《611有序数对》共31页
- 格式:ppt
- 大小:1.40 MB
- 文档页数:31
教师学科教案[ 20 – 20 学年度第__学期]任教学科:_____________任教年级:_____________任教老师:_____________xx市实验学校6.1.1 有序数对教学目标:1、理解有序数对的应用意义,了解平面上确定点的常用方法2、培养学生用数学的意识,激发学生的学习兴趣.重点:有序数对及平面内确定点的方法.难点:利用有序数对表示平面内的点.教学过程一.问题探知1.一位居民打电话给供电部门:“卫星路第8根电线杆的路灯坏了,”维修人员很快修好了路灯同学们欣赏下面图案.2.地质部门在某地埋下一个标志桩,上面写着“北纬44.2°东经125.7°”。
3.某人买了一张8排6号的电影票,很快找到了自己的座位。
分析以上情景,他们分别利用那些数据找到位置的。
你能举出生活中利用数据表示位置的例子吗?二.概念确定有序数对:用含有两个数的词表示一个确定的位置,其中各个数表示不同的含义,我们把这种有顺序的两个数a与b组成的数对,叫做有序数对(orderedpair),记作(a,b)。
利用有序数对,可以很准确地表示出一个位置。
与3大道例1如图,点A表示3街与5大道的十字路口,点B表示5街与3大道的十字路口,如果用(3,5)(4,5)→(5,5)→(5,4)→(5,3)表示由A到B的一条路径,那么你能用同样的方法写出由A到B的其他几条路径吗?6大道A5大道4大道B3大道2大道1大道1街2街3街4街5街6街分析:图中确定点用前一个数表示大街,后一个数表示大道。
解:其他的路径可以是:(3,5)→(4,5)→(4,4)→(5,4)→(5,3);(3,5)→(4,5)→(4,4)→(4,3)→(5,3);(3,5)→(3,4)→(4,4)→(5,4)→(5,3);(3,5)→(3,4)→(4,4)→(4,3)→(5,3);(3,5)→(3,4)→(3,3)→(4,3)→(5,3);1.在教室里,根据座位图,确定数学课代表的位置2.教材40页练习三.方法归类常见的确定平面上的点位置常用的方法(1)以某一点为原点(0,0)将平面分成若干个小正方形的方格,利用点所在的行和列的位置来确定点的位置。