fick定律ppt课件
- 格式:ppt
- 大小:546.00 KB
- 文档页数:41
Lecture 4: Diffusion: Fick’s second lawToday’s topics•Learn how to deduce the Fick’s second law, and understand the basic meaning, in comparison to the first law.•Learn how to apply the second law in several practical cases, including homogenization, interdiffusion in carburization of steel, where diffusion plays dominant role.Continued from last lecture, we will learn how to deduce the Fick’s second law, andunderstand the meanings when applied to some practical cases.Let’s consider a case like thisWe can define the local concentration and diffusion flux (through a unit area) at position “x”as:So, Fick’s first law can be considered as a specific (simplified) format of the second law when applied to a steady state.Now, let’s consider two real practical cases, and see how to solve the Fick’s second law in these specific cases.Case 1. Homogenization: (non-uniform →uniform)Consider a composition profile as superimposed sinusoidal variation as shown below, where the solid line represents the initial concentration profile (at t=0), and the dashed line represents the profile after time τ.It is an exponential decay, the longer the wavelength (l), the longer the relaxation time (τ), then the slower decay. Short wavelength dies fast. That’s why shaking always helps speed up the dispersion, because it enables wide spreading (smaller l) of the stuff (like particles) youtry to disperseCase 2. Interdiffusion (the carburization of steel):doping of steel with carbonSituation a): Doping with fixed amount of dopantConsider a thin layer of B deposited onto A, through annealing at high temperature, we will be able to get the concentration profile at different times, from there then we can determine the diffusion coefficient, Das determined by this diffusion kinetics equation, the concentration profile of carbon as various times will be like thisThe above diffusion is one-direction (0 →+∞). But if we extends it to two-way, from -∞to +∞(like a droplet dissolved into a solution) with dopant at x=0, then we haveSituation b): Doping with a fixed surface concentration (e.g. carburization of steel)Carbon concentration profile shown at different times,Carbonization thickness is defined asThe solution of the Fick’s second law can be obtained as follows, the surface is in contact with an infinite long reservoir of fixed concentration of , choose a coordinate system u.Interdiffusion is popular between two semi-infinite specimens of different compositions c1, c2, when they are joined together and annealed, or mixed in case of two solutions (liquids). Many examples in practice fall into the case interdiffusion, including two semiconductor interface, metal-semiconductor interface, etc.。
1 扩散动力学方程——菲克定律1.1 菲克第一定律 1.1.1宏观表达式1858年,菲克(Fick )参照了傅里叶(Fourier )于1822年建立的导热方程,建立定量公式。
在t ∆时间内,沿x 方向通过x 处截面所迁移的物质的量m ∆与x 处的浓度梯度成正比:t A xCm ∆∆∆∝∆ 即 )(xCD Adt dm ∂∂-=根据上式引入扩散通量概念,则有:xCDJ ∂∂-=(7-1)图7-1 扩散过程中溶质原子的分布式(7-1)即菲克第一定律。
式中J 称为扩散通量,常用单位是mol /()2s cm ⋅;xC∂∂浓度梯度; D 扩散系数,它表示单位浓度梯度下的通量,单位为2cm /s 或s m /2; 负号表示扩散方向与浓度梯度方向相反见图7-2。
1.1.2微观表达式微观模型:设任选的参考平面1、平面2上扩散原子面密度分别为n 1和n 2,若n 1=n 2,则无净扩散流。
假定原子在平衡位置的振动周期为τ,则一个原子单位时间内离开相对平衡位置跃迁次数的平均值,即跃迁频率Γ为τ1=Γ (7-2)由于每个坐标轴有正、负两个方向,所以向给定坐标轴正向跃迁的几率是Γ61。
设由平面l 向平面2的跳动原子通量为J 12,由平面2向平面1的跳动原图7-2 溶质原子流动的方向与浓度降低的方向相一致图7-3 一维扩散的微观模型子通量为J 21Γ=11261n J (7-3)Γ=22161n J (7-4) 注意到正、反两个方向,则通过平面1沿x 方向的扩散通量为 ()212112161n n J J J -Γ=-= (7-5) 而浓度可表示为 δδnn C =⋅⋅=11 (7-6) 式(7-6)中的1表示取代单位面积计算,δ表示沿扩散方向的跳动距离(见图7-3),则由式(7-5)、式(7-6)得 ()dxdCDdx dC C C C C J -=Γ-=-Γ-=-Γ=21221161)(6161δδδ (7-7) 式(7-7)即菲克第一定律的微观表达式,其中261δΓ=D (7-8) 式(7-8)反映了扩散系数与晶体结构微观参量之间的关系,是扩散系数的微观表达式。
包括两个内容:(1)早在1855年,菲克就提出了:在单位时间内通过垂直于扩散方向的单位截面积律是在第一定律的基础上推导出来的。
菲克第二定律指出,在非稳态扩散过程中,在距离x处,浓度随时间的变化率等于该处的扩散通量随距离变化率的负值,费克第一定律早在1855年,菲克就提出了:在单位时间内通过垂直于扩散方向的单位截面积的扩散物质流量(称为扩散通量Diffusion flux,用J表示)与该截面处的浓度梯度(Concentration gradient)成正比,也就是说,浓度梯度越大,扩散通量越大。
这就是菲克第一定律,它的数学表达式如下: (1)式(1)中, D称为扩散系数(m²/s),C为扩散物质(组元)的体积浓度(原子数/m³或kg/m³),dC/dx 为浓度梯度,―–‖号表示扩散方向为浓度梯度的反方向,即扩散组元由高浓度区向低浓度区扩散。
扩散通量J的单位是kg / m^2·s。
在三维情况下,有如下形式公式:其中,J为扩散通量,为一个三维向量场,D为扩散系数,为一个二阶张量,C为浓度,为一个数量场,▽为梯度算子。
扩散系数(Diffusion coefficient)D是描述扩散速度的重要物理量,它相当于浓度梯度为1时的扩散通量,D值越大则扩散越快。
对于固态金属中的扩散,D值都是很小的,例如,1000℃时碳在γ-Fe 中的扩散系数D仅为10m^2/s数量级。
费克定律里的稳态扩散和非稳态扩散费克第一定律只适应于J和C不随时间变化——稳态扩散(Steady-state diffusion)的场合(见下图)。
对于稳态扩散也可以描述为:在扩散过程中,各处的扩散组元的浓度C只随距离x变化,而不随时间t变化,每一时刻从前边扩散来多少原子,就向后边扩散走多少原子,没有盈亏,所以浓度不随时间变化。
实际上,大多数扩散过程都是在非稳态条件下进行的。
非稳态扩散(Nonsteady-state diffusion)的特点是:在扩散过程中,J随时间和距离变化。
1 扩散动力学方程——菲克定律1.1 菲克第一定律 1.1.1宏观表达式1858年,菲克(Fick )参照了傅里叶(Fourier )于1822年建立的导热方程,建立定量公式。
在t ∆时间内,沿x 方向通过x 处截面所迁移的物质的量m ∆与x 处的浓度梯度成正比:t A xCm ∆∆∆∝∆ 即 )(xCD Adt dm ∂∂-=根据上式引入扩散通量概念,则有:xCDJ ∂∂-=(7-1)图7-1 扩散过程中溶质原子的分布式(7-1)即菲克第一定律。
式中J 称为扩散通量,常用单位是mol /()2s cm ⋅;xC∂∂浓度梯度; D 扩散系数,它表示单位浓度梯度下的通量,单位为2cm /s 或s m /2; 负号表示扩散方向与浓度梯度方向相反见图7-2。
1.1.2微观表达式微观模型:设任选的参考平面1、平面2上扩散原子面密度分别为n 1和n 2,若n 1=n 2,则无净扩散流。
假定原子在平衡位置的振动周期为τ,则一个原子单位时间内离开相对平衡位置跃迁次数的平均值,即跃迁频率Γ为τ1=Γ (7-2)由于每个坐标轴有正、负两个方向,所以向给定坐标轴正向跃迁的几率是Γ61。
设由平面l 向平面2的跳动原子通量为J 12,由平面2向平面1的跳动原图7-2 溶质原子流动的方向与浓度降低的方向相一致图7-3 一维扩散的微观模型子通量为J 21Γ=11261n J (7-3)Γ=22161n J (7-4) 注意到正、反两个方向,则通过平面1沿x 方向的扩散通量为 ()212112161n n J J J -Γ=-= (7-5) 而浓度可表示为 δδnn C =⋅⋅=11 (7-6) 式(7-6)中的1表示取代单位面积计算,δ表示沿扩散方向的跳动距离(见图7-3),则由式(7-5)、式(7-6)得 ()dxdCDdx dC C C C C J -=Γ-=-Γ-=-Γ=21221161)(6161δδδ (7-7) 式(7-7)即菲克第一定律的微观表达式,其中261δΓ=D (7-8) 式(7-8)反映了扩散系数与晶体结构微观参量之间的关系,是扩散系数的微观表达式。