函数的连续性简介教学材料
- 格式:pptx
- 大小:501.53 KB
- 文档页数:27
《函数的连续性与导数性质教学设计与实验研究》教案设计第一章:函数的连续性1.1 连续性的概念引导学生理解连续性的直观含义通过具体例子讲解连续性的定义引导学生理解连续性与连续函数的关系1.2 连续函数的性质引导学生了解连续函数的基本性质通过例子讲解连续函数的单调性、周期性等性质引导学生理解连续函数的性质对于解决实际问题的意义第二章:导数的定义与性质2.1 导数的定义引导学生理解导数的定义通过具体例子讲解导数的计算方法引导学生理解导数与函数的连续性的关系2.2 导数的性质引导学生了解导数的基本性质通过例子讲解导数的单调性、周期性等性质引导学生理解导数的性质对于解决实际问题的意义第三章:导数的应用3.1 函数的单调性引导学生理解函数的单调性通过例子讲解如何利用导数判断函数的单调性引导学生理解函数的单调性对于解决实际问题的意义3.2 函数的极值与拐点引导学生理解函数的极值与拐点的概念通过例子讲解如何利用导数求函数的极值与拐点引导学生理解函数的极值与拐点对于解决实际问题的意义第四章:导数在实际问题中的应用4.1 优化问题引导学生理解优化问题的概念通过例子讲解如何利用导数解决优化问题引导学生理解优化问题在实际中的应用4.2 经济问题引导学生理解经济问题的概念通过例子讲解如何利用导数解决经济问题引导学生理解经济问题在实际中的应用第五章:实验与探究5.1 连续性与导数的实验引导学生进行实验,观察连续函数的性质通过实验引导学生理解连续性与导数的关系5.2 导数应用的实验引导学生进行实验,观察函数的单调性、极值等性质通过实验引导学生理解导数在实际问题中的应用第六章:高阶导数与微分中值定理6.1 高阶导数的定义与计算引导学生理解高阶导数的概念通过具体例子讲解高阶导数的计算方法引导学生理解高阶导数在研究函数性质中的应用6.2 微分中值定理引导学生理解微分中值定理的概念通过例子讲解罗尔定理、拉格朗日中值定理和柯西中值定理的应用引导学生理解微分中值定理在实际问题中的应用第七章:泰勒公式与导数的逼近7.1 泰勒公式的定义与计算引导学生理解泰勒公式的概念通过具体例子讲解泰勒公式的计算方法引导学生理解泰勒公式在逼近函数值中的应用7.2 导数的逼近方法引导学生了解导数逼近的概念通过例子讲解导数逼近的方法和应用引导学生理解导数逼近在实际问题中的应用第八章:函数的极限与连续性8.1 极限的概念与计算引导学生理解极限的概念通过具体例子讲解极限的计算方法引导学生理解极限在研究函数连续性中的应用8.2 函数的连续性与极限的关系引导学生了解函数连续性与极限的关系通过例子讲解函数连续性与极限的联系和区别引导学生理解函数连续性与极限在实际问题中的应用第九章:函数的导数与微分学的基本定理9.1 函数的导数与微分学的基本定理引导学生理解函数的导数与微分学的基本定理通过具体例子讲解微分学的基本定理的应用引导学生理解微分学的基本定理在实际问题中的应用9.2 微分学的应用引导学生了解微分学的应用通过例子讲解微分学在实际问题中的应用引导学生理解微分学在实际问题中的应用第十章:实验与探究10.1 导数与微分学的实验引导学生进行实验,观察导数与微分学的基本定理的性质通过实验引导学生理解导数与微分学的关系10.2 微分学应用的实验引导学生进行实验,观察微分学在实际问题中的应用通过实验引导学生理解微分学在实际问题中的应用重点和难点解析一、连续性的概念:理解连续性的定义和连续函数的关系是学习后续内容的基础。
函数的连续性教案⽰例函数的连续性·教案⽰例⽬的要求了解函数在⼀点处连续的定义,知道已学过的基本初等函数及由它们经过有限次四则运算所产⽣的函数在定义区间内每⼀点都连续,会从⼏何直观上理解闭区间上的连续函数有最⼤值和最⼩值.内容分析1.在微积分中我们所研究的函数主要是连续函数,⽽连续概念是建⽴在极限概念的基础上的.本节课介绍函数f(x)在点x =x 0处连续的概念时,除借助图形直观描述外,主要以函数值、极限值都存→f(x )lim f(x)0x x 0在且两者相等为定义⽅式,这种定义与极限关系密切,所以将连续作为本章的最后部分既是承上启下的,⼜是顺理成章的.2.⼈们对事物的认识是不断加深的,研究也是由浅⼊深的.对函数的定义域、值域、单调性、奇偶性、周期性等进⾏了研究,本课再⽤学过的极限概念对函数的连续性加以研究,使我们对函数的了解认识更进⼀步,更完善.3.本课时的重点是函数在x =x 0处连续的定义.定义包含三层意思:(1)f(x)在点x =x 0处及其附近有定义;(2)lim f(x)(3)lim f(x)f(x )x x x x 000→→存在;=可结合图形说明,只要缺其中的任意⼀个条件,就说f(x)在点x 0处不连续.难点是对连续的理解,由于连续较抽象,故要对照图形讲解.4.函数在区间连续是建⽴在函数在⼀点连续的基础上的.如果函数f(x)在开区间(a ,b)内每⼀点都连续,就说函数f(x)在开区间(a ,b)内连续;如果在开区间,内连续,在=处有=,在=处有=,就说在闭区间,上连续.这种环环相扣、→→f(x)(a b)x a lim f(x)f(a)x b lim f(x)f(b)f(x)[a b]x ax b +-层层推进的定义⽅式能很好地培养学⽣严谨的逻辑思维.5.指出已学过的基本初等函数及由它们经过有限次四则运算所产⽣的函数在其定义区间⾥每⼀点都是连续的.6.从⼏何直观上讲解函数的连续性和连续函数的性质.7.从连续函数的定义可知,所谓函数y =f(x)在它的定义域内某点x 0处连续,意思是说,当⾃变量x ⽆限接近x 0时,相应的函数值f(x)也就⽆限地接近函数值f(x 0).也可⽤“增量”(改变量)来说明函数的连续性:设⾃变量x 的增量为Δx =x -x 0,则函数值的改变量为Δy =f(x +x 0)-f(x 0).所谓f(x)在点x 0处连续,就是指当Δx →0时,相应的增量Δy也趋向零,即Δ=.通过这些不同的说法,加深对极限概念的Δ→lim y 0x 0认识.教学过程1.实例引⼊概念,图形直观说明(1)⽔银柱⾼度随温度的改变⽽连续变化;(2)邮费随邮件重量的增加⽽作阶梯式的增加.函数值是否会因为⾃变量的细⼩变化⽽“⼤起⼤落”,这就是要研究的问题.引出课题:函数的连续性从下列图形中分析:问:(1)函数f(x)在点x =x 0是否有定义?(2)lim f(x)(3)lim f(x)f(x )x x x x 000→→是否存在?是否与相等?答:图(1)满⾜3条;图(2)不满⾜(1);图(3)不满⾜条件(2);图(4)不满⾜条件(3).由此概括出函数在⼀点处连续的定义.2.函数在⼀点处连续的定义:如果函数=在点=处及其附近有定义,⽽且=→y f(x)x x lim f(x)0x x 0f(x 0),就说函数f(x)在点x 0处连续.指出=包含两层意思:存在;极限值与函数值相等.→→→lim f(x)f(x )(1)lim f(x)(2)lim f(x)f(x )00x x x x x x 000提问:连续函数在图形上有何特点?3.举例应⽤例讨论下列函数在给定点处的连续性:(1)f(x)x 0=,点=;1x(2)g(x)=sinx ,点x =0.解:画图.(1)f(x)x 0x 0函数=在=处没有定义,因⽽它在点=处不连续.1x(2)lim sinx 0sin0g(x)sinx x 0因为==,因此=在点=处是连续的.→x 0课堂练习:教科书第97页练习第1、2题(不连续的指出不满⾜定义中的哪⼀条),第98页习题2.6第2、4题.4.函数在区间⾥连续(1)在开区间连续:如果函数在某⼀开区间(a ,b)内每⼀点处都连续,就说函数在开区间(a ,b)内连续,或说函数是开区间内的连续函数.(2)在闭区间连续:如果函数f(x)在开区间(a ,b)内连续,在左端点x=处有=,在右端点处有=,就说函数在闭→→a lim f(x)f(a)lim f(x)f(b)f(x)x a x b+- 区间[a ,b]上连续.5.闭区间上连续函数的性质性质(最⼤值最⼩值定理):如果f(x)是闭区间[a ,b]上的连续函数,那么f(x)在闭区间[a ,b]上有最⼤值和最⼩值.6.归纳⼩结(1)函数在⼀点处连续的定义.(2)判定函数在⼀点处是否连续:⽅法1:由定义说明,⽅法2:由图象直观说明.(3)闭区间上连续函数的性质.想⼀想:函数在某⼀点的极限与连续有何关系?布置作业教科书第98页习题2.6第1、3题。
高等数学教案5函数的连续性教学目标:1.了解函数连续性的定义。
2.掌握连续函数的性质和常见类型。
3.能够通过定义验证函数的连续性。
4.能够利用连续性解决相关问题。
教学重点和难点:1.函数连续性的定义和性质。
2.连续函数的常见类型。
教学方法:1.讲授法:通过讲解、举例等方式,让学生理解函数连续性的定义和性质。
2.探究法:通过引导学生进行研究和探究,提高学生对连续函数的理解和应用能力。
3.解决问题法:通过解决一些实际问题,培养学生运用连续函数解决实际问题的能力。
教学过程:一、引入新知(5分钟)教师通过提问引入新知:“你们对函数连续性有什么了解?”学生回答后,教师解答并说明本节课的学习目标。
二、讲授函数连续性(20分钟)1.函数连续性的定义教师讲解函数连续性的定义,引导学生理解函数在其中一点连续的含义,并通过图像展示、数学表达进行说明。
2.连续函数的性质教师讲解连续函数的性质,如连续函数在闭区间上有界、有最大值和最小值等性质,并通过例题让学生理解和掌握这些性质。
三、练习和讨论(30分钟)1.基本例题教师出示一些基本的例题,让学生运用连续函数的定义和性质进行分析和解答。
鼓励学生积极思考,并进行课堂讨论和分享。
2.实际问题教师出示一些实际问题,让学生通过建立数学模型、运用连续函数解决实际问题。
引导学生思考如何将实际问题转化成数学问题,进而利用函数的连续性进行求解。
四、总结和延伸(10分钟)教师对本节课的内容进行总结,强调函数连续性的重要性和应用,鼓励学生积极思考和延伸相关知识。
五、作业布置(5分钟)教师布置课后作业,让学生巩固和深化本节课的内容。
作业内容可以包括练习题、思考题等。
教学资源和评价方法:教学资源:投影仪、黑板、教材等。
评价方法:课堂参与、课后作业、小组讨论等。
教学反思:本节课通过引入新知、讲授函数连续性的定义和性质、练习和讨论以及总结和延伸等环节,全面培养了学生对函数连续性的理解和应用能力。
在教学过程中,考虑到学生的不同差异,通过多样化的教学方法和资源,提高了学生的学习兴趣和主动参与度。
函数的连续性与间断点教学备课函数的连续性和间断点是高中数学中重要的概念之一,它们在数学的各个分支中都有广泛的应用。
在这篇教学备课中,我们将重点介绍函数的连续性和间断点的定义、性质以及解决相关问题的方法。
通过清晰的讲解和实例演练,帮助学生深入理解这一概念,并培养他们的解决问题的能力。
一、函数的连续性的定义与性质连续函数是指在函数的定义域上不存在断裂或跳跃的点,数学上有严格的定义。
我们首先通过直观的例子引入连续性的概念,例如常见的多项式函数、三角函数等等。
然后,我们可以引入以下连续性的定义和性质:1. 函数f在点x=a处连续的三个条件:(1)f(a)存在,(2)f(x)在x=a处存在极限值,(2)函数f(x)在x=a附近的值趋近于f(a),即左极限和右极限存在并相等。
2. 连续函数的加减乘除以及复合仍然是连续函数。
通过提供适当的例子和图表演示,让学生具体感受到连续性的概念和性质。
引导学生理解连续函数的代数性质和图像特点,以及连续函数与不连续函数之间的区别。
二、间断点的分类与解决方法间断点是函数定义域内的某个点,使得函数在该点不连续。
根据函数在间断点处的性质不同,间断点可以分为可去间断点、跳跃间断点和无穷间断点。
我们将重点讲解如下内容:1. 可去间断点:函数在该点处的极限存在,但函数值与极限值不相等。
通过分析函数在该点的数值和极限值的关系,以及图像的特点,引导学生掌握可去间断点的判断和求解方法。
2. 跳跃间断点:函数在该点的左右极限存在,但两个极限值不相等。
通过观察函数在该点附近的数值和极限值的关系,以及图像的跳跃性质,让学生理解跳跃间断点的概念和性质。
3. 无穷间断点:函数在该点的极限不存在,可能是正无穷或负无穷。
通过讨论函数在该点无极限的原因和特点,引导学生掌握无穷间断点的判断和解决方法。
在讲解每个类型的间断点时,可以用具体的例子和图表演示,让学生直观地感受函数在不同间断点处的行为模式。
三、函数连续性与间断点的应用函数的连续性和间断点的概念在实际问题中有广泛的应用。
函数的连续性教案一、教学目标1、理解函数连续性的概念,包括在一点处连续和在区间上连续的定义。
2、能够通过函数的图像和表达式判断函数在某点处的连续性。
3、掌握函数连续性的性质,如连续函数的四则运算、复合函数的连续性等。
4、能够运用函数连续性的概念和性质解决相关的数学问题。
二、教学重难点1、教学重点函数在一点处连续的定义。
函数连续性的性质及其应用。
2、教学难点函数在一点处连续的定义的理解。
运用函数连续性的定义证明函数在某点处连续。
三、教学方法讲授法、讨论法、练习法四、教学过程1、导入(通过展示一些函数的图像,如连续的曲线和不连续的折线)同学们,我们在之前的学习中已经接触过很多函数,大家观察这些函数的图像,有的曲线是平滑的,没有间断点;而有的图像则存在跳跃或者断裂的情况。
今天我们就来深入研究函数的一种重要性质——连续性。
2、函数在一点处连续的定义设函数\(f(x)\)在点\(x_0\)的某一邻域内有定义,如果当自变量的增量\(\Delta x\)趋近于零时,对应的函数增量\(\Delta y = f(x_0 +\Delta x) f(x_0)\)也趋近于零,那么就称函数\(f(x)\)在点\(x_0\)处连续。
用数学语言可以表示为:\(\lim_{\Delta x \to 0} \Delta y =\lim_{\Delta x \to 0} f(x_0 +\Delta x) f(x_0) = 0\)进一步,等价于:\(\lim_{x \to x_0} f(x) = f(x_0)\)(通过具体的函数例子,如\(f(x) = x^2\)在\(x = 1\)处,计算函数增量,帮助学生理解定义)3、函数在一点处连续的充要条件函数\(f(x)\)在点\(x_0\)处连续的充要条件是:函数\(f(x)\)在点\(x_0\)处既左连续又右连续。
左连续:\(\lim_{x \to x_0^} f(x) = f(x_0)\)右连续:\(\lim_{x \to x_0^+} f(x) = f(x_0)\)(举例说明左连续和右连续的情况)4、函数在区间上连续的定义如果函数\(f(x)\)在区间\(I\)内的每一点都连续,就称函数\(f(x)\)在区间\(I\)上连续。
函数连续性教学设计教学设计主题:函数连续性教学目标:1.了解函数连续性的概念及其性质;2.掌握函数连续性的判定方法;3.能够应用函数连续性的性质解决实际问题。
教学重点:1.函数连续性的概念和性质;2.函数连续性的判定方法。
教学难点:1.函数连续性判定方法的应用;2.实际问题的应用。
教学准备:1.教材:高中数学教材;2.教辅资料:相关的教学视频、练习题和答案;3.教学媒体:电子白板、计算器、投影仪等。
教学过程:一、导入(10分钟)1.引入函数连续性的概念:什么是函数连续性?为什么重要?2.引导学生观察一个连续函数的图像,了解连续函数在图像上没有突变的特点。
二、知识讲解(15分钟)1.介绍函数连续性的定义和性质,并在电子白板上进行讲解和案例演示。
2.解释连续函数的性质:无间断、无间断点、无间断集、极限存在、极限值等。
三、判定方法(20分钟)1.介绍函数连续性的判定方法:a.函数在特定点处连续的条件;b.函数在区间上连续的条件;c.利用四则运算法则判定函数的连续性。
2.在电子白板上进行实例讲解和演示。
四、练习(15分钟)1.在教学辅助资料中选取相关的练习题,供学生进行练习。
2.学生独立完成练习,教师巡视和指导,及时纠正错误。
五、拓展应用(20分钟)1.引导学生思考函数连续性在实际问题中的应用。
2.提供一些实际问题,并指导学生利用函数连续性的性质解决问题。
六、总结(10分钟)1.对本节课所学内容进行总结,并重点强调函数连续性的概念和判定方法。
2.梳理核心考点,指导学生进行重点复习。
七、课后作业(5分钟)1.布置相关的课后作业,巩固所学知识。
2.确认下节课的教学内容和要求。
教学反思:在教学设计中,我充分考虑了学生的学习兴趣和实际应用的需求。
通过引导学生观察连续函数的图像,可以让学生更好地理解连续性的概念。
在知识讲解和实例演示中,加入了多媒体教学的内容,使学生能够更直观地理解函数连续性的性质和判定方法。
在拓展应用环节,引导学生思考函数连续性在实际问题中的应用,能够培养学生的应用问题解决能力。
函数的连续性教学备课一、引言在高中数学课程中,函数的连续性是一个重要的概念。
掌握了连续性的概念和应用,学生将能够更好地理解函数的性质和应用。
本教学备课将重点介绍连续性的定义、连续性的运算性质以及应用连续性解决实际问题。
二、连续性的定义连续性是函数学中一个基本的概念,它在分析和微积分中具有广泛的应用。
要能够准确理解和掌握连续性的概念,学生首先需要了解函数在一个点上连续的定义。
函数f(x)在点x=a处连续,意味着当x趋近于a时,f(x)趋近于f(a)。
具体来说,对于任意一个ε>0,存在一个δ>0,当0<|x - a|<δ时,有|f(x) - f(a)| < ε。
这个定义是连续性的基础,学生要通过例题和练习来加深对连续性定义的理解。
三、连续性的运算性质连续性的运算性质是学生在学习连续性时需要掌握的关键内容。
函数的和、差、积、商(除数不为零)、复合函数等操作在一定条件下保持函数的连续性。
具体来说,如果函数f(x)和g(x)在点x=a处连续,那么它们的和、差、积、商(除数不为零)和复合函数f(g(x))在同一点x=a处也连续。
学生需要通过推理和证明,理解连续性运算性质的原理和应用。
四、连续性的应用连续性在实际问题中有广泛的应用。
例如,在求函数在某区间上的最大值和最小值时,可以首先通过连续性的性质确定函数在区间的端点和驻点上的值,然后再比较求得最大值和最小值。
此外,连续性还可应用于方程求根和函数图像的绘制等问题。
学生在掌握了连续性的定义和运算性质后,可以通过举例和解题演练来掌握连续性的应用技巧。
五、教学方法为了有效地教授连续性的概念和应用,教师可以采用多种教学方法。
首先,通过提供具体的例子和练习,引导学生理解连续性的定义和概念。
其次,可以通过教师讲解和学生参与讨论的方式,引导学生理解连续性的运算性质和应用。
最后,通过课堂练习和作业布置,巩固和拓展学生对连续性的理解和应用。
在教学过程中,教师要注重与学生的互动,激发学生的学习兴趣,提高他们对连续性的理解和应用能力。
函数的连续性教案教案标题:函数的连续性教案教案目标:1. 了解函数的连续性的概念和意义。
2. 掌握判断函数在给定区间上的连续性的方法。
3. 能够应用函数的连续性性质解决实际问题。
教案步骤:引入:1. 向学生介绍函数的连续性的概念,即函数在某一区间内的图像是连续的。
2. 解释连续性的意义,即函数在某一点上的值与该点附近的值之间没有突变或间断。
探究:1. 提供一个简单的例子,如f(x) = x^2,让学生观察函数图像并讨论函数在整个定义域上的连续性。
2. 引导学生思考如何判断函数在给定区间上的连续性。
提醒学生关注函数在区间端点和内部点上的性质。
3. 引导学生思考连续性的三个基本性质:函数在闭区间上连续的充要条件、函数在开区间上连续的充要条件以及函数在无穷区间上连续的充要条件。
实践:1. 给出一些具体的函数,例如f(x) = sin(x)和g(x) = 1/x,在给定区间上判断它们的连续性。
2. 引导学生使用连续性的性质,结合函数的定义和性质进行判断。
3. 给学生一些实际问题,例如求一个函数在某一点处的极限值,要求学生利用函数的连续性性质进行求解。
总结:1. 总结函数连续性的概念和意义。
2. 强调函数连续性的判断方法和应用。
3. 鼓励学生在实际问题中运用函数连续性的性质解决问题。
教案评估:1. 给学生一些练习题,要求判断给定函数在给定区间上的连续性。
2. 给学生一些应用题,要求利用函数的连续性性质解决实际问题。
3. 收集学生的答案并进行评估,及时纠正他们的错误并给予指导。
教案扩展:1. 引导学生进一步研究函数的间断点和可导性的关系。
2. 探究函数连续性的中值定理及其应用。
3. 引导学生研究其他函数性质与连续性的关系,如函数的单调性和极值点等。
教案资源:1. 函数图像展示工具,如数学软件或在线绘图工具。
2. 练习题和应用题的题目和答案。
3. 相关教材和参考书籍的章节和页码。
第四章函数的连续性1. 教学框架与内容教学目标①掌握函数连续性概念.②掌握连续函数的局部性质和闭区间上连续函数的整体性质.③掌握初等函数的连续性.教学内容①函数在一点和在区间上连续的定义,可去间断点,跳跃间断点,第二类间断点等间断点的分类.②连续函数的局部保号性,局部有界性,四则运算;闭区间上连续函数的最大最小值定理,有界性定理,介值性定理,反函数的连续性,一致连续性.③初等函数的连续性.2. 重点和难点①用较高的分析方法、技巧证明函数的连续性.②一致连续性和非一致连续性的特征, 如何判别函数是否一致连续.③用初等函数的连续性计算极限.3. 研究性学习选题● 连续函数介值性的应用,特别是方程根的问题, 举例说明应用.● 一致连续性的判定通过自学和小组讨论,写出对函数一致连续性的理解.4. 综合性选题,写学习笔记■ 函数极限性质、连续函数局部性质、连续函数整体性质的内在联系.5. 评价方法◎课后作业,计20分.◎研究性学习布置的两个选题合计30分.●闭区间上连续函数的性质(计15分)● 一致连续性(计15分)◎学习笔记计20分.◎小测验(第三章与第四章) 计30分§1 连续函数概念一、函数在一点的连续性回顾函数在一点的极限0lim ()x x f x A →=,可以有三种情况:1) 0()f x 无定义,如000sin()limx x x x x x →--.2) 0()f x 存在但0()f x A ≠,如00()1xx x f x x x x ≠⎧=⎨+=⎩.3) 0()f x A =,如()1f x x =+, 00lim ()()x x f x f x →=.从图形上看,函数3)的图像为一条连绵不断的曲线,这种函数我们就称为连续函数.下面我们就给出这种函数的定义.定义1 设函数f 在某0()U x 内有定义,若00lim ()()x x f x f x →=,则称f 在0x 处连续.例 1 1) ()21f x x =+在2x =处连续.2) 1sin 0()00x x f x xx ⎧≠⎪=⎨⎪=⎩在0x =处连续.结论1 若f 在0x 处连续, 则f 在0x 处存在极限(0()f x ).注 1 若要f 在0x 处连续,不仅要求f 在0x 处存在极限,而且要求极限就是函数值0()f x .而以前我们讨论函数f 在0x 处的极限,其与f 在0x 处是否有定义或f 在0x 处的值为多少均无关.定义2(εδ-) 设f 在某0(,')U x δ内有定义,若任0ε>,0δ∃>(')δδ<,使得对任意0(,)x U x δ∈, 有0()()f x f x ε-<,则称f 在0x 处连续.记0x x x ∆=-,称为x 自变量在0x 处的增量(或称作改变量,可正也可负),相应地, 函数y 在00()y f x =处的函数值增量,记为0000()()()()y y y f x f x f x x f x ∆=-=-=+∆-.定义3 f 在0x 处连续0lim 0x y ∆→⇔∆=.注 2 ()f x 在0x 处连续00lim ()()(lim )x x x x f x f x f x →→⇔==.由此可见,f 在0x 处连续0lim x x →⇔与对应法则f 可交换次序,又由左右极限,f 在0x 处连续00lim ()()x x f x f x →⇔=;0lim ()lim ()()x x x x f x f x f x +-→→⇔==;0lim ()()x x f x f x +→⇔=且00lim ()()x x f x f x -→=.(⇔f 在0x 处右、左连续).定义4 设函数f 在0()U x +(或0()U x -)内有定义,若00lim ()()x x f x f x +→=(或00lim ()()x x f x f x -→=).则称f 在0x 处右(左)连续.结论2 f 在0x 处连续⇔f 在0x 处右、左连续.例2 已知2,0,(),0,,0,x x f x A x x B x +>⎧⎪==⎨⎪-<⎩讨论()f x 在0x =处的连续性及左右连续性.二、间断点及其分类定义5 设函数f 在某00()U x 内有定义,若f 在0x 处无定义或f 在0x 处有定义但不连续,则称点0x 为f 的间断点或不连续点.若f 在0x 处不连续,则对极限必有如下情形:1) 0lim ()x x f x A →=,而f 在0x 处无定义或有定义,但00lim ()()x x f x A f x →=≠.2) 左右极限都存在但不相等,称0|lim ()lim ()|x x x x f x f x α+-→→=-为f 在0x 处的跳跃度.3) 左右极限至少有一个不存在.下面我们对间断点进行分类.1、第一类间断点------函数在此点的左右极限均存在1) 可去间断点 若00lim ()lim ()x x x x f x f x A -→+→== (此时0lim ()x x f x A →=存在,0()A f x ≠或0()f x 无意义),则称0x 为f 的可去间断点.例3 1) 1,0,()0,0,x f x x ≠⎧=⎨=⎩在0x =处.2) sin ()xf x x=在0x =处.对可去间断点,其最大的特征是0lim ()x x f x A →=存在,因而可重新定义f 在0x 处的函数值,使新的函数f 在0x 处连续.例4 对sin ()x f x x =, 定义sin ,0,()1,0,xx f x x x ⎧≠⎪=⎨⎪=⎩ 则()f x 在0x =处的连续.2) 跳跃间断点 若f 的左右极限都存在但不相等,则称0x 为f 的跳跃间断点. 例5 (1)()[]f x x =,在x n =处,跳跃度为1,在R 上任一点处都是右连续的.(2) 函数 1,0()0,01,0x x f x x x x +>⎧⎪==⎨⎪-<⎩在0x =处间断,为跳跃间断点.2、第二类间断点-----f 在此点处至少有一单侧极限不存在 例6 Dirichlet 函数()D x 在R 上任一点处间断且都是第二类间断.例7 1) 求2(1)()(1)x x f x x x -=-的间断点类型.2) 举例定义在R 上且在1x =,2x =处间断的函数.思考 有无在R 上定义但仅在1x =,2x =处连续的函数?3) 考察,;(),,x x f x x x ⎧=⎨-⎩为有理数为无理数的间断点.例8 设函数f 是区间I 上的单调函数,证明: 若0x I ∈为f 的间断点, 则0x 必为f 的第一类间断点. (单调函数的间断点必为第一类间断点)三、区间上的连续函数若函数f 是区间I 上的每一点都连续,则称f 为I 上的连续函数,而对于闭区间的端点,函数在此点连续,是指在该点的左(右)连续,如f 在[,]a b 上连续df ⇔在(,)a b 上连续且在x a =,x b =处分别是右、左连续的.例9()f x =1,1x =-处分别是右、左连续的,在(1,1)x ∈-上连续,从而()f x =[1,1]-上连续.分段连续 若f 是[,]a b 上仅有有限个第一类间断点,则称f 在[,]a b 上分段连续.例10 []y x =在任一个有限区间上分段函数.例11 证明: Riemann 函数1,(,),()0,0,1p x p q q q R x x ⎧=⎪=⎨⎪=⎩既约或无理数,在(0,1)内任何无理点均连续,但在任何有理点均不连续.例12 确定,,a b c 的值,使2111,0()0011x ax bx c x x f x x x -≤-⎧⎪++<≠⎪=⎨=⎪⎪≥⎩在R 上连续.练习 设f 为R 上的连续函数, 常数0>c . 记,();()(),();,().c f x c F x f x f x c c f x c -<-⎧⎪=≤⎨⎪>⎩若若若 证明: F 在R 上连续 (一般称F 为f 的截断函数) .习 题1. 用定义证明下列函数在其定义域上连续.2)1x2. 指出下列函数的间断点并说明类型.1)1ln x2) sin x x 3) [sin ]x 4) 112121xx -+5) sgn(sin )x 6) []x x 7) 1arctan x8) 1x e -3. 确定,,a b c 的值,使()f x 连续, 其中21101()0011x ax bx c x f x x x -≤-⎧⎪++<<⎪=⎨=⎪⎪≥⎩.4. 如何补充定义使函数f 连续.1) 24()2x f x x -=- 2) 3tan sin ()x xf x x -=5. 若f 在0x 处连续, 则||f 在0x 处连续. 反之呢? 又2f 呢?6. 若偶函数()f x 在x a =处连续,则f 在x a =-处也连续.(0)a ≠.7. 构造满足下列条件的R 上定义的函数1) 仅在1,2x =处不连续的函数; 2) 仅在1,2x =处连续的函数; 3) 仅在1()x n N n=∈处间断的函数. 8. 若对任何0ε>,f 在[,]a b εε+-上连续,则f 在(,)a b 上连续.9. 设()sin f x x =,,0,(),0,x x g x x x ππ-≤⎧=⎨+>⎩, 求证: (())f g x 在0x =处连续,而g 在0x =处间断.10. 设f 为R 上的单调函数,定义)0()(+=x f x g .证明:g 在R 上每一点都右连续.§2 连续函数性质一、连续函数的局部性质若函数f 在0x 处连续,则f 在0x 处有极限且极限等于函数值,由函数极限性质,有(复习极限性质,然后估计那些性质会减少或有什么不同) 定理 (局部有界性) 若函数f 在0x 处连续,则f 在0()U x 内有界.定理 (局部保号性) 若函数f 在0x 处连续,且0()0f x >(或0<),则对任何正数00()r f x <<(或00()r f x <<-), 存在0()U x , 使得对一切0()x U x ∈有()f x r >(或()f x r <-).注 1 一般可取01()2r f x =. 定理 (四则运算) 若函数f 和g 在0x 处连续,则f g +、f g ⋅、fg0(()0)g x ≠均 在0x 处连续.例1 1) ()f x c =,()f x x =连续,从而 多项式函数 1110()n n n n P x a x a x a x a --=++⋅⋅⋅++, 有理函数()()P x Q x (P 、Q 为多项式) 在其定义域上连续. 2) sin x 、cos x 连续,从而tan x 、cot x 在其定义域上连续.定理 (复合函数连续性) 若函数f 在0x 处连续,g 在00()u f x =连续,则复合函数g f 在0x 处连续.注 2 定理4可简写成 00lim (())(lim ())((lim ))(())x x x x x x g f x g f x g f x g f x →→→===.注 3 由上章变量代换法则定理,当内层函数f 0x x →时极限为a 而0()a f x ≠ 或()f x 在0x 无意义(即0x 为f 的可去间断点),又外层函数g 在u a =连续, 仍有上述定理结论成立,即 0lim (())(lim ())x x x x g f x g f x →→=.例2 1) 21limsin(1)x x →-; 2) x3) 0x →; 4) 0lim x x x a →, (0,1)a a >≠.二、反函数的连续性定理 若函数f 在[,]a b 上严格单调且连续,则反函数1f -在其定义域[(),()]f a f b (或[(),()]f b f a )上连续.例 3 由sin y x =在[,]22ππ-上严格单调且连续,则其反函数sin y arc x =在[1,1]-上连续. 类似地可证1ny x =,q py x =在[0,]+∞上连续.思考 反函数在其定义域上连续能否推出函数本身连续? 三、有限闭区间上连续函数的性质 (整体性质)设f 为闭区间[,]a b 上的连续函数,下面我们讨论f 在[,]a b 上的整体性质. 1、最值性定义1 设f 为定义在数集D 上的函数,若存在0x D ∈,使得对一切x D ∈,有0()()f x f x ≥(或0()()f x f x ≤) ,则称f 在D 上有最小(大)值, 0()f x 称为f 在D 上有最小(大)值, 而0x 相应地称为最小(大)值点.注4 一般而言,函数在其定义域上未必有最大值、最小值(即使f 在D 上有界),如 ()f x x =,(0,1)x ∈,-----上下确界存在.又如1,(0,1),()2,0,1.x g x x x ⎧∈⎪=⎨⎪=⎩ 在[0,1]上无最大、最小值.定理 (最值定理) 若函数f 在闭区间上[,]a b 上的连续,则f 在[,]a b 上存在最大值和最小值,即存在01,[,]x x a b ∈,使得10()()()f x f x f x ≤≤ [,]x a b ∀∈.推论 (有界性定理) 若函数f 在闭区间上[,]a b 上的连续,则f 在[,]a b 上有界. [分析 注4中两个例子为什么无界?]练习 举例说明最值定理的条件仅是充分的,易见最值点存在也未必唯一.在中学二次函数2y ax bx c =++常遇到方程20ax bx c ++=根的问题,一般找一个值0>,一个值0<(作图解释) .这实际上就是应用了连续函数的介值性. 2、介值性定理(介值性定理) 若函数f 在闭区间[,]a b 上连续且()()f a f b ≠,若μ为介于()f a 与()f b 之间的任一实数(()()f a f b μ<<,或()()f b f a μ<<) ,则至少存在一点(,)a b ξ∈,使得()f ξμ=.推论 (根的存在性定理) 若函数f 在闭区间[,]a b 上连续,且()f a 与()f b 异号, 则至少存在一点(,)a b ξ∈,使得()0f ξ=. 注 5 介值性定理与根的存在性定理是等价的.注 6 由介值性定理,若f 在[,]a b 上的连续,()()f a f b <,则f 在[,]a b 上能取到 区间[(),()]f a f b 之间的一切值,则([,])[(),()]f a b f a f b ⊃.特别地,若f 在[,]a b 上的最大值M 、最小值m ,则([,])[,]f a b m M =.结论 若f 是闭区间I 上连续且不恒为常数,则值域()f I 亦为一个闭区间.例4 证明: 方程cos x x x =在0到2π之间有实根.例5 证明: 若0r >,n 为正整数,则存在唯一正数0x 使得0n x r =(0x 称为r 的n 次正根,记作0x =).例6 设f 在[,]a b 上的连续,([,])[,]f a b a b ⊂,证明:存在0[,]x a b ∈,使得0()f x x =.注 对上述问题的根的存在性,一般可构造函数使得函数在适当区间上连续, 且在端点处的值异号,而对唯一性,一般可利用函数严格单调性说明. 练习 若f 在[0,2]a 上的连续,(0)(2)f f a =,证明: 存在点0[0,]x a ∈, 使00()()f x f x a =+.3、一致连续性----整体性质 1) 连续性定义中δ对0x 的依赖性 例7 考察函数1()f x x=在(0,1]上的连续性.例8 考察函数1()f x x=在[1,)+∞上的连续性.2) 一致连续性定义定义 设f 定义在区间I 上的函数,若对任给的0ε>,存在()0δδε=>,使得对任何',''x x I ∈,只要'''x x δ-<,就有(')('')f x f x ε-<,则称函数f 定义在I 上一致连续.注 7 若固定0''x x =,则易见f 在I 上一致连续,则f 在I 上必连续(一致连续性 定义中存在的δ与0x I ∈的选择无关).注 8 直观上说,f 在I 上一致连续⇔不论两点',''x x 在I 中什么位置,只要'''x x δ-<,就有(')('')f x f x ε-<.例9 1) 验证函数()f x ax b =+ (0)a ≠在R 上一致连续.2) 验证函数1()sin f x x=在(,1)c (01)c <<上一致连续.思考 c 能否等于0?注 9 用定义确定一致连续性时,关键是确定δ的存在,我们一般从(')('')f x f x - 入手,放大此式,除因子'''x x -外,其余不含',''x x , 再解出'''x x -. 例10 验证()ln f x x =在[1,)+∞上一致连续.例11 若函数f 在有限区间(,)a b 上一致连续,则f 在(,)a b 上必有界.3) 一致连续性的否定f 在I 上不一致连续012121200,,,, :()()x x I x x f x f x εδδε⇔∃>∀∃∈-<-≥.例12 1) 证明函数1()sin f x x=在(0,1)内非一致连续. 2) 证明函数1()f x x=在(0,1)内非一致连续. 3) 验证函数2()f x x =在[1,)+∞上非一致连续.4) Lipschitz 连续与一致连续性定义 设函数f 定义在区间I 上,若存在0L >,使得在I 上12,x x I ∀∈, 有1212()()f x f x L x x -≤-,则称f 在I 上Lipschitz 连续(或称f 在I 上满足Lipschitz 条件),而L 称为Lipschitz 常数.定理 若函数f 在区间I 上Lipschitz 连续,则f 在I 上一致连续.例13 ()sin f x x =在R 上一致连续,()f x =[,)a +∞ (0)a >上一致连续.思考 a 能否等于0? 如果能, 0a =时怎么处理? 5) 一致连续函数的判定定理 (一致连续性) 函数f 在闭区间[,]a b 上连续,则f 在[,]a b 上一致连续. 例14 f 在(,)a b 上一致连续⇔f 在(,)a b 上连续且(0),(0)f a f b ++存在. 由此说明1()f x x=在(0,1)内非一致连续.思考 上述结论对无穷区间是否成立? 即设()f x 在[,)a +∞上的连续函数,则f 在[,)a +∞上一致连续⇔lim ()x f x →∞存在且为有限值?例15 f 在I 上一致连续{},{},0()()0n n n n n n x y I x y f x f y ⇔∀⊂-→⇒-→.6) 一致连续函数的性质定理 若f 、g 在区间I 上一致连续,则||f 、f g +仍为一致连续.又若I 为有限区间,则f g ⋅也是一致连续.例16 当I [,)a =+∞,举例说明乘积f g ⋅在I 上未必一致连续.思考* 一致连续函数的复合是否仍然一致连续?例17* 设区间1I 的右端点为1c I ∈,区间2I 的左端点也为2c I ∈,用一致连续性定义证明:若f 在1I 、2I 上分别一致连续,则f 在12I I I =一致连续.特别地,若f 在[,]a c 、[,]c b 上连续,则f 在[,]a b 上一致连续(而这是显然的,关键在于1I 、2I 可能为无限区间) , 由此可得()f x =[0,)+∞上必一致连续.思考 若f 在[,)a c 、[,]c b 上连续,是否仍然有f 在[,]a b 上(一致)连续?习 题1. 求极限: 1) x x x tan )(lim 4-→ππ; 2) 1121lim 21+--++→x x x x x2. 设f ,g 在区间I 上连续, 记()max{(),()}, ()min{(),()}F x f x g x G x f x g x == 证明: F 和G 也都在I 上连续.3. 设0≠x 时, )()(x g x f ≡, 而)0()0(g f ≠. 证明: f 与g 两者中至多有一个在0=x 连续.4. 设f ,g 在点0x 连续, 证明:1) 若)()(00x g x f >, 则存在);(0δx U , 使在其内有)()(x g x f >; 2) 若在某)(00x U 内有)()(x g x f >, 则)()(00x g x f ≥.5. 证明:若f 在[,]a b 上连续,且对任何[,]x a b ∈,()0f x ≠,则f 在[,]a b 上 恒正或恒负.6. 证明: 方程sin x a x b =+(,0)a b >在(0,]a b +内至少一个实根. 7. 设f 在],[b a 上连续,12,,...,[,]n x x x a b ∈.证明:存在],[b a ∈ξ,使得121()[()()()]n f f x f x f x nξ=++⋅⋅⋅+8.设f 为],[b a 上的增函数,其值域为)](),([b f a f .证明: f 在],[b a 上连续. 9. 证明: 奇次多项式必有实根,而偶次多项式必有最大值或最小值.10.设f 在),[+∞a 上连续, 且)(lim x f x +∞→存在, 证明: f 在),[+∞a 上有界, 又f 在),[+∞a 上必有最大值或最小值吗?11. 证明: 2()f x x =在[,]a b (,)a b R ∀∈上一致连续,而在(,)-∞+∞上不一致连续.12. 证明: ()f x =[1,)+∞上一致连续. 13.证明: x x f cos )(=在),0[+∞上一致连续. 14.证明: x x f =)(在),0[+∞上一致连续.§3 初等函数的连续定理 基本初等函数在其定义域上连续. 定理 任何初等函数在其定义域上连续.例1 求()ln(2)f x x =-的连续区间和间断点.例2 利用函数的连续性求下列极限1) 20ln(1)lim cos x x x →+ 2) 0lim x +→3) sec tan 0lim(1tan )x x x x ⋅→+ 4) sin x →∞习 题1. 求下列极限:1) )1ln(15cos lim 20x x x e x x -+++→;2) )(lim x x x x x -+++∞→;3) )111111(lim 0xx x x x x x +--+++→; 4) 1lim++++∞→x xx x x ;5) x x x cot 0)sin 1(lim +→.习题课一、连续性概念 设f 在某0x 的某邻域内有定义f 在0x 处连续d⇔0ε∀>,0δ∃> ,0x x δ-<,0()()f x f x ε-<.0lim ()()x x f x f x →⇔=.000(0)(0)()f x f x f x ⇔+=-=.(其中000(0)lim (),(0)lim ()x x x x f x f x f x f x +-→→+=-=).⇔f 在0x 处左、右连续.00{}(),n n x U x x x ⇔∀⊂→,有0()()n f x f x →.f 在,a b 〈〉处连续⇔f 在(,)a b 上连续,而在端点处,若端点属于,a b 〈〉,则要求相应的单侧连续性二、连续函数的性质 1. 局部性质1) 若f 在0x 处连续,则f 在0x 处局部有界.2) 若f 在0x 处连续,0()f x c <,则00,(,):()<x U x f x c δδ∃>∀∈. 3) 若f 、g 在0x 处连续,则f g +、f g ⋅、fg0(()0)g x ≠在0x 处连续. 4) 若()f x 在0x x =连续,()g u 在0()u f x =连续,则(())g f x 在0x x =处连续. 2. 闭区间上连续函数性质1) 若f 在[,]a b 上连续,则f 在[,]a b 上有界.2) 若f 在[,]a b 上连续,则f 在[,]a b 上有最大值和最小值.3) 若f 在[,]a b 上连续,12,[,]x x a b ∈,12x x <,12()()f x f x ≠,则对任何12((),())c f x f x ∈或21((),())c f x f x ∈,必存在(,)a b ξ∈,使得()f c ξ=.4) 若f 在[,]a b 上的连续,且()()0f a f b ⋅<, 则方程()0f x =必在(,)a b 上 至少有一个根.5) 设f 在[,]a b 上严格递增(或减) 连续函数,则其反函数在其定义域[(),()]f a f b (或[(),()]f b f a )上连续.6) f 在[,]a b 上连续f ⇔在[,]a b 上一致连续 7) 任何初等函数在其定义域上都是连续的. 三、一致连续函数的性质f 在I 上一致连续1212120,0,,,:()()dx x I x x f x f x εδδε⇔∀>∃>∀∈-<-<.1、判定1) 必要条件 若f 在有限区间I 上一致连续, 则f 在I 上有界连续.(证明:1、用极限方法 2、用延拓)2) 充分条件 若f 在I 上Lipschitz 连续,则f 在I 上一致连续. 3) 充要条件a) f 在I 上一致连续{},{},0()()0n n n n n n x y I x y f x f y ⇔⊂-→⇒-→ b) f 在(,)a b 上一致连续⇔f 在(,)a b 上连续且(0),(0)f a f b ++存在且都为有限值c) 12,], [,I a b I b c =<=> (,a c 可为∞)f 在12,I I 上一致连续⇔f 在12I I I =上一致连续2、性质1) 若f 、g 在I 上一致连续,则f g +、f 在I 上一致连续. 此时, 若f 、g 还是有界的(或I 为有限区间), 则f g ⋅在I 上一致连续. 2) 设f 在(,)a +∞上连续,且lim (),(0)x f x f a →+∞+存在,则f 在(,)a +∞上一致连续,但反之未必. 3) f 在(,)-∞+∞上…4) 若f 在I 上一致连续,J I ⊂,则f 在J 上一致连续. 5) 若f 在(,)a b 上单调有界连续,则f 在(,)a b 上一致连续.3、一致连续的否定四、间断点的分类若单调函数具有介值性,则其必连续. (单调函数仅有第一类间断点)五、一些例子例1 若对任意0ε>,f 在[,]a b εε+-上连续,能否推出f 在(,)a b 上连续, 一致连续呢?例2 若f 在0x 处连续,则2||,f f 在0x 也连续,又若2||,f f 都在I 上连续, 则f 在I 上是否连续?思考 若3f 在I 上连续,则f 在I 上是否连续?例3 举出定义在[0,1]分别符合下列要求的函数1) 只在11,23和14不连续的函数,2) 只在11,23和14连续的函数,3) 只在1n(1,2,3,)n =⋅⋅⋅上间断的函数,4) 只在0x =右连续,而在其它点不连续的函数.例4 讨论复合函数g f 与f g 的连续性, 设1)21)(,sgn )(x x g x x f +==; 2) x x x g x x f )1()(,sgn )(2-==.例5 设f 、g 在区间I 上连续,记()max{(),()}F x f x g x =,()min{(),()}G x f x g x =证明:,F G 也都在I 上连续.例6 设f 在区间[,]a b 上连续,记()max{(),}F x f t a t x =≤≤,()min{(),}G x f t a t x =≤≤证明:,F G 也都在[,]a b 上连续.例7 若f 在[,]a b 上连续且对任何[,]x a b ∈,()0f x ≠, 则f 在[,]a b 上恒正 或恒负.例8 若f 在[,]a b 上连续且对任何[,]x a b ∈,()0f x ≠,则存在0c >, 使得 f 在[,]a b 上()0f x c ≥>或()0f x c ≤-<.例9 若f 在(,)a b 上连续,lim ()lim ()0x a x bf x f x +-→→⋅<,则存在(,)a b ξ∈,使得 ()0f ξ=.(或lim (), lim ()x a x bf x f x +-→→=+∞=-∞)例10 若f 在(,)a b 上连续,a c d b <<<,()()k f c f d =+,则1) 存在(,)a b ξ∈,使2()k f ξ=,2) 存在(,)a b ξ∈,使()()()()m n f mf c nf d ξ+=+ (,0)m n >.例11 若f 在[,]a b 上连续,12n a x x x b <<<⋅⋅⋅<<,则1) 1[,]n x x ξ∃∈,使11()[()()]n f f x f x nξ=+⋅⋅⋅+, 2) 1[,]n x x ξ∃∈,使11()()()n n f f x f x ξλλ=+⋅⋅⋅+.其中 12,,0n λλλ⋅⋅⋅≥ 满足121n λλλ++⋅⋅⋅+=,例12 设f 在[0,1]上连续,(0)(1)f f =,证明:对任何正数n ,存在[0,1]ξ∈,使得 1()()f f nξξ=+.例13 设f 在[,]a b 上单调递增,值域为[(),()]f a f b ,求证:f 在[,]a b 上连续.例14 设f 在区间I 上连续,证明1) 若对任何的有理数r I ∈有()0f r =,则在I 上()0f x =,2) 若对任意两个有理数12,r r 且12r r <,有12()()f r f r <,则f 为严格增函数.例15 f 在[0,)+∞上连续,满足0()f x x ≤≤,[0,)x ∈+∞,设10a ≥, 1()n n a f a +=,1,2,3,n =⋅⋅⋅,证明1) {}n a 为收敛数列; 2) 设lim n n a t →∞=,则有()f t t =; 3) 若条件改为0()f x x <<,(0,]x ∈+∞,则0t =.例16 设f 在0x =处连续,且对任何,x y R ∈有()()()f x y f x f y +=+ 证明: 1) f 在R 上连续; 2) ()(1)f x f x =⋅.例17 设f 在R 上连续且lim (),lim ()x x f x A f x B →-∞→+∞==,求证:()f x 在R 上 一致连续.例18 设f 在R 上连续有渐近线y kx b =+,求证:()f x 在R 上一致连续.例19 设f 在R 上连续, g 在R 上一致连续且lim ()()0x f x g x →∞-=,求证: ()f x 在R 上一致连续.。