雷电冲击试验资料
- 格式:ppt
- 大小:777.00 KB
- 文档页数:3
雷电冲击过电压的理论与试验一.引言电能与人类的生存、发展有密切关系,而高电压与绝缘技术是其中一个很重要的知识体系,它是支撑电能应用的一根有力的支柱。
高电压技术是以试验研究为基础的研究高电压及其相关问题的应用技术。
其内容主要涉及在高电压作用下各种绝缘介质的性能和不同类型的放电现象,高电压设备的绝缘结构设计,高电压试验和测量的设备及方法,电力系统的过电压与绝缘配合、高电压或大电流环境影响和防护措施,以及高电压、大电流的应用等。
目前,随着科技的发展、经济的需要,输电电压等级越来越高,输电距离越来越长,电网结构也越来越复杂。
而高电压技术对于进一步发展超高压、特高压输电继续起着重要的推动作用。
一些国家正在沿着传统的“外沿发展模式”,继续开展更高一级电压。
二.雷电冲击过电压理论雷电冲击电压是有雷电放电形成电流通过被击物体流入大地,电流脉冲在被击物体阻抗上的压降形成冲击电压。
雷电放电包括三个阶段:先导放电,主放电,余光放电。
主放电电流幅值较小,但电流波前时间比第一分量小得多,易造成过电压。
各分量中的最大电流和电流增长最大陡度是造成被击物体上过电压、电动力和爆破力的主要因素。
在余光阶段流过较长时间的电流则是造成雷电热效应的重要因素之一。
波形组成气隙的击穿有一个最低静态击穿电压Uo,但外加电压不小于Uo仅是气隙击穿的必要条件,欲使气隙击穿,还必须使该电压持续作用一定的时间。
静态击穿电压U0 是使气隙击穿的最小电压。
雷电冲击电压分为:全波,截波--雷电冲击波被某处放电而截断的波形.(1) 全波:非周期性冲击电压,很快到峰值再逐渐下降 .如图1作图:取峰值=1.0,0.9--B点,0.3--A点,0.5--Q点,连AB线,交1.0于C点,交横轴O1点。
O1C--波前T=(t1-t2)t f=FO1--视在波前时间t f/T=(1.0-0.0)/(0.9-0.3)t f=T/0.6=1.67Tt t--视在半峰值时间波形有振荡时,取平均曲线。
雷电冲击试验标准雷电冲击试验是指通过模拟雷电对设备、系统、结构等的影响,测试其对雷电冲击的抵抗能力。
雷电冲击试验标准是对这一测试过程进行规范的文件,其制定的目的是为了保证测试的准确性和可靠性,同时也为产品设计和制造提供了重要的参考依据。
本文将对雷电冲击试验标准进行详细介绍,以便对相关行业人士有所帮助。
首先,雷电冲击试验标准的制定是基于对雷电特性和设备性能的深入研究和分析。
在制定过程中,需要考虑雷电的特点,如电流、电压、波形等,以及设备的特性,如耐压能力、接地设计等。
通过对这些因素的综合考虑,制定出适用于不同设备和系统的测试标准,从而保证测试的全面性和可比性。
其次,雷电冲击试验标准的内容主要包括测试方法、试验设备、试验参数、试验过程、试验结果评定等方面。
在测试方法方面,标准会详细描述测试的步骤和要求,包括测试前的准备工作、测试过程中的操作规范、测试后的数据处理等。
试验设备部分会要求使用符合相关标准的设备,以保证测试的准确性和可靠性。
试验参数部分会规定测试中所需的电流、电压、波形等参数,以及对这些参数的要求。
试验过程部分会详细描述测试的具体步骤和注意事项,以确保测试的顺利进行。
试验结果评定部分会对测试结果进行分析和评定,从而得出对设备性能的评价。
最后,对于不同的设备和系统,雷电冲击试验标准会有所不同。
例如,对于电力设备来说,标准会要求测试其对雷电冲击的耐受能力,以保证其在雷电天气下的正常运行。
而对于电子设备来说,标准会要求测试其对雷电冲击的抵抗能力,以保证其在雷电天气下的安全可靠性。
因此,在实际应用中,需要根据具体的设备和系统选择相应的测试标准,以保证测试的准确性和有效性。
总之,雷电冲击试验标准是对雷电冲击试验过程进行规范的文件,其制定的目的是为了保证测试的准确性和可靠性,同时也为产品设计和制造提供了重要的参考依据。
通过对雷电冲击试验标准的详细介绍,相信能够对相关行业人士有所帮助,也能够推动相关领域的发展和进步。
华北电力大学科技学院电磁兼容实验报告班级:电信13K2姓名:张钦潘学号:131903020231电磁兼容浪涌(冲击)抗扰度试验一:实验内容1:浪涌的试验内容:雷电瞬变过电压引起的单极性浪涌雷电具有以下几个特点:冲击电流非常大,其电流高达几万至几十万安培。
持续时间短,一般雷击分为3个阶段,即先导放电、主放电和余光放电,整个过程一般不会超过60µs。
雷电流变化梯度大,有的可达10KA/µs。
冲击电压高,强大的电流产生交变磁场,其感应电压可高达上亿伏。
2:浪涌的目的目的是建立一个共同的基准,以评价电气和电子设备在遭受浪涌(冲击)时的性能。
3:试验设备高压源U;充电电阻Re;储能电容Cc;脉冲持续时间形成电阻Rs;阻抗匹配电阻Rm;上升时间形成电感Lr。
二:试验1:标准波形图:a)浪涌电压波形如下图所示:b)浪涌电流波形如下图所示:a:原理图开路电压原理图短路电流原理图b:结果图形1)开路电压波形5us时的波形:10us时的波形:100us时的波形:波前时间:T1=1.67*T=1.5*(1+30%)us半峰值时间:T2=45*(1+20%)us对比标准的参数表可知,基本符合标准的要求。
2)短路电流波形15us时的电流波形:30us时的电流波形:100us时的电流波形:波前时间:T1=1.25*T=8.7*(1+20%)us半峰值时间:T2=17*(1+20%)us对比标准的参数表可知,基本符合标准的要求。
3)开路电压峰值与短路电流峰值的关系由开路电压波形图和短路电流波形图可知,电压峰值约为9.3KV,短路电流为0.45KA,对比标准的开路电压峰值与短路电流峰值的关系可知,基本符合标准的要求。
三:浪涌的防护二极管模型的反串电压为10V浪涌的防护采用一个二极管并联在输入回路中的方式,二极管模型的电压为1KV,原理图与仿真波形图如下图所示:开路电压原理图:100ns时的原理图100ns时的波形图30ns时的波形图短路电流原理图:分析:根据所仿真出来的波形与上面做的仿真波形对比参照可知,做完防护后的开路电压变成155V左右,短路电流变为18A左右,效果还是可以的。
雷电冲击电压试验:为了考核变压器主、纵绝缘的冲击强度是否符合国家标准的规定和研究改进变压器的绝缘结构,要进行冲击电压试验。
所谓雷电冲击试验,就是在变压器绕组的端子上施加一种模拟真实的雷电波形的冲击波。
对变压器或其他电气设备,在此种冲击波的作用下进行考验,看其能否通过(或破坏)。
截波是相当于雷电波进入变电所时发生了保护间隙或空气绝缘的闪络而产生的波形,是雷电全波被突然截断的波形,电压急剧降落至零。
雷电冲击试验标准雷电冲击试验是指在模拟雷电环境下对设备或系统进行的一种电磁兼容性试验,其目的是验证设备或系统在雷电环境下的抗干扰能力和抗损坏能力。
雷电冲击试验标准是对进行雷电冲击试验的设备或系统所需符合的规范和要求的总称,其制定的目的是为了保证试验的科学性、准确性和可靠性,同时也为了保障设备或系统在雷电环境下的正常运行和安全性。
首先,雷电冲击试验标准应包括试验的基本原理和方法,以及试验过程中所需遵循的步骤和要求。
在进行雷电冲击试验时,应首先明确试验的目的和范围,确定试验的参数和条件,包括雷电波形、脉冲电流、脉冲持续时间等。
其次,应明确试验设备和试验系统的配置和连接方式,以及试验过程中的监测和记录要求。
同时,还应包括对试验结果的评定标准和分析方法,以及对试验设备或系统所需采取的防护措施和改进措施。
其次,雷电冲击试验标准应考虑设备或系统的特性和应用环境的实际情况,制定相应的试验等级和试验要求。
不同的设备或系统在雷电环境下所需承受的冲击程度和要求是不同的,因此,雷电冲击试验标准应根据设备或系统的不同特性和应用环境的不同特点,制定相应的试验等级和试验要求,以保证试验的科学性和实用性。
另外,雷电冲击试验标准还应包括试验设备和试验系统的要求和规范,包括试验设备和试验系统的选型和配置要求,试验设备和试验系统的校准和验证要求,以及试验设备和试验系统的维护和管理要求。
试验设备和试验系统的质量和性能直接影响着试验的可靠性和准确性,因此,对试验设备和试验系统的要求和规范应作为雷电冲击试验标准的重要内容之一。
最后,雷电冲击试验标准还应包括试验过程中的安全和保护要求,包括试验人员的安全操作规程和防护措施,试验场地和试验设备的安全要求,以及试验过程中可能产生的危险和风险的预防和控制措施。
雷电冲击试验是一项高压、高能的试验,试验过程中存在一定的安全风险,因此,试验过程中的安全和保护要求是不可忽视的重要内容。
综上所述,雷电冲击试验标准是对进行雷电冲击试验的设备或系统所需符合的规范和要求的总称,其制定的目的是为了保证试验的科学性、准确性和可靠性,同时也为了保障设备或系统在雷电环境下的正常运行和安全性。
雷电冲击实验一、实验目的:1.熟悉冲击电压发生器的结构与操作方法。
2.学会冲击电压的测量方法。
3.学会冲击电压全波、截波波形的调节方法。
4.冲击电压发生器使用效率的测量。
二、 实验内容:1. 按照接线图进行接线,并检查接线是否正确。
2. 分别改变r f 、r t ,观察雷电冲击电压全波波形的变化。
3. 学会调节雷电冲击电压截波波形 4. 测量冲击电压。
5. 测量冲击电压发生器的使用效率。
三、实验原理、实验方法及手段:1.实验方法: a) 根据产品的电压等级,确定实验电压;b) 分别改变r f 、r t ,观察雷电冲击电压全波波形的变化,即可调出标准雷电冲击电压全波(1.2±30%/50±20%);改变r f ,雷电冲击电压截波波形的变化。
c) 分别测量出雷电冲击电压发生器的充电电压(U i )和雷电冲击电压发生器的放电电压(U 0),即可算出雷电冲击电压发生器的使用效率η。
2.实验步骤:a) 按实验原理图进行接线,并由指导教师检查接线是否正确; b) 确定实验区域无人,方可关闭实验区大门;c) 接通冲击电压发生器实验控制台电源,同时将调压器调到初始位,准备工作结束; d)启动冲击电压发生器的高压合闸开关; %1000⨯=iU U ηe) 开始升压到实验电压使发生器的各主电容上充电,启动放电球隙开关使各主电容上的充电电压串联叠加,从而产生雷电冲击电压,同时记录这个波形; f) 分别改变r f 、r t 、c 1(级数),重复以上实验,观察雷电冲击电压全波波形的变化,即可调出标准雷电冲击电压全波;g) 改变r f ,观察雷电冲击电压全波波形的变化,即可调出标准雷电冲击电压截波; h)用电压表测量出雷电冲击电压发生器的充电电压,确定雷电冲击电压发生器的放电电压,即可算出雷电冲击电压发生器的使用效率η。
四、 实验用设备仪器及材料:本实验所用设备为:冲击电压发生器一套;G :测量球隙一个; C X :被试品一个;电容式分压器一台; CRO :示波器一个。
变压器雷电冲击和操作冲击试验方法介绍1. 变压器雷电冲击试验是一种用来检测变压器绝缘系统抗雷电侵害能力的试验方法。
2. 在进行变压器雷电冲击试验时,需要根据相关规范和标准严格设置试验参数和装置。
3. 此试验通常会在实验室环境中进行,以模拟真实雷电环境对变压器的影响。
4. 变压器雷电冲击试验可帮助评估变压器内部绝缘是否能够有效防护雷电冲击产生的高压脉冲。
5. 在进行雷电冲击试验前,需要充分检查试验设备和安全措施,确保试验安全可靠进行。
6. 变压器雷电冲击试验中,具体的试验过程和参数设置需根据变压器的类型和额定电压等因素进行调整。
7. 此试验在确认变压器的绝缘系统能够承受雷电冲击后,可提高其在雷电环境中的可靠性和安全性。
8. 在操作冲击试验中,通常会模拟变压器在正常运行过程中受到的电气冲击,以评估其耐受能力。
9. 变压器操作冲击试验可以帮助发现变压器在实际使用中可能存在的问题和缺陷,提前预防故障发生。
10. 试验过程中需要严格按照规范要求设置试验参数,例如电压、电流等,以确保测试结果的准确性和可靠性。
11. 变压器操作冲击试验还可以评估变压器内部绝缘系统的稳定性和耐久性,检测潜在的故障风险。
12. 此试验中需要注意保护试验设备及人员的安全,确保试验过程中不会造成损坏或伤害。
13. 在进行操作冲击试验前,需要对变压器的运行参数和环境进行充分评估和准备,以确保试验顺利进行。
14. 变压器操作冲击试验可帮助验证其在实际运行中的稳定性和可靠性,为设备的安全运行提供有力支持。
15. 在评估变压器的抗雷电冲击能力时,操作冲击试验也通常作为辅助手段进行综合考量。
16. 通过对变压器进行雷电冲击和操作冲击试验的综合分析,可以全面评估其在不同环境条件下的工作特性和安全性。
17. 此类试验方法有助于提升变压器产品在市场竞争中的优势,为用户提供更加可靠的电气设备。
18. 在进行雷电冲击和操作冲击试验前,需要对试验设备进行全面检查和维护,确保设备状态良好。
绝缘液体雷电冲击击穿电压测定一、试验目的电力系统中的高压电气设备除承受长期工作电压(交流或直流)作用外,还受到大气感应造成的过电压的作用,为保证绝缘液体的绝缘质量,需对绝缘液体进行雷电冲击电压试验。
变压器由多种材料组合而成,结构形状也极为复杂。
绝缘结构任一局部范围内的破坏都会使整个设备丧失绝缘性能。
因此,一般只能用可以耐受多高的试验电压(单位为KV)来表示设备的整体绝缘能力。
绝缘耐压试验电压可表明设备耐受的电压水平,但并不等同于该设备所实际具有的绝缘强度。
二、试验原理雷电击中架空线路导线或户外变电站将产生雷电过电压,其波形变化范围很大,人工模拟这种暂态电压,以研究和考验绝缘液体的绝缘强度。
三、试验仪器试验容器欧姆表测微计或螺旋计或厚度规金相显微镜脉冲发生器电阻分压器峰值电压表四、试验步骤1.试验容器的准备:试验容器是一个带有垂直间隙的容器,其内可容纳液体的体积约为300mL,限定只有两极和支撑的部分可以是金属材料,容器所用的绝缘材料必须具有高介电强度、在80o C下具有良好的热稳定性、能与被测绝缘液体相容,并耐溶剂、耐常用于被测液体的清洁剂;试验容器应易拆卸易清洗彻底,其尺寸应保证闪络电压至少为250kV。
2.试验容器的清洗:试验容器的所有零件包括球电极和唱针都应用试剂级的庚烷脱脂,用洗涤剂洗涤,用热自来水彻底冲洗,然后用蒸馏水冲洗,用无油脱水的压缩空气干燥各零件。
3.液体取样:用待测液体彻底地清洗试样容器和电极,并慢慢地将试样注入试验容器,切勿产生气泡,在试验前让液体静置至少5min。
试验时试样的温度应与实验室温度相同,通常在15o C到30o C之间。
4.电极间隙的调整:轻轻使两电极接触,用欧姆表检测是否接触良好。
然后用一个测微计或螺旋计或厚度规使其中一个电极移开达期望的间隙值,其允许偏差为±0.1mm。
5.脉冲电压的校准:用一个精确标定的电阻分压器和一个峰值电压表,根据GB/T 311.6-2005用球隙法校正测量系统,脉冲电压的峰值电压测量误差应已知且不超过3%。