冲击电压试验
- 格式:doc
- 大小:1.30 MB
- 文档页数:7
雷电冲击过电压的理论与试验一.引言电能与人类的生存、发展有密切关系,而高电压与绝缘技术是其中一个很重要的知识体系,它是支撑电能应用的一根有力的支柱。
高电压技术是以试验研究为基础的研究高电压及其相关问题的应用技术。
其内容主要涉及在高电压作用下各种绝缘介质的性能和不同类型的放电现象,高电压设备的绝缘结构设计,高电压试验和测量的设备及方法,电力系统的过电压与绝缘配合、高电压或大电流环境影响和防护措施,以及高电压、大电流的应用等。
目前,随着科技的发展、经济的需要,输电电压等级越来越高,输电距离越来越长,电网结构也越来越复杂。
而高电压技术对于进一步发展超高压、特高压输电继续起着重要的推动作用。
一些国家正在沿着传统的“外沿发展模式”,继续开展更高一级电压。
二.雷电冲击过电压理论雷电冲击电压是有雷电放电形成电流通过被击物体流入大地,电流脉冲在被击物体阻抗上的压降形成冲击电压。
雷电放电包括三个阶段:先导放电,主放电,余光放电。
主放电电流幅值较小,但电流波前时间比第一分量小得多,易造成过电压。
各分量中的最大电流和电流增长最大陡度是造成被击物体上过电压、电动力和爆破力的主要因素。
在余光阶段流过较长时间的电流则是造成雷电热效应的重要因素之一。
波形组成气隙的击穿有一个最低静态击穿电压Uo,但外加电压不小于Uo仅是气隙击穿的必要条件,欲使气隙击穿,还必须使该电压持续作用一定的时间。
静态击穿电压U0 是使气隙击穿的最小电压。
雷电冲击电压分为:全波,截波--雷电冲击波被某处放电而截断的波形.(1) 全波:非周期性冲击电压,很快到峰值再逐渐下降 .如图1作图:取峰值=1.0,0.9--B点,0.3--A点,0.5--Q点,连AB线,交1.0于C点,交横轴O1点。
O1C--波前T=(t1-t2)t f=FO1--视在波前时间t f/T=(1.0-0.0)/(0.9-0.3)t f=T/0.6=1.67Tt t--视在半峰值时间波形有振荡时,取平均曲线。
冲击电压试验说明1.引用标准及定义1.1标准GB 14598.3 量度继电器和保护装置的绝缘配合要求和试验Q/XJ 20.50. 继电保护和安全自动装置通用技术要求1.2定义介质试验:施加规定电压于绝缘物,以证明它符合制造厂所规定电路的额定绝缘电压的一种短时间试验。
冲击电压耐受试验的电压波形为1.2/50us,用以模拟来源于大气的过电压。
它也包括由于低压设备的通断所产生的过电压。
施加规定的冲击电压于绝缘物,以证明装置能够耐受很高的和时间很短的过电压,而不致损坏的一种试验。
2.试验方法2.1 试验部位a) 每个电路和可接近的导电部分之间,每个独立电路的端子连接在一起;b) 独立电路之间,每个独立电路的端子连接在一起。
2.2冲击电压试验值规定试验部位应能承受标准雷电波1.2/50 µs(见GB/T 14598.3—2006 中6.1.3)的短时冲击电压试验,试验电压的峰值为1 kV(额定绝缘电压≤63 V)或5 kV(额定绝缘电压>63 V)。
对两个独立电路之间的试验,应按这两个电路所规定的较高的冲击电压进行试验。
2.3.冲击电压试验次数正极性、负极性,每个极性各5次,中间间隔5 s。
3.结果评定产品承受冲击电压试验后,其主要性能指标应符合企业产品标准规定的出厂试验项目要求。
试验过程中,允许出现不导致绝缘损坏的闪络,如果出现闪络,则应复查绝缘电阻及介质强度,此时介质强度试验电压值为规定值的75%。
4、注意事项冲击电压测试仪在工作时产生高能量(高电压、大电流)的浪涌。
为安全起见,请阅读说明书,并正确使用本设备。
使用中请注意以下几点:1.当手潮湿或相对湿度超过75%时,请不要使用本设备。
2.注意使用本设备时接地状况良好。
3.因为有高压脉冲加到接线端子(Surge out),所以在接线时,务必要在确认高压电源处于断开状态(H.V.OFF灯亮,数字电压表指示为0)才能进行。
4.试验结束后,按STOP键停止发生脉冲,逆时针把电压调节旋钮旋到底,按H.V.ON/OFF关掉仪器高压回路,取下试品连接线,关闭仪器的工作电源。
变压器的绝缘试验(以前称耐压试验),包括外施耐压、感应耐压、冲击耐压等试验。
1 外施耐压试验外施耐压试验是对被试变压器加一分钟的工频高压的试验,也曾称工频耐压试验。
它是考核不同侧绕组间和绕组对地间的绝缘性能,也就是考核变压器主绝缘的水平,所以只适用于全绝缘变压器。
因此,试验时被试变压器的不同侧绕组各自连在一起,一侧绕组施加电压,另一侧绕组接地。
外施耐压试验时,在电源电压较低时合闸;试验电源电压达到试验电压的40%以下时,升压速度是任意的;在40%以上时,应以每秒3%速度均匀上升;达到规定电压和持续时间后,应在5s内将电压迅速而均匀地降到试验电压的25%以下,才能切断电源。
2 感应耐压试验全绝缘变压器的感应耐压试验是高压绕组开路,向低压上施加100~250Hz的两倍额定电压的耐压试验。
由于频率增高,铁心在不饱和时能保证两倍感应电压,从而试验了绕组匝间、层间和相间的绝缘性能,即考核了变压器的纵绝缘水平。
对于分级绝缘的变压器,把中性点电压抬高(支撑起来),就可以考核主绝缘水平了。
这样,感应耐压试验既进行了纵绝缘的试验,又补救了该种变压器不能做外施耐压试验的不足,也同时等效地做了外施耐压试验。
分级绝缘的感想变压器听感应耐压试验,常采用分相感应试验方法。
将非试的两相线端并联接地,把中性点抬高到电压的1/3左右,从而使试验相线端达到外施耐压试验的要求,而该相绕组的感应电压又达到了感应试验的要求。
如果这样做不能符合试验要求,可以调节位置,甚至可以用另一台变压器作支撑变压器来支撑中性点。
新标准中要求感应试验时要测局部放电量、起始与熄灭局部放电电压。
3 冲击电压试验冲击电压试验分雷电冲击试验(包括全波冲击试验和截波冲击试验)和操作波冲击试验。
在新编制的IEC76-3标准中,对小于Um≤40.5kV变压器,全波冲击试验和截波和操作波冲击试验均是例行试验。
对Um≥72.5kV变压器,全波冲击试验是例行试验,截波冲击试验是型式试验,对Um≥252kV变压器,全波、截波和操作波冲击试验均是例行试验。
冲击试验操作流程
全波实验:
(1)试品接线和设备调整:
①试品高压单相或试品高压短接连电容分压器高压输出
②试品接线和设备调整完成之后把接地棒放在指定位置
(2)波形分析软件的设置:
①双击软件图标
②单击@选项
键入密码:111111
③冲击参数设置:
改变各个通道所对应的变比
电压波形显示参数里选择:
T1(30%-90%) T2(50%波尾)UpMax(波形最大值)
UpMin(波形最小值)
选择好之后点确定
设置电压的量程
设置示波器采集极性和控制软件对应
选择使用的通道
选择10us
点击设置示波器
点击开始测试
(3)冲击控制系统操作:
双击冲击控制器图标进入软件
①点击本体设置
②在弹出的对话框里的输入所需要的级电压和
充电时间
③点击确定
④将截球手动增大至最大
⑤点击
⑥待电压充到设定电压之后自动触发
⑦待触发完成后点击高压分断
半电压调波形半电压波形调完之后做全电压试验
波头时间1.2us±30%=0.84us—1.56us标准波尾时间50us±20%=40us-60us 标准波头时间长减小电阻波头时间短增大电阻波尾时间长减小电阻波尾时间短增大电阻。
变压器雷电冲击和操作冲击试验方法介绍变压器作为电力系统中重要的设备之一,其安全性和稳定性至关重要。
为了确保变压器的质量和性能,需要进行一系列的试验,其中雷电冲击和操作冲击试验是必不可少的环节。
本文将向大家介绍变压器雷电冲击和操作冲击试验的方法。
一、雷电冲击试验雷电冲击试验是测试变压器耐受雷电过电压的能力。
在进行雷电冲击试验前,需要对试验设备和场地进行充分的准备。
具体步骤如下:1. 确定试验电压等级和波形:根据变压器的工作电压和用途,确定试验电压的等级和波形。
一般来说,对于110kV及以上的变压器,需要进行标准雷电冲击耐受试验。
2. 安装放电装置:在变压器顶部安装合适的放电装置,以保证在雷电冲击时能够顺利释放过电压。
3. 准备场地:试验场地应保持干燥、无尘,并设置警示标志,确保试验人员安全。
4. 试验操作:按照厂家提供的操作规范进行雷电冲击试验。
一般采用多级试验变压器分级加压,逐级升压至设计电压值,并记录变压器的电气性能和状态。
雷电冲击试验的主要目的是检测变压器的绝缘性能和耐受能力,包括绝缘材料的耐电强度、绕组的连续性、引线的机械强度等。
通过雷电冲击试验,可以评估变压器在遭受雷电过电压时的安全性能,为实际运行提供重要依据。
二、操作冲击试验操作冲击试验主要测试变压器在电力系统中的正常运行操作产生的电压、电流和电气性能。
操作冲击试验包括连续操作和间断操作两种形式。
具体步骤如下:1. 准备工作:根据变压器的规格和参数,准备相应的电源、测量仪表和工具。
2. 模拟操作:按照电力系统的运行方式,模拟各种操作过程,如投入、切除、重合等。
3. 测量记录:在操作过程中,对变压器的电压、电流、温度等参数进行实时监测和记录。
4. 分析评估:根据记录的数据进行分析,评估变压器的性能和稳定性。
必要时可进行重复操作试验,直到满足要求。
操作冲击试验旨在检测变压器在电力系统中的实际运行性能,包括变压器的绝缘性能、机械性能、散热能力等。
冲击电压试验
电力系统中的高压电气设备,除了承受长时间的工作电压作用外,在运行过程中,还可能会承受短时的雷电过电压和操作过电压的作用。
冲击高压试验用来检验高压电气设备在雷电过电压和操作过电压作
用下的绝缘性能或保护性能。
由于冲击高压试验本身的复杂性等原因,电气设备的交接及预防性试验中,一般不要求进行冲击高压试验。
本节仅将产生全波的冲击电压发生器作一简单的介绍。
电力系统中的高压电气设备,除了承受长时间的工作电压作用外,在运行过程中,还可能会承受短时的雷电过电压和操作过电压的作用。
冲击高压试验用来检验高压电气设备在雷电过电压和操作过电压作
用下的绝缘性能或保护性能。
由于冲击高压试验本身的复杂性等原因,电气设备的交接及预防性试验中,一般不要求进行冲击高压试验。
雷电冲击电压试验采用全波冲击电压或截波冲击电压,这种冲击电压持续时间较短,约数微秒至数十微秒,它可以由冲击电压发生器产生;操作冲击电压试验采用操作冲击电压,其持续时间较长,约数百至数千微秒,它可利用冲击电压发生器产生,也可利用压器产生。
许多高电压试验室的冲击电压发生器既可以产生雷电冲击电压波,也可以产生操作冲击电压波。
冲击电压试验由于冲击高电压试验对试验设备和测试仪器的要求高、投资大,测试技术也比较复杂,所以在绝缘预防性试验中通常不列入冲击耐压试验。
但为了研究电气设备在运行中遭受雷电过电压和操作过电压作用时的绝缘性能,在许多高压试验室中都装设了冲击电压发生器,用来产生试验用的雷电冲击电压波和操作冲击电压被。
许多高压电气设备在出厂试验、型式试验时或大修后都必须进行冲击高压试验。
冲击电压发生器是高压实验室的基本设备之一,冲击试验电压要比设备绝缘正常运行时承受的电压高出很多。
随着输电电压等级的不断提高,冲击电压发生器的最高电压也相应提高才能满足试验要求。
一、冲击电压波形的定义绝缘耐受冲击电压的能力与施加的电压波形有关,而实际的冲击电压波形具有分散性,即每次的波形参数会有不同,为了保证多次冲击试验的重复性和不同试验条件下试验结果的可比较性,必须规定统一的冲击电压波形参数。
我国对标准冲击电压波形的规定和国际电工委员会(IEC )标准相同。
如图1-26所示。
在经过时间T 1时,电压从零上升到最大值,然后经过时间T 2-T 1,电压下降到最大值的一半。
规定电压从零上升到最大值所用的时间T 1称为波头时间(或波前时间),电压从零开始经过最大值又下降到最大值一半的时间T 2成为半峰值时间(或波长时间、波尾时间)。
Ut图1--26 标准冲击电压波形 图1--27非周期性的冲击电压波形非周期性的冲击电压波形由两个指数电压波形叠加组成,如图1-27所示,即)()(21ττtteeA t u ---= (1--25)式中:1τ-波尾时间常数。
2τ-波头时间常数,通常1τ远大于2τ。
A -单指数波幅值。
对于实际的冲击电压波形,其起始部分通常比较模糊,在最大值附近的波形比较平坦,很难确定起始零点和到达最大值的时间。
所以实际中通常采用视在波头时间和视在半峰值时间来定义冲击电压波形。
按照国际电工委员会(IEC )标准,实际冲击电压波形参数的定义如图1-28所示。
新版 IEC 60335-1(第四版)的介绍---------冲击电压测试和电气间隙新版IEC60335-1(第四版)已于2001年5月颁布实施。
与第三版相比,新版标准在许多方面,特别是在爬电距离和电气间隙方面有了很多变化。
它的变化将会影响全世界未来10年家用电器及类似产品的结构设计,因此希望引起相关人员的注意, 尤其是家电产品设计和测试方面人员的足够重视。
1.背景介绍: 在过去40多年里,第一,第二,第三版标准关于爬电距离和电气间隙的内容要求一直没有大的变化。
虽然这些要求是以过去积累的经验为基础,但是这些要求相对保守,留有太多余地,或者说不够合理。
例如:对于230V和小于130V 的危险带电部件与易触及部件之间都是 8mm 爬电距离和电气间隙的要求和同样的交流耐压测试值的要求。
虽然 TC 61 (制订IEC60335标准的委员会)早在编写第三版时,就已经注意到这些内容要求不尽合理,并打算修改,可是由于在这方面经验不足,更改条件还不成熟,所以被耽搁了好几年。
最近几年,随着 IEC60664 绝缘配合系统系列标准的不断完善,对于直流电压小于1000V和交流电压小于1500V绝缘配合有了更明确和具体的电气间隙和耐压要求,这样 TC 61 标准的委员会就有了改写标准的基础。
由于参照I EC60664 所制订的新版 IEC60335与旧版相比,有很多变化,而且这些新增内容比较复杂,因此不太容易理解和掌握。
2.新版标准的一些概念:1)功能绝缘:用来保证产品正常运行的绝缘。
它与防触电的绝缘:如基本绝缘,附加绝缘和加强绝缘不同。
功能绝缘的损坏,一般会引起火烧危险。
2)工作电压:虽然旧版标准也有这个概念,但新版的标准补充了一些新的内容。
3)PELV线路:在安全特低电压下的接地线路。
它与其它回路之间的隔离通过基本绝缘加接地屏蔽或双重绝缘或加强绝缘来实现的。
接地目的一般是为了通过EMC的测试。
在第 29.1.5 用到此概念。
冲击电压试验由于冲击高电压试验对试验设备和测试仪器的要求高、投资大,测试技术也比较复杂,所以在绝缘预防性试验中通常不列入冲击耐压试验。
但为了研究电气设备在运行中遭受雷电过电压和操作过电压作用时的绝缘性能,在许多高压试验室中都装设了冲击电压发生器,用来产生试验用的雷电冲击电压波和操作冲击电压被。
许多高压电气设备在出厂试验、型式试验时或大修后都必须进行冲击高压试验。
冲击电压发生器是高压实验室的基本设备之一,冲击试验电压要比设备绝缘正常运行时承受的电压高出很多。
随着输电电压等级的不断提高,冲击电压发生器的最高电压也相应提高才能满足试验要求。
一、冲击电压波形的定义绝缘耐受冲击电压的能力与施加的电压波形有关,而实际的冲击电压波形具有分散性,即每次的波形参数会有不同,为了保证多次冲击试验的重复性和不同试验条件下试验结果的可比较性,必须规定统一的冲击电压波形参数。
我国对标准冲击电压波形的规定和国际电工委员会(IEC )标准相同。
如图1-26所示。
在经过时间T 1时,电压从零上升到最大值,然后经过时间T 2-T 1,电压下降到最大值的一半。
规定电压从零上升到最大值所用的时间T 1称为波头时间(或波前时间),电压从零开始经过最大值又下降到最大值一半的时间T 2成为半峰值时间(或波长时间、波尾时间)。
Ut图1--26 标准冲击电压波形 图1--27非周期性的冲击电压波形非周期性的冲击电压波形由两个指数电压波形叠加组成,如图1-27所示,即)()(21ττtteeA t u ---= (1--25)式中:1τ-波尾时间常数。
2τ-波头时间常数,通常1τ远大于2τ。
A -单指数波幅值。
对于实际的冲击电压波形,其起始部分通常比较模糊,在最大值附近的波形比较平坦,很难确定起始零点和到达最大值的时间。
所以实际中通常采用视在波头时间和视在半峰值时间来定义冲击电压波形。
按照国际电工委员会(IEC )标准,实际冲击电压波形参数的定义如图1-28所示。
标准冲击电压波形的参数为: 波头时间: 1.2μs ±30% 半峰值时间:50μs ±20% 幅值: ±3%二、单级冲击电压发生器(一) 单级冲击电压发生器的原理非周期性冲击电压波可由两个指数电压波形叠加而成,由于1τ远大于2τ,在波头时间范围内,11≈-τte,可将电压波形近似用下式表示:)1()(2τteA t u --= (1--26)其波形如图1--29所示。
这个波头时间范围内的冲击电压波形和电路理论课程中讲述的一阶电路的零状态响应曲线是相同的。
所以利用直流电源经电阻向电容器充电可以产生冲击电压波的波头,且波头时间T 1≈3.2421C R ,如图1--30所示。
图1--28 实际的冲击电压波形图1--29 冲击电压波头波形u u1C 2C⎪⎪⎭⎫ ⎝⎛+=)(212112C C C C R τ图1--30 冲击电压波头波形产生电路在波尾时间范围内,02≈-τte,可将冲击电压波形近似用下式表示:1)(τtAet u -= (1--27)上式的波形和已充电电容器经电阻放电的波形是相同的。
所以利用已充电的电容器经电阻放电可以产生冲击电压波形的波尾,波尾时间取决于R 2和C 1。
如图1--31所示。
可以计算出电压下降到一半的时间,即半峰值时间T 2为:2012u eu T T =- 1227.0C R T ≈ (1--28) 2R 1C u++--uu图1--31 冲击电压波尾波形根据上面的分析,将图1--30和图1--31两个电路组合起来就可以产生完整的冲击电压波形。
如图1--32所示。
首先在开关打开的状态下对C 1进行充电,充电完毕后合上开关,电容C 1经电阻R 1向C 2充电,形成冲击电压波的波头(C 2两端的电压波形);同时C 1和C 2经过电阻R 2放电,形成冲击电压波的波尾。
一般情况下,C 1比C 2大很多,所以波尾主要由C 1放电的快慢决定。
称C 2和R 1为波头电容和波头电阻,称C 1和R 2为波尾电容和波尾电阻。
根据实际的需要,图1--32的电路可以改为图1--33所示的两种形式,此时需要调整各个电阻的大小来调整冲击电压波形。
2R 1C u ++--u 11R 2C 12R 2R 1C u ++--u 1R 2C (a ) (b )图1--33 另外两种冲击电压产生电路图1--32和1--33的电路有一个电压利用系数的问题。
假设合开关之前电容器C 1上的电压为U 0,那么合上开关后在C 2两端产生的冲击电压波形的最大电压(即幅值)U m 肯定小于U 0,我们定义放电回路的电压利用系数η为:U U m =η (1--29)(二)冲击电压发生器波形和回路参数的关系可以计算出,图1--32回路的电压利用系数最高,称为高效率回路。
实际的单级冲击电压发生器电路如图1--34所示。
调整调压器的输出可以改变电容C 1的充电电压,达到调整输出冲击电压幅值的目的;调整电阻R 1和R 2可以改变输出波形,使输出冲击电压波形符合试验要求;放电球隙G 的放电电压根据电容器C 1的充电电压和输出冲击电压幅值的要求进行调整。
由于受到高压硅堆和电容器额定电压的限制,同时也考虑放电球隙的直径不宜过大,一般单级冲击电压发生器的最高输出幅值不超过200~300kV 。
冲击电压发生器的试品一般是容性负载,在做冲击电压试验时,利用试品的等效电容做波头电容C 2。
对于图1-33(b )所示的典型放电回路可以列出下面的方程:1101221220)(R dtdu C dt du C R u u -++= (1--30) 2R 1C u ++--u 1R 2C图1--32 冲击电压产生电路2Ru+-2T图1--34 实际单级冲击电压发生器电路)(12212222201dtdu C R u R dt du C dt du C ++=- (1--31) 解上面的方程可以得到u 2时间的变化为:)()(2102ττtteeKU t u ---= (1--32)式中,U 0-球隙放电前电容器C 1上的充电电压。
K -回路系数,K =C 1R 2/(1τ-2τ) 1τ-波尾时间常数。
2τ-波头时间常数。
令02=dtdu ,可得到理论波头时间T 1为:)(ln1121212111τττττττf T =-=(1--33)那么输出冲击电压的幅值为:)(21110max 2ττT T eeKU U ---= (1--34)即 00max 2U U K U ηε== 同样可以用)(2/22120max 2ττT T ee KU U ---=求出半峰值时间T 2与回路参数的关系。
T 2/T 1只决定于1τ/2τ。
三、多级冲击电压发生器1.多级冲击电压发生器的原理由于受到高压硅堆参数等因素的限制,单级冲击电压发生器输出的冲击电压幅值一般不超过200~300kV ,所以实际中要获得更高的冲击电压幅值,需采用多级冲击电压发生器。
多级冲击电压发生器的基本原理是:并联充电、串联放电。
即先对多个电容器并联充电,然后这些电容器自动串联起来放电,以产生很高的冲击电压幅值。
图1--35是多级冲击电压发生器的原理电路图。
图1--35 多级冲击电压发生器的原理电路图图1--35中,首先调整各个球隙的距离,使G 1的放电电压为U 0,G 2~G 4的放电电压在U 0~2U 0范围内,然后开始对各个电容器同时充电到U 0。
这时G 1首先击穿,导致G 2~G 4依次击穿,各个电容器串联起来对C 2和R 2放电,在输出端获得幅值很高的冲击电压,近似的等效放电回路如图1--36所示。
下面详细说明各个电容器自动转换成串联放电的过程。
如图1--36所示,C 10~C 80是各点的对地杂散电容(寄生电容)。
充电过程结束时,上面一排杂散电容C 10、C 30、C 50、C 70两端被充电到电压U 0,1、3、5、7各点的对地电位为U 0。
下面一排杂散电容未被充电,2、4、6、8点仍为地电位零。
充电结束时,1点电位为U 0,达到G 1击穿电压,G 1首先击穿,1点电位瞬时降为零,2点电位瞬时变为-U 0。
由于1、3点和2、4点之间电阻R (比较大)的作用,杂散电容C 30来不及放电,在G 1击穿瞬间3点电位几乎仍维持在U 0,于是在G 1击穿的瞬间,G 2承受的电压(2、3点之间的电位差)由原来的U 0瞬间上升到2U 0,从而导致G 2击穿。
G 2击穿后,3点电位从U 0下降到-U 0,4点电位瞬时变为-2U 0,而5、6点仍几乎维持原来的电位,于是G 3承受3U 0电压的作用而击穿。
依此类推,后面各级球隙在nU 0电压作用下相继击穿,把所有的电容器串联起来。
从上面所述的过程可以看出,电容器由并联充电转变为串联放电的关键是杂散电容来不及放电,而杂散电容放电的快慢一方面取决于杂散电容的大小,另一方面取决于放电电阻R 的大小,即杂散电容放电的时间常数。
在实际当中,有时候为了确保各级球隙能顺利自动放电,还需要采取措施增大杂散电容。
1-铜球,2-端部有孔的铜球,3-钨电极 4-瓷、胶木等绝缘材料d-钨电极与铜球孔之间的距离;G,g-间隙图1--37 三电极球隙的结构2.三电极球隙上述的单级和多级冲击电压发生器,其输出冲击电压的产生并不是等到电容器充到一定u 0R 02R 2C1R R R RR R RRCCCC1G 2G 3G 4G 5G 1+-+++---7532486+-+-+-+-+-+-+-+-C 10C 20C 70C 50C 30C 40C 60C 80u图1--36 图1--35的等效放电回路电压时自动输出,而是充到一定电压后停止充电,人为控制输出冲击电压,这就要用到三电极球隙。
对于单级冲击电压发生器就直接采用一个三电极球隙,对多级冲击电压发生器,只用一个三电极球隙替代第一级放电球隙G1。
三电极球隙简单地是一个可以人为触发放电的球隙,其结构如图1--37所示。
三电极球隙工作的原理是,当冲击电压发生器各个电容充电完毕后,利用另外一个回路产生一个电压较低的脉冲电压,并将该脉冲电压施加在三电极球隙的电极2和3之间(即间隙g),使间隙g击穿,利用间隙g击穿时产生的火花触发主间隙G的击穿。
此时应防止间隙G击穿时,高电位沿电极3瞬间贯入低压脉冲回路。