初二数学勾股定理4[人教版]
- 格式:pdf
- 大小:281.72 KB
- 文档页数:9
勾股定理1.勾股定理:如果直角三角形的两直角边长分别为a ,b ,斜边长为c ,那么a 2+b 2=c 2。
2.勾股定理逆定理:如果三角形三边长a,b,c 满足a 2+b 2=c 2。
,那么这个三角形是直角三角形。
a . 勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法b .若222a bc +<,时,以a ,b ,c 为三边的三角形是钝角三角形;若222a b c +>,时,以a ,b ,c 为三边的三角形是锐角三角形;c .定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a ,b ,c 满足222a cb +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边 勾股数①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时, 称a ,b ,c 为一组勾股数②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等③用含字母的代数式表示n 组勾股数:221,2,1n n n -+(2,n ≥n 为正整数);2221,22,221n n n n n ++++(n 为正整数) 2222,2,m n mn m n -+(,m n >m ,n 为正整数)3.经过证明被确认正确的命题叫做定理。
我们把题设、结论正好相反的两个命题叫做互逆命题。
如果把其中一个叫做原命题,那么另一个叫做它的逆命题。
(例:勾股定理与勾股定理逆定理)4.直角三角形的性质(1)、直角三角形的两个锐角互余。
可表示如下:∠C=90°⇒∠A+∠B=90°(2)、在直角三角形中,30°角所对的直角边等于斜边的一半。
(3)、直角三角形斜边上的中线等于斜边的一半5、摄影定理 在直角三角形中,斜边上的高线是两直角边在斜边上的摄影的比例中项,每条直角边是它们在斜边上的摄影和斜边的比例中项 ∠ACB=90° BD AD CD •=2CD ⊥AB AB BD BC •=26、常用关系式由三角形面积公式可得:AB •CD=AC •BC7、直角三角形的判定1、有一个角是直角的三角形是直角三角形。
初二数学知识点梳理:勾股定理知识点总结一、勾股定理:.勾股定理内容:如果直角三角形的两直角边长分别为a,斜边长为c,那么a2+b2=c2,即直角三角形两直角边的平方和等于斜边的平方。
2.勾股定理的证明:勾股定理的证明方法很多,常见的是拼图的方法用拼图的方法验证勾股定理的思路是:(1)图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变;(2)根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理。
4.勾股定理的适用范围:勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征。
二、勾股定理的逆定理.逆定理的内容:如果三角形三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形,其中c为斜边。
说明:(1)勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和与较长边的平方作比较,若它们相等时,以a,b,c为三边的三角形是直角三角形;(2)定理中a,b,c及a2+b2=c2只是一种表现形式,不可认为是唯一的,如若三角形三边长a,b,c满足a2+b2=c,那么以a,b,c为三边的三角形是直角三角形,但此时的斜边是b.2.利用勾股定理的逆定理判断一个三角形是否为直角三角形的一般步骤:(1)确定最大边;(2)算出最大边的平方与另两边的平方和;(3)比较最大边的平方与别两边的平方和是否相等,若相等,则说明是直角三角形。
三、勾股数能够构成直角三角形的三边长的三个正整数称为勾股数.四、一个重要结论:由直角三角形三边为边长所构成的三个正方形满足“两个较小面积和等于较大面积”。
五、勾股定理及其逆定理的应用解决圆柱侧面两点间的距离问题、航海问题,折叠问题、梯子下滑问题等,常直接间接运用勾股定理及其逆定理的应用。
常见考法(1)直接考查勾股定理及其逆定理;(2)应用勾股定理建立方程;(3)实际问题中应用勾股定理及其逆定理。
第一章 勾股定理【知识点归纳】123456⎧⎪⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩⎪⎧⎪⎪⎪⎪⎪⎪⎨⎨⎪⎪⎪⎪⎪⎪⎩⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩⎩1、已知直角三角形的两边,求第三边勾股定理2、求直角三角形周长、面积等问题3、验证勾股定理成立1、勾股数的应用勾股定理勾股定理的逆定理2、判断三角形的形状3、求最大、最小角的问题、面积问题、求长度问题、最短距离问题勾股定理的应用、航海问题、网格问题、图形问题 考点一:勾股定理(1)对于任意的直角三角形,如果它的两条直角边分别为a 、b ,斜边为c ,那么一定有222c b a =+ 勾股定理:直角三角形两直角边的平方和等于斜边的平方。
(2)结论:①有一个角是30°的直角三角形,30°角所对的直角边等于斜边的一半。
②有一个角是45°的直角三角形是等腰直角三角形。
③直角三角形斜边的中线等于斜边的一半。
(3)勾股定理的验证abcab cab cabcababa bba例题:例1:已知直角三角形的两边,利用勾股定理求第三边。
(1)在Rt △ABC 中,∠C=90°①若a=5,b=12,则c=___________; ②若a=15,c=25,则b=___________; ③若c=61,b=60,则a=__________;④若a ∶b=3∶4,c=10则Rt △ABC 的面积是=________。
(2)如果直角三角形的两直角边长分别为1n 2-,2n (n>1),那么它的斜边长是( ) A 、2nB 、n+1C 、n 2-1D 、1n 2+(3)在Rt △ABC 中,a,b,c 为三边长,则下列关系中正确的是( )A.222a b c +=B. 222a c b +=C. 222c b a +=D.以上都有可能(4)已知一个直角三角形的两边长分别为3和4,则第三边长的平方是( )A 、25B 、14C 、7D 、7或25例2:已知直角三角形的一边以及另外两边的关系利用勾股定理求周长、面积等问题。
初二数学《勾股定理》课件一、教学内容本节课我们将学习人教版八年级数学上册第15章《勾股定理》的第1节内容。
具体包括勾股定理的概念、证明和应用。
勾股定理指出,在一个直角三角形中,直角边的平方和等于斜边的平方。
二、教学目标1. 理解并掌握勾股定理的概念,能准确表述定理内容。
2. 学会运用勾股定理解决实际问题,提高解决问题的能力。
3. 通过勾股定理的证明,培养学生的逻辑思维能力和空间想象能力。
三、教学难点与重点重点:勾股定理的概念及其应用。
难点:勾股定理的证明过程,以及在实际问题中的应用。
四、教具与学具准备1. 教具:多媒体课件、直角三角形模型。
2. 学具:练习本、铅笔、直尺、三角板。
五、教学过程1. 实践情景引入:展示一张直角三角形的图片,提出问题:“如何计算这个直角三角形的斜边长度?”引导学生思考。
2. 例题讲解:讲解勾股定理的证明过程,通过动画演示和实际操作,让学生直观感受定理的成立。
3. 随堂练习:发放练习题,让学生独立完成,巩固所学知识。
4. 知识拓展:介绍勾股定理在建筑、工程等领域的应用,提高学生的学习兴趣。
六、板书设计1. 勾股定理2. 内容:(1)勾股定理的概念(2)勾股定理的证明(3)勾股定理的应用七、作业设计1. 作业题目:(1)已知直角三角形的一直角边长为3,斜边长为5,求另一直角边长。
(2)已知直角三角形的两直角边长分别为4和6,求斜边长。
2. 答案:(1)另一直角边长为4。
(2)斜边长为2。
八、课后反思及拓展延伸本节课通过实践情景引入、例题讲解、随堂练习等环节,让学生掌握了勾股定理的概念、证明和应用。
课后,教师应关注学生的作业完成情况,对学生的疑问进行解答。
在拓展延伸方面,可以让学生了解勾股定理的起源、发展历程以及与其他数学定理的联系,提高学生的数学素养。
重点和难点解析1. 勾股定理的证明过程2. 实践情景引入的设计3. 作业设计中的题目难度和答案解析4. 课后反思及拓展延伸的深度和广度一、勾股定理的证明过程1. 几何拼贴法:通过将四个相同的直角三角形拼贴成一个正方形,直观展示直角边的平方和等于斜边的平方。
初二勾股定理必背10个公式勾股定理是初中数学中的一个重要定理,它可以用来求解直角三角形中的各种问题。
以下是初二学生需要背诵的10个勾股定理公式:1.勾股定理(直角三角形的边关系):c^2=a^2+b^2这是勾股定理的基本公式,其中c表示斜边的长度,a和b分别表示直角三角形的两个其他边的长度。
2.等腰直角三角形的边关系:a=b=c/√2在等腰直角三角形中,两个直角边的长度相等,斜边的长度等于直角边长度的开根号2倍。
3.正方形的对角线关系:d=a√2正方形的对角线的长度等于边长的开根号2倍。
4.等腰三角形的边关系:a = c/2sinB在等腰三角形中,等边边长和底边边长之间的关系由正弦定理给出。
5. 直角三角形的正弦定理:sinA = a/c, sinB = b/c直角三角形中,正弦定理给出了直角边和斜边之间的关系。
6. 直角三角形的余弦定理:cosA = b/c, cosB = a/c直角三角形中,余弦定理给出了直角边和斜边之间的关系。
7. 直角三角形的正切定理:tanA = a/b, tanB = b/a直角三角形中,正切定理给出了直角边之间的关系。
8.等腰三角形的高与边关系:h=√(a^2-(c/2)^2)等腰三角形的高是通过勾股定理计算出来的。
9.三角形的海伦公式:S=√(p(p-a)(p-b)(p-c))海伦公式用于计算三角形的面积,其中p=(a+b+c)/2是三角形的半周长。
10. 直角三角形的面积关系:S = ab/2直角三角形的面积由两个直角边的长度决定。
通过背诵以上这些公式,学生可以在解决直角三角形问题时更加灵活和准确。
同时,背诵这些公式还有助于培养数学思维和逻辑推理能力。
初二数学下册勾股定理知识点及常考题型初二数学下册:勾股定理知识点及常考题型_三角形_关系_方法《勾股定理》知识点1:勾股定理直角三角形两直角边a、b的平方和等于斜边c的平方。
即:a²+b²=c²要点诠释:勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一。
其主要应用:(1)已知直角三角形的两边求第三边;(2)已知直角三角形的一边与另两边的关系,求直角三角形的另两边;(3)利用勾股定理可以证明线段平方关系的问题。
2:勾股定理的逆定理如果三角形的三边长:a、b、c,则有关系a²+b²=c²,那么这个三角形是直角三角形。
要点诠释:勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状。
运用这一定理时应注意:(1)首先确定最大边,不妨设最长边长为:c;(2)验证c2与a2+b2是否具有相等关系,若c²=a²+b²,则△ABC是以∠C为直角的直角三角形(若c²>a²+b²,则△ABC是以∠C为钝角的钝角三角形;若c²<a²+b²,则△ABC为锐角三角形)。
3:勾股定理与勾股定理逆定理的区别与联系区别:勾股定理是直角三角形的性质定理,而其逆定理是判定定理;联系:勾股定理与其逆定理的题设和结论正好相反,都与直角三角形有关。
4:互逆命题的概念如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题。
如果把其中一个叫做原命题,那么另一个叫做它的逆命题。
5:勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法用拼图的方法验证勾股定理的思路是:①图形经过割补拼接后,只要没有重叠,没有空隙,面积不会改变;②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理。