<∠AEC <n °,分别直接..写出m ,n 的值.图12备用图24.(本小题满分10分)长为300m 的春游队伍,以v (m/s )的速度向东行进.如图13-1和13-2,当队伍 排尾行进到位置O 时,在排尾处的甲有一物品要送到排头,送到后立即返回排尾,甲的往返速度均为2v (m/s ),当甲返回排尾后,他及队伍均停止行进.设排尾从位置O 开始行进的时间为t (s ),排头..与O 的距离为S 头(m ). (1)当v =2时,解答:①求S 头与t 的函数关系式(不写t 的取值范围);②当甲赶到排头位置时,求S 头的值;在甲从排头返回到排尾过程中,设甲与位置O 的 距离为S 甲(m ),求S 甲与t 的函数关系式(不写t 的取值范围);(2)设甲这次往返队伍的总时间为T (s ),求T 与v 的函数关系式(不写v 的取值范围),并写出队伍在此过程中行进的路程.图13-2图13-1尾头甲25.(本小题满分10分)如图14-1和14-2,ABCD 中,AB =3,BC =15,tan ∠DAB =43.点P 为AB 延长线上一点.过点A 作⊙O 切CP 于点P .设BP =x .(1)如图14-1,x 为何值时,圆心O 落在AP 上?若此时⊙O 交AD 于点E ,直接..指出PE 与BC 的位置 关系;(2)当x =4时,如图14-2,⊙O 与AC 交于点Q ,求∠CAP的度数,并通过计算比较弦AP 与劣弧PQ ⌒长度的大小;(3)当⊙O 与线段..AD 只有一个公共点时,直接..写出x 的取值范围.图14-1图14-2备用图如图15,若b是正数,直线l:y=b与y轴交于点A;直线a:y=x–b与y轴交于点B;抛物线L:y=–x2+bx的顶点为C,且L与x轴右交点为D.(1)若AB=8,求b的值,并求此时L的对称轴与a的交点坐标;(2)当点C在l下方时,求点C与l距离的最大值;(3)设x0≠0,点(x0,y1),(x0,y2),(x0,y3)分别在l,a和L上,且y3是y1,y2的平均数,求点(x0,0)与点D间距离;(4)在L和a所围成的封闭图形的边界上...,把横、纵坐标都是整数的点称为“美点”,分别直接..写出b=2019和2019.5时“美点”的个数.图15。
一、选择题共8小题。
每小题5分,共40分。
在每个小题给出的四个选项中,只有一项是符合题目要求的一项。
(1)已知集合A={-1,0,1},B={x|-1≤x<1},则A∩B= ( )(A){0}(B){-1,,0}(C){0,1} (D){-1,,0,1}(2)设a,b,c∈R,且a<b,则 ( )(A)ac>bc (B) < (C)a2>b2 (D)a3>b3(3)下列函数中,既是偶函数又在区间(0,+ ∞)上单调递减的是(A)y= (B)y=e-3(C)y=x2+1 (D)y=lg∣x∣(4)在复平面内,复数i(2-i)对应的点位于(A)第一象限(B)第二象限(C)第三象限(D)第四象限(5)在△ABC中,a=3,b=5,sinA= ,则sinB(A)(B)(C)(D)1(6)执行如图所示的程序框图,输出的S值为(A)1(B)(C)(D)(7)双曲线x²- =1的离心率大于的充分必要条件是(A)m>(B)m≥1(C)m大于1 (D)m>2(8)如图,在正方体ABCD-A1B1C1D1中,P为对角线BD1的三等分点,P到各顶点的距离的不同取值有(A)3个(B)4个(C)5个(D)6个第二部分(非选择题共110分)二、填空题共6题,每小题5分,共30分。
(9)若抛物线y2=2px的焦点坐标为(1,0)则p=____;准线方程为_____(10)某四棱锥的三视图如图所示,该四棱锥的体积为__________.(11)若等比数列{an}满足a2+a4=20,a3+a5=40,则公比q=__________;前n项sn=_____.(12)设D为不等式组,表示的平面区域,区域D上的点与点(L,0)之间的距离的最小值为___________.(13)函数f(x)= 的值域为_________.(14)已知点A(1,-1),B(3,0),C(2,1).若平面区域D由所有满足AP =λAB+μAC(1≤λ≤2,0≤μ≤1)的点P组成,则D的面积为__________.三、解答题共6小题,共80分。
2011年保定市初中毕业生第一次模拟考试数 学 试 卷(命题人:郑泉水 审题人:徐建乐)注意:答题前请先填写学校、班级、姓名、考号.本试卷分卷Ⅰ和卷Ⅱ两部分;卷Ⅰ为选择题,卷Ⅱ为非选择题. 本试卷满分为120分,考试时间为120分钟.卷Ⅰ(选择题,共24分)1、若a 的绝对值是21,则a 的值是A . 2B . 2-C . 21 D . 21±2、如图1,两块三角板拼在一起,且∠2=2∠1,则∠1的度数为A . 30°B . 45°C . 60°D . 120° 3、计算:()()2636a a -÷-的结果为 A . 42a - B . 42aC . 32aD . 32a -4、我们知道,1纳米=0.000 000 001米,那么34纳米用科学技术法表示为A . 81043-⨯.米B . 91043-⨯.米C . 81034-⨯米D . 91034-⨯米5、函数b kx y +=与函数kbx y =(其中0≠kb )在同一坐标系中的图象大致为6、如图2,四边形ABCD 的对角线AC 、BD 互相垂直,则下列条件能判定四边形ABCD 为菱形的是A . BA=BCB . AC 、BD 互相平分 C . AC=BDD . AB ∥CD7、A . 1<xB . 23>xC . 231<<x D . 无解8、如图3,四边形有三个顶点在⊙O 上,一个顶点在圆心O ,且∠O =100°,则∠B =A . 130°B . 100°C . 80°D . 50°1>-x 032>-x 不等式组 的解集为图1图29、A 、B 两地相距10千米,甲、乙二人均从A 地同时出发到B 地,1小时后,甲超过乙1千米,结果,甲比乙提前21小时到达B 地,问甲、乙二人的速度各是多少?为解决问题,可设乙的速度是x 千米/时,则依题意列出的方程正确的是 A . 2110110=-+x x B . 2111010=+-x x C .2110110=--x x D .2111010=--x x10、已知在Rt △ABC 中,∠C =90°,53=A sin ,则Btan的值为A . 34B . 54C .35 D .4311、如图4,用边长为1的正方形覆盖3×3的正方形网格(组成网格的每个小正方形的边长也是1),最多覆盖网格(覆盖一部分就算覆盖)的个数是A . 3个B . 4个C . 5个D . 6个12、如图5,是用棋子摆成的图案,按照这样的方式摆下去,则摆第n 个图案需要的棋子数为 A . 16+n B . 76+nC . 1332-+n n D . 1332++n n图4∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙图52011年保定市初中毕业生第一次模拟考试数 学 试 卷(命题人:郑泉水 审题人:徐建乐)卷Ⅱ(非选择题,共96分)注意事项:1.答卷Ⅱ前,将密封线左侧的项目填写清楚.2.答卷Ⅱ时,将答案用蓝色、黑色钢笔或圆珠笔直接写在试卷上.13、比较大小17_____4; 14、若1-=x是关于x方程1=+b ax 的根,则代数式()2011b a -的值是__________;15、如图6,等腰三角形ABC 中,∠A=40°,D 是底边BC 上一点,E ,F 分别是两腰上的点,且DB =CF ,DC =BE ,则∠EDF =_________; 16、口袋里有红、绿、黄三种颜色的球,除颜色外其余都相同,其中有红球4个,绿球5个,任意摸出一个绿球的概率是31,则从口袋里任意摸出一球是黄球的概率为___________; 17、已知P 是反比例函数()0>=k xk y 图象上一点,PA ⊥y轴,B为x轴上一点,且△PAB 的面积为2(如图7),则k的值为___________;18、如图8,已知点A 、B 、C 、D 均在已知圆上,AD ∥BC ,AC ∠BCD ,∠ADC =120°,四边形ABCD 的周长为10cm .的面积为____________2cm .三、解答题(本大题共8个小题,共78分.明过程或演算步骤) 19、(本小题满分8分) 解分式方程1112+=-x x图6图8要浇铸一个和残破的轮片(如图9所示)一样大小的轮子,需要知道残破轮片的半径.一位同学设计了如下测量方案:在残破的轮片上找三点A 、C 、B ,测得AB =8cm ,∠ACB =120°.请你据此求出残破轮片的半径.21、(本小题满分9分)光明中学组织全校1000名学生进行了校园安全知识竞赛.为了解本次知识竞赛的成绩分布情况,从中随机抽取了部分学生的成绩(得分取正整数,满分为100分),并绘制了如图的频数分布表和频数分布直方图(不完整).请根据以上提供点的信息,解答下列问题:(1)直接写出频数分布表中a ,b ,c 的值,补全频数分布直方图; (2)上述学生成绩的中位数落在哪一组范围内? (3)学校将对成绩在90.5~100.5分之间的学生进行奖励,请估计全校1000名学生中约有多少名获奖?频数 /分A BC图9如图11,长为4、宽为1的矩形OABC 在直角坐标系中,其一个顶点B 恰在函数()0>=x xk y的图像上.(1)k 的值为___________; (2)试确定A ,B ,C 三点的坐标;(3)若抛物线c bx ax y ++=2经过B ,C 两点,且顶点P 在x 轴上,试确定其解析式.如图12,等腰三角形与正三角形的形状有着差异,我们把它与正三角形的接近程度称为等腰三角形的“正度”,在研究“正度”时,应符合下面四个条件:①“正度”的值是非负数;②“正度”值越小,表示等腰三角形越接近正三角形;③相似的等腰三角形“正度”要相等;④正三角形的“正度”是0.例如:设等腰三角形的底和腰分别为a ,b ,底角和顶角分别为α,β. 可用23-αsin 表示等腰三角形的“正度”,23-αsin 的值越小,α越接近60°,表示等腰三角形越接近正三角形,且当两个等腰三角形相似时,它们的底角相等,显然,它们的“正度”23-αsin 也相等,当 60=α时,023=-αsin .而如果用ba 表示等腰三角形的“正度”,就不符合要求,因为此时正三角形的正度是1!解答下列问题:甲同学认为:可用b a -表示等腰三角形的“正度”,b a -的值越小,表示等腰三角形越接近正三角形;乙同学认为:可用βα-表示等腰三角形的“正度”,βα-的值越小,表示等腰三角形越接近正三角形.(1)他们的说法合理吗?为什么?(2)对你认为不合理的方案加以改进,使其合理;(3)请你再给出一种衡量等腰三角形“正度”的合理的表达式,并说明理由.图12先阅读下面的材料,然后解答问题:已知:如图13-1等腰直角三角形ABC 中,∠B =90°,AD 是角平分线,交BC 边于点D . 求证:AC =AB +BD .证明:如图13-1,在AC 上截取AE =AB ,连接DE ,则由已知条件易知:Rt △ADB ≌Rt △ADE (AAS ) ∴∠AED =∠B =90°,DE =DB又∵∠C =45°,∴△DEC 是等腰直角三角形. ∴DE =EC .∴AC =AE +EC =AB +BD .我们将这种证明一条线段等于另两线段和的方法称为“截长法”.解决问题:现将原题中的“AD 是内角平分线,交BC 边于点D ”换成“AD 是外角平分线,交BC 边的延长线于点D ,如图13-2”,其他条件不变,请你猜想线段AC 、AB 、BD 之间的数量关系,并证明你的猜想.图13-1F图13-2一批10米长的钢筋需要截成3米和4米得两种短材备用,截法有以下三种:x一种截法需要10米长的钢筋y根,第三种截法需要10米长的钢筋z根,截完后总余料为w 米,解答下列问题:(1)分别用含x的代数式表示y、z;(2)写出w关于x的函数关系式,并求出x的取值范围;(3)求出总余料w最少的截法方案.如图14,直角梯形ABCD中,∠DAB=60°,AC平分∠DAB,CB=6cm.点Q、P分别是AB、CD边上的动点,点P从C点出发,以0.5cm/s的速度向D点移动;点Q从A点出发,以1cm/s的速度向B点移动;设Q、P同时出发,移动时间为t(s),当一个点停止移动,另一个也随之停止移动.(1)求CD的长;(2)t为何值时,四边形AQPD是等腰梯形?(3)连结PQ,设PQ与AC的交点为O,求△AOQ的面积S(cm2)与时间t(s)之间的函数关系;(4)过Q点作QE⊥AD于E,问是否存在某一时刻t,使得四边形OEQB是菱形?若存在,求出t的值;若不存在,说明理由.图14。