核医学
- 格式:docx
- 大小:19.45 KB
- 文档页数:8
核医学汇总1、核医学的定义:是一门研究核素和核射线在医学中的应用及其理论的学科,即应用放射性核素及其标记化合物或生物制品进行疾病诊治和生物医学研究。
在反映脏器或组织的血流、受体密度和活性、代谢、功能变化方面有独特的优势。
2、核医学的分类:实验核医学和临床核医学3、实验核医学:利用核技术探索生命现象的本质和物质变化规律,其内容主要包括核衰变测量、标记、示踪、体外放射分析、活化分析和放射自显影等。
4、临床核医学:是利用开放型放射性核素诊断和治疗疾病的临床医学学科,由诊断和治疗两部分组成。
5、临床核医学分类:诊断核医学和治疗核医学6、诊断核医学:包括以脏器显像和功能测定为主要内容的体内(in vivo)诊断法和以体外放射分析为主要内容的体外(in vitro)诊断法。
7、治疗核医学:是利用放射性核素发射的核射线对病变进行高度集中照射治疗。
8、核医学的特点:1、安全、无创2、分子功能现象3、超敏感和特异性强4、定量分析5、同时提供形态解剖和功能代谢信息。
9、分子功能影像:核医学功能代谢显像是现代医学影像的重要组成内容之一,其显像原理与X线、B超、计算机体层摄影(CT)和核磁共振(MR)等检查截然不同,它通过探测接收并记录引入体内靶组织或器官的放射性示踪物发射的γ射线,并以影像的方式显示出来,这不仅可以显示脏器或病变的位置、形态、大小等解剖学结构,更重要的是可以同时提供有关脏器和病变的血流、功能、代谢甚至是分子水平的化学信息,有助于疾病的早期诊断。
单光子发射型计算机断层仪(SPECT)和正电子发射型计算机断层仪(PET)10、锝-99m(99mTc)特点:核性能优良,为纯γ光子发射体,能量140keV,T1/2为6.02h,99mT c是现象检查中最常用的放射性核素。
11、氟[18F]脱氧葡萄糖(18F-FDG)是目前临床应用最为广泛的正电子放射性药物。
131I是治疗甲状腺疾病最常用的放射性药物12、放射核素发生器是从长半衰期的核素(称为母体)中分离短半衰期的核素(称为子体)的装置。
核医学的名词解释核医学是应用核技术在医学诊断和治疗中的一门学科。
它利用放射性同位素标记的生物分子进入体内,通过检测和分析它们的放射性衰变过程,来获得人体内部器官的结构、功能以及代谢情况等信息,从而达到对疾病进行早期诊断和治疗的目的。
核医学主要包括放射性同位素的制备及其标记、医学影像学和生物学等方面内容。
在核医学诊断中,常见的影像学技术有放射性核素显像、单光子发射计算机断层扫描(SPECT)和正电子发射断层扫描(PET)。
这些技术通过将放射性同位素标记的生物分子注射到患者体内,利用放射性同位素的放射性衰变来探测和分析患者的器官结构和功能状态。
放射性核素显像是核医学中最早也是最常用的技术之一,它是通过摄取或注射放射性同位素来探测人体内脏器官的功能状态。
比如,甲状腺扫描常用于评估甲状腺的功能和结构,心脏显像则可以用来观察心肌供血和心脏功能状况。
这些显像技术通过测量放射性同位素在患者体内的分布来反映不同器官的代谢活性,从而帮助医生进行疾病的诊断。
而SPECT和PET则在核医学诊断中扮演着更加精确和敏感的角色。
SPECT通过测量单光子的发射能量和位置,可以提供三维的断层影像,用于心脏、脑部等多个器官的检查,尤其是对于功能性异常的早期诊断具有重要价值。
PET则通过注射放射性同位素标记的生物分子,如葡萄糖等,以观察其在患者体内的分布和代谢情况。
PET可以非常精确定位和定量分析器官细胞的代谢活性,对于肿瘤、心血管和神经系统等多种疾病的早期诊断和治疗监测起到至关重要的作用。
此外,核医学还在放射性同位素治疗方面有着广泛的应用。
放射性同位素治疗是利用放射性药物直接或间接杀死和控制肿瘤细胞的方法。
与传统的手术、放疗和化疗相比,放射性同位素治疗具有创伤小、疗效高、副作用少等优势。
比如,对于甲状腺功能异常、骨转移的癌症患者,可以通过摄取放射性碘或其他放射性核素来破坏甲状腺或骨转移灶,达到治疗的目的。
在核医学领域,还有一些常用的术语和技术需要了解。
核医学定义
核医学是研究核素在生物体内的分布、代谢及其应用的学科。
它是核科学与医学的交叉领域,主要应用于放射性药物的制取、核素显像、放射性治疗等方面,已成为现代医学的不可或缺的一部分。
一、核医学的起源
核医学的诞生源于20世纪40年代的研究。
当时,原子弹爆炸和放射性同位素的应用使人们开始关注放射性物质在人体内的行为,尤其是在癌症等疾病诊断和治疗方面的应用。
二、核医学的应用
核医学的应用非常广泛,主要包括以下几个方面:
1. 核医学显像:通过注射放射性药物,可以观察到有关器官或组织的代谢状态和血流情况,进而对疾病做出更为准确的诊断。
2. 核医学治疗:通过放射性同位素治疗,可以破坏癌细胞,达到治疗肿瘤的目的。
3. 核医学研究:通过分析放射性药物在人体内的分布、代谢等情况,可以深入研究疾病的发病机理和治疗效果等问题。
三、核医学的未来发展
随着现代医学的不断发展和技术的不断创新,核医学将得到更广泛的应用和进一步的发展。
例如,利用分子影像学技术,可以更为准确地观察微小的生物分子水平上的变化,从而为治疗疾病提供更加精确的依据;同时,人工智能技术的逐步普及,将使得医学影像的处理和分析更趋高效化和智能化。
总的来说,核医学在现代医疗中发挥着重要的作用,未来的发展前景非常广阔。
我们期待着更多的技术和理论的突破,为医学健康事业做出更大的贡献。
核医学的定义和内容核医学是一门研究核素在人体内的应用的学科,它综合了核物理学、放射医学和生物医学等多个学科的知识。
核医学通过使用放射性同位素,以及利用核反应和核辐射等原理来诊断疾病和治疗疾病。
核医学在现代医学中起着重要的作用,它能够提供非侵入性的诊断手段,并且在某些疾病的治疗中也能发挥重要的作用。
核医学主要包括以下几个方面的内容:1. 核素的生产和标记:核医学使用放射性同位素来进行诊断和治疗,因此核素的生产和标记是核医学的重要内容之一。
核素的生产可以通过核反应、裂变或衰变等方式进行,而核素的标记则是将核素与某种生物活性分子结合,使其能够在人体内发挥特定的作用。
2. 核医学的诊断应用:核医学在诊断疾病方面具有独特的优势。
核医学可以通过核素的放射性特性来观察人体内部的生物过程和器官功能,从而帮助医生进行疾病的诊断。
核医学的常用诊断方法包括单光子发射计算机断层显像(SPECT)和正电子发射计算机断层显像(PET)等。
3. 核医学的治疗应用:除了诊断应用外,核医学还在某些疾病的治疗中发挥着重要的作用。
核医学治疗主要通过放射性同位素的辐射效应来杀死肿瘤细胞或抑制其生长。
核医学治疗广泛应用于癌症治疗领域,如放射性碘治疗甲状腺癌、放射性磷治疗骨癌等。
4. 核医学的安全性和辐射防护:核医学使用放射性物质,因此安全性和辐射防护是核医学的重要内容。
在核医学应用中,医务人员需要正确使用和处理放射性物质,以确保患者和医务人员的安全。
同时,辐射防护也是核医学应用中的重要环节,通过合理的防护措施,可以最大程度地减少辐射对人体的损伤。
5. 核医学的发展趋势:随着科学技术的不断发展,核医学也在不断创新和进步。
新的核素和标记方法的出现,使核医学在诊断和治疗上具有更高的灵敏度和准确度。
此外,核医学还与其他医学领域相结合,如核医学影像与分子生物学、基因治疗等,为医学研究和临床应用带来了新的可能性。
核医学作为一门综合性的学科,通过核素的应用来进行疾病的诊断和治疗。
核医学知识总结一、核医学基本概念核医学是一门利用核技术来研究生物和医学问题的科学。
它涉及到核辐射、放射性核素、核素标记化合物以及相关的仪器和测量技术。
核医学在临床诊断、治疗和科研方面都有着广泛的应用。
二、核辐射与防护核辐射是指原子核在发生衰变时释放出的能量。
核辐射可以分为电离辐射和非电离辐射两类。
在核医学中,主要涉及的是电离辐射,它可以对生物体产生不同程度的损伤。
因此,在核医学实践中,必须采取有效的防护措施,确保工作人员和患者的安全。
三、放射性核素与标记化合物放射性核素是指具有不稳定原子核的元素,它们能够自发地释放出射线。
在核医学中,放射性核素可以用于显像、功能研究、体外分析和治疗等多种应用。
标记化合物是指将放射性核素标记到特定的化合物上,使其具有放射性,以便进行测量和分析。
四、核医学成像技术核医学成像技术是指利用放射性核素发出的射线,通过相应的仪器和测量技术,获得生物体内的图像。
目前常用的核医学成像技术包括SPECT、PET和PET/CT等。
这些技术可以在分子水平上对生物体进行无创、无痛、无损的检测,对于疾病的早期发现和治疗具有重要的意义。
五、核素显像与功能研究核素显像是核医学中的一种重要应用,它可以用于显示生物体内的生理和病理过程。
通过注射放射性核素标记的显像剂,利用相应的成像技术,可以获得器官或组织的图像,进而了解其功能状态。
核素显像在心血管、神经、肿瘤等多个领域都有广泛的应用。
六、体外分析技术体外分析技术是指利用放射性核素标记的化合物,通过测量其放射性强度,来分析生物体内的成分或生理过程。
体外分析技术具有高灵敏度、高特异性和定量准确等优点。
常用的体外分析技术包括放射免疫分析、受体结合试验等,它们在临床诊断和科研中都有着广泛的应用。
七、放射性药物与治疗放射性药物是指将放射性核素标记到特定的药物上,使其具有治疗作用。
放射性药物可以用于治疗肿瘤等疾病,通过射线的作用,破坏病变组织或抑制其生长。
总论1、核医学(nuclear medicine):核医学是一门研究核素和核射线在医学中的应用及其理论的学科,即应用放射性核素及其标记化合物或生物制品进行疾病诊治和生物医学研究。
2、核医学的分类包括实验核医学和临床核医学两部分。
3、分子核医学:是分子生物学技术和现代放射性核素示踪技术相结合而产生的一门心的核医学分支学科。
4、实验核医学是利用和技术探索生命现象的本质和规律,为认识正常生理、生化过程和病理过程提供新理论和新技术,已广泛用于医学基础理论研究;其主要内容包裹核衰变测量、标记、示踪、体外放射分析、活化分析和放射自显影等。
5、临床核医学是利用开放型放射性核素诊断和治疗疾病的临床医学学科,由诊断和治疗两部分组成。
诊断核医学包括以脏器现象和功能测定为主要内容的体内诊断法和以体外放射分析为主要内容的体外诊断法;治疗核医学利用放射性核素发射的核射线对病变进行高度集中的照射治疗。
6、实验核医学和临床核医学是同一学科的不同分支,前者的成果不断推动后者的发展,而后者在应用与时间中又不断向前者提出新的研究课题,二者相互促进,密不可分。
7、核医学优势:①安全无创:放射性核素显像为无创性检查,所用的放射性核素物理半衰期短,显像剂化学剂量极微,病人所接受的辐射吸收剂量低,因此发生毒副作用的几率极低;②分子功能显像:核医学功能显像是现代医学影像的重要组成内容之一,它是通过探测接受并记录引入人体内靶组织或器官的放射性示踪物发射的γ射线,以影像的方式显示出来,不仅可以显示脏器或病变的位置、大小、形态等解剖学结构,更重要的是可以提供有关脏器和病变的血流、功能、代谢,甚至是分子水平的化学信息;③超敏感和特异性强:利用放射性核素示踪超敏感技术早起预警和探测病变,同时利用抗原与抗体、受体与配体等特异性结合和反义显像、基因表达显像等为临床诊治疾病提供客观、科学依据;④定量分析:在保证获得高质量的分子探针或示踪剂的前提下,借助生理数学模型和计算机软件技术可以进行半定量或定量分析;⑤同时提供形态解剖和功能代谢信息。
核医学的学科分类核医学是研究核素在生物体内的应用以及应有的生物效应的学科。
核医学的应用领域广泛,包括医学诊断、治疗以及生物学研究等方面。
根据核医学的专业性质,核医学可以分为以下几个学科:1. 核医学影像学:核医学影像学是核医学的核心学科,主要通过核素的放射性衰变来获得生物体内部的图像。
核医学影像学可以帮助医生观察和评估人体器官的结构和功能,诊断和评估疾病的进展以及治疗效果。
常见的核医学影像学技术包括单光子发射计算机断层扫描(SPECT)和正电子发射断层扫描(PET)等。
2. 核医学治疗学:核医学治疗学是利用核素放射性衰变所释放的射线来治疗疾病的学科。
核医学治疗主要用于肿瘤治疗,例如放射性碘治疗甲状腺癌和放射性磷酸铊治疗骨髓瘤等。
核医学治疗学与影像学相比,更加关注核素的生物学效应和辐射安全控制。
3. 核医学分子生物学:核医学分子生物学是结合分子生物学和核医学技术进行生物学研究的交叉学科。
通过将放射性标记的核素引入到分子生物学研究中,可以追踪特定基因、蛋白质或细胞在生物体内的代谢过程,揭示疾病的发生机制和评估新药的疗效。
4. 核医学辐射生物学:核医学辐射生物学是研究核素辐射对生物体的生物效应和辐射防护的学科。
通过研究核素辐射对细胞、组织和器官的损伤机制,可以评估辐射剂量对人体的影响,以及制定相应的辐射防护策略。
核医学的发展在医学领域具有重要意义,它为临床医生提供了更加精确、有效的诊断和治疗手段,并为生物学研究提供了强有力的工具和方法。
同时,核医学也呼吁加强核素的使用和管理,提高辐射安全意识,保护人体健康和环境安全。
对于学习核医学的人来说,需要系统学习核物理学、辐射生物学、解剖学、病理学等相关学科知识,掌握核医学的基本原理和技术操作。
同时,培养良好的职业道德和辐射安全意识,严格遵守相关规章制度,确保核医学的应用安全可靠。
综上所述,核医学是一个综合性学科,包括核医学影像学、核医学治疗学、核医学分子生物学和核医学辐射生物学等多个学科的研究内容。
第1篇一、核医学基础知识1. 核医学是什么?解析:核医学是利用放射性核素在体内的分布、代谢和衰变特性,通过影像学、功能代谢和分子生物学等方法,研究疾病的诊断、治疗和预防的一门学科。
2. 放射性核素有哪些特性?解析:放射性核素具有以下特性:(1)放射性:能自发地放出射线;(2)衰变:放射性核素会自发地衰变,放出射线;(3)半衰期:放射性核素的衰变速度可以用半衰期来描述;(4)同位素:具有相同原子序数,但质量数不同的核素。
3. 核医学有哪些应用?解析:核医学在临床医学、基础医学和核技术领域有着广泛的应用,主要包括:(1)诊断:如甲状腺功能测定、肿瘤诊断等;(2)治疗:如甲状腺癌治疗、骨转移癌治疗等;(3)分子生物学研究:如基因治疗、药物靶向治疗等。
二、核医学影像学4. 核医学影像学有哪些分类?解析:核医学影像学主要分为以下几类:(1)单光子发射计算机断层扫描(SPECT);(2)正电子发射断层扫描(PET);(3)单光子发射计算机断层扫描-计算机断层扫描(SPECT-CT);(4)正电子发射断层扫描-计算机断层扫描(PET-CT)。
5. SPECT和PET的区别是什么?解析:SPECT和PET都是核医学影像学技术,但它们有以下区别:(1)成像原理:SPECT基于γ射线的单光子发射,PET基于正电子的发射;(2)分辨率:PET分辨率较高,SPECT分辨率较低;(3)灵敏度:PET灵敏度较高,SPECT灵敏度较低;(4)成像时间:PET成像时间较短,SPECT成像时间较长。
6. PET-CT成像的优势是什么?解析:PET-CT成像具有以下优势:(1)高分辨率:PET和CT结合,提高了成像分辨率;(2)多模态成像:PET提供代谢信息,CT提供解剖信息;(3)提高诊断准确率:结合两种成像技术,提高了诊断准确率;(4)减少患者辐射剂量:PET-CT成像时,患者接受的辐射剂量较单纯PET或CT成像低。
三、核医学治疗7. 核医学治疗有哪些方法?解析:核医学治疗主要包括以下几种方法:(1)放射性核素治疗:利用放射性核素发出的射线直接杀死肿瘤细胞;(2)靶向治疗:利用放射性核素标记的靶向药物,将放射性核素特异性地运输到肿瘤组织,从而杀死肿瘤细胞;(3)放射免疫治疗:利用放射性核素标记的抗体,将放射性核素特异性地运输到肿瘤组织,从而杀死肿瘤细胞。
核医学
一、核医学定义、内容与特点
1.核医学定义
核医学是研究核科学在临床医学疾病诊治及生物医学理论研究的一门学科。
核医学科室具备核素显像( SPECT/SPECT/CT、PET/PET/CT)、功能测定、体外分析和核素治疗病房。
2.核医学内容
诊断方法按放射性核素是否引人受检者体内分为体外检查法和体内检查法。
体内检查法根据最后是否成像又分为显像和非显像两种。
利用放射性核素实现脏器和病变显像的方法称为放射性核素显像,这种显像有别于单纯形态结构的显像,是一种独特的功能显像,为核医学的重要特征之一。
核医学的必备物质条件是放射性药物(131碘等)、放射性试剂(如γ光子)和核医学仪器(如γ照相机)。
3.核医学特点
能动态地观察机体内物质代谢的变化
能反映组织和器官整体和局部功能
合乎生理条件
能简便、安全、无创伤的诊治疾病
能进行超微量测定,灵敏度达10-12~ 10-15g
能用于医学的各个学科和专业
二、核医学仪器与药物
1.核医学仪器
放射性探测的基本原理:电离、激发、感光
尽管X射线和γ射线在本质上都属于光子流,但两者的成像原理却完全不同。
X线成像基于射线穿透人体时不同密度和厚度的组织对射线的吸收不同,射线方向是可控的,几乎所有射线均可用于成像。
核医学成像则基于组织脏器的功能变化,使摄入的放射性核素分布不同,射线方向是不可控的,仅少量射线可用于成像。
因此成像设备结构有很大不同。
2.核医学药物
放射性药物:指含有放射性核素、用于医学诊断和治疗的类特殊药物。
如99m TCO4-、201TICI 、Na131I 等.
显像剂:用于显像的放射性核素及其标记化合物。
体外放射分析用试剂盒则不属于放射性药物,而是归类于试剂。
三、核医学核素示踪与显像技术
1.核素示踪
(1)原理:就是以放射性核素或标记化合物作为示踪剂,通过探测放射性核素在发生核衰变过程中发射出来的射线,达到显示被标记的
化学分子踪迹的目的,用以研究被标记物在生物体系或外界环境中分布状态或变化规律的技术。
(2)示踪技术要求:同一性、可探测性
(3)分类
体内示踪技术,如甲状腺吸131I功能测定
体外示踪技术
2.核素显像
(1)原理
脏器和组织显像的基本原理是放射性核素的示踪作用;不同的放射性核素显像剂在体内有其特殊的靶向分布和代谢规律,使其与邻近组织之间的放射性分布形成一定程度的浓度差,而显像剂中的放射性核素可发射出具有一定穿透力的Y射线可为放射性测量仪器在体外探测、记录到这种放射性浓度差,从而在体外显示出脏器、组织的形态、位置、大小和脏器功能及某些分子变化。
(2)显像剂定位原理
特异性结合,如放射免疫显像;合成代谢,如甲状腺摄131I显像;细胞吞噬,如肝胶体显像;循环通路,如肺灌注显像;选择性浓聚,如心肌显像;选择性排泄,如肾动态显像;通透弥散,如肺通气显像;离子交换和化学吸附,如骨显像。
(3)显像类型与特点
静态显像,如甲状腺静态显像;动态显像,肝胆动态显像;三时相显像,如骨骼三相显像;局部显像;全身显像;平面显像;断层显像;
早期显像;延迟显像;阳性显像;阴性显像;静息显像;负荷显像;单光子显像;正电子显像
四、核医学诊断的临床应用
1.骨骼系统
放射性核素骨显像已成为最能体现核医学影像技术优势、临床使用频率最高的核医学检查项目之一。
特点:功能性影像,可早X摄片早3~6个月发现病变;一次性全身成像;多种成像方式,SPECT/CT 、PET/CT 图像融合应用
骨显像的临床应用:对骨转移性肿瘤的早期诊断;在原发性骨肿瘤中的应用;骨感染性疾病;股骨头缺血性坏死;对骨折的诊断;对移植骨的监测;代谢性骨病
(1)骨髓炎的鉴别诊断
X线检查是常规诊断方法,但X线发现骨破坏、新骨形成等阳性
征象往往要到病程2周乃至更长时间之后。
骨显像可对骨髓炎进行早期诊断,敏感性很高。
急性骨髓炎在发病12~48h病变部位即可出现放射性异常浓聚的表现。
主要是急性骨髓炎与软组织蜂窝组织炎鉴别,利用骨三时相显像近行鉴别。
2.内分泌系统
甲状腺显像
原理:正常甲状腺组织能特异地摄取和浓聚碘离子用以合成和储存甲状腺激素。
因此将放射性碘引入人体后,即可被有功能的甲状腺组织
所摄取在体外通过显像仪( Y相机或SPECT)探测从甲状腺组织内所发出的Y射线的分布情况,获得甲状腺影像,了解甲状腺的位置、形态、大小及功能状态。
位置:正常甲状腺影位于颈前正中。
形态:呈蝴蝶形,分左右两叶,前下方通过峡部相连。
约17%的正常人可见锥状叶显示。
大小:每叶上下径约为4.5cm,横径约2. 5cm。
放射线分布:甲状腺内显像剂分布基本均匀
(1)异位甲状腺的诊断
异位甲状腺常见部位有舌根部、喉前、舌骨下、胸骨后等。
甲状腺显像图像表现为正常甲状腺部位不显影,上述部位显影,影像多为团块样。
(2)甲状腺结节的功能及性质的判定
根据甲状腺显像结节本身显像剂|的分布,可将结节分为四种类型| 即:热结节、温结节、凉结节、冷结节。
热结节也称高功能结节,温结节称为功能正常结节,凉、冷结节称为低功能或无功能结节。
(3)寻找功能性甲状腺癌转移灶
分化型甲状腺癌及其转移灶有不同程度的浓聚131I能力,故可用131I 全身显像寻找转移灶。
常见部位肺、骨及脑。
(4)甲状腺炎的辅助诊断
急性甲状腺炎,由于甲状腺细胞被破坏,显像剂分布弥漫性降低。
在亚急性甲状腺炎病程的不同阶段,可有不同的影像表现。
在病程的初
期,甲状腺显像表现为局限性稀疏、缺损区,或双叶弥漫性稀疏改变甚至完全不显影。
3.泌尿系统
肾动态显像
原理:静脉注射经肾小球滤过( 99m Tc-DTPA)或肾小管上皮细胞摄取、分泌(99m Tc-MAG3、99m Tc-EC 等)而不被再吸收的显像剂,立即启动SPECT进行连续采集,获得显像剂经腹主动脉、肾动脉灌注,迅速浓聚于肾实质,并随尿液流经肾盏、肾盂、输尿管及进入膀胱的全过程影像。
应用ROI技术得到显像剂通过肾脏的时间-放射活性曲线(TAC即肾图)。
通过对系列影像及TAC的分析,为临床提供有关双肾血供、实质功能和尿路通畅性等方面的信息。
临床应用:判断肾实质功能;诊断与鉴别诊断上尿路梗阻;诊断肾血管性高血压;移植肾的监测;其他应用
4.心血管系统
心肌灌注显像
正常或有功能心肌细胞摄取某些显像剂,可使心肌显影,而坏死心肌不显影或显影变淡。
局部心肌对显像剂的蓄积与局部血流成正比;心肌细胞的摄取依赖于心肌细胞的活性。
利用有功能的心肌细胞够选择性摄取某些标记化合物的作用,静脉注射心肌显像剂后,能迅速被心肌摄取,心肌摄取量与心肌血流量呈正比,反映心肌血流灌注。
当冠状动脉供血减少或缺如或心肌细
胞变性坏死时,相应的心肌组织显影减淡或缺少。
负荷心肌灌注显像
静息状态下,心肌摄取心肌灌注显像剂均匀而可表现为正常影像。
但在负荷状态下,在影像上表现为局部摄取显像剂相对减少,显示放射性稀疏或缺损区。
(1)冠心病中的诊断与应用
明确诊断与危险度分层
定性:评价心肌缺血。
定量:缺血的程度和范围。
评价干预前后缺血程度、范围的动态变化。
提供循证依据
(2)心肌葡萄糖代谢显像检测心肌细胞活力
在空腹心肌葡萄糖代谢显像时缺血心肌仍摄取葡萄糖,摄取正常或相对增加;而心肌灌注显像呈现减低或缺损的节段,即表现为灌注-代谢不匹配,标志心肌细胞缺血但仍然存活。
坏死心肌的心肌灌注显像也呈现减低或缺损的节段,即表现为灌注-代谢相匹配,标志心肌细胞不再存活。
心肌葡萄糖代谢显像是检测心肌细胞活力的“金标准”。
5.呼吸系统
肺血流灌注显像:反映肺血流灌注和分布情况
显像原理:通过SPECT可以获得肺毛细血管床影像,影像的放射性分布反映肺各部位的血流灌注情况,故称为肺灌注显像。
肺通气显像:观察气道的通畅情况,了解肺局部通气功能
显像原理:通过SPECT可以获得气道主干至全肺肺泡的放射性气体分布影像故称为肺通气显像。
(1)肺栓塞:急性肺栓塞早期病理生理特点常为多发肺血管栓塞,出现血流灌注中断或减低,而肺通气功能仍正常。
故行肺灌注和肺通气显像最能显示这种特点,即在肺灌注显像时会出现受累肺血管灌注区的放射性稀疏或缺损,而肺通气显像表现为放射性分布正常,称为肺灌注/通气显像不匹配,是诊断肺栓塞的可靠依据。
五、核医学治疗的临床应用
1.内照射治疗——甲亢、甲癌患者用131I治疗;放射性药物治疗骨转移癌
2.外照射治疗——体外治疗。