微电子器件基础第一章补充
- 格式:ppt
- 大小:198.50 KB
- 文档页数:15
1 半导体物理基础1.1 半导体材料 1.1.1 学习重点1.半导体通常把电阻率介于10-2Ω·cm 到109Ω·cm 之间的材料称为半导体。
2.半导体的分类 根据成分的不同,半导体可分为元素半导体和化合物半导体两类。
由单一元素构成的半导体称为元素半导体;由两种或两种以上的元素组成的半导体称为化合物半导体。
3.固体材料中原子、分子或分子团的排列方式根据原子、分子或分子团在三维空间中排列有序程度的不同,固体材料分为无定形、多晶和单晶三种基本类型。
• 无定型材料:原子或分子只在几个原子或分子尺度内排列有序。
• 多晶材料:原子或分子在小区域内排列有序。
• 单晶体:原子或分子在整个晶体中有序排列。
4.硅和锗的晶体结构硅和锗的单晶体中原子的排列方式与金刚石相同,称为金刚石结构,如下图所示。
1.1.2自学练习1、半导体材料是指( )。
(a) 金刚石结构(b)硅单晶的正四面体结构硅和锗的晶体结构2、根据成分的不同,半导体材料可分为( )和( )两类。
3、根据原子、分子或分子团在三维空间中排列有序程度的不同,固体材料分为( )、 ( )和( )三种基本类型。
4、无定型、多晶和单晶在原子或分子的排列方式各有什么特点?5、硅和锗单晶的结构为( )结构。
6、硅单晶的结构特点是什么?1.1.3练习答案1、半导体材料是指( 电阻率介于导体和半导体之间的材料 )。
2、根据成分的不同,半导体材料可分为( 元素半导体 )和( 化合物半导体 )两类。
3、根据原子、分子或分子团在三维空间中排列有序程度的不同,固体材料分为( 无定形 )、( 多晶 )和( 单晶 )三种基本类型。
4、无定型、多晶和单晶在原子或分子的排列方式各有什么特点? 答:无定型材料中原子或分子只在几个原子或分子尺度内排列有序。
多晶材料中原子或分子在小区域内排列有序。
单晶体中原子或分子在整个晶体中有序排列。
5、硅和锗单晶的结构为( 金刚石 )结构。
第一章●能带论:单电子近似法研究晶体中电子状态的理论●金刚石结构:两个面心立方按体对角线平移四分之一闪锌矿●纤锌矿:两类原子各自组成的六方排列的双原子层堆积而成(001)面ABAB顺序堆积●禁带宽度:导带底与价带顶之间的距离脱离共价键所需最低能量●本征激发:价带电子激发成倒带电子的过程●有效质量(意义):概括了半导体内的势场作用,使解决半导体内电子在外力作用下运动规律时,可以不涉及半导体内部势场作用●空穴:价带中空着的状态看成是带正电的粒子●准连续能级:由于N很大,每个能带的能级基本上可以看成是连续的●重空穴带:有效质量较大的空穴组成的价带●窄禁带半导体:原子序数较高的化合物●导带:电子部分占满的能带,电子可以吸收能量跃迁到未被占据的能级●价带:被价电子占满的满带●满带:电子占满能级●半导体合金:IV族元素任意比例熔合●能谷:导带极小值●本征半导体:完全不含杂质且无晶格缺陷的纯净半导体●应变半导体:经过赝晶生长生成的半导体●赝晶生长:晶格失配通过合金层的应变得到补偿或调节,获得无界面失配位错的合金层的生长模式●直接带隙半导体材料就是导带最小值(导带底)和满带最大值在k空间中同一位置●间接带隙半导体材料导带最小值(导带底)和满带最大值在k空间中不同位置●允带:允许电子能量存在的能量范围.●同质多象体:一种物质能以两种或两种以上不同的晶体结构存在的现象第二章●替位杂质:杂质原子取代晶格原子而位于晶格点处。
●间隙杂质:杂质原子位于晶格的间隙位置。
●杂质浓度:单位体积中的杂质原子数。
●施主(N型)杂质:释放束缚电子,并成为不可动正电荷中心的杂质。
●受主(P型)杂质:释放束缚空穴,并成为不可动负电荷中心的杂质。
● 杂质电离:束缚电子被释放的过程(N )、束缚空穴被释放的过程(P )。
● 杂质束缚态:杂质未电离时的中性状态。
● 杂质电离能:杂质电离所需的最小能量:● 浅能级杂质:施(受)主能级很接近导(价)带底(顶)。
微电子器件授课教案第一章:微电子器件概述1.1 教学目标了解微电子器件的基本概念和分类掌握微电子器件的发展历程和趋势理解微电子器件在现代科技领域的应用1.2 教学内容微电子器件的定义和特点微电子器件的分类及性能指标微电子器件的发展历程和趋势微电子器件在现代科技领域的应用1.3 教学方法采用讲授和互动讨论相结合的方式,引导学生了解微电子器件的基本概念和分类通过案例分析,使学生掌握微电子器件的发展历程和趋势利用实际应用场景,让学生理解微电子器件在现代科技领域的重要作用第二章:半导体物理基础2.1 教学目标掌握半导体的基本性质和导电机制了解半导体物理中的重要概念和原理理解半导体器件的工作原理和性能特点2.2 教学内容半导体的基本性质和导电机制半导体物理中的重要概念和原理半导体器件的工作原理和性能特点2.3 教学方法通过讲解和示例,让学生掌握半导体的基本性质和导电机制利用实验和仿真,使学生了解半导体物理中的重要概念和原理结合具体器件,让学生理解半导体器件的工作原理和性能特点第三章:二极管和三极管3.1 教学目标掌握二极管和三极管的结构、原理和性能学会分析二极管和三极管在不同电路中的应用了解二极管和三极管的发展趋势和新型器件3.2 教学内容二极管和三极管的结构和工作原理二极管和三极管的性能参数和测试方法二极管和三极管在不同电路中的应用二极管和三极管的发展趋势和新型器件3.3 教学方法通过讲解和示例,让学生掌握二极管和三极管的结构和工作原理利用实验和仿真,使学生了解二极管和三极管的性能参数和测试方法结合具体应用案例,让学生学会分析二极管和三极管在不同电路中的应用介绍二极管和三极管的发展趋势和新型器件,激发学生的学习兴趣和探究精神第四章:集成电路和微电子技术了解集成电路的基本概念和分类掌握集成电路的设计和制造工艺理解微电子技术的发展和应用领域4.2 教学内容集成电路的基本概念和分类集成电路的设计和制造工艺微电子技术的发展和应用领域4.3 教学方法采用讲解和互动讨论相结合的方式,引导学生了解集成电路的基本概念和分类通过案例分析和实验,使学生掌握集成电路的设计和制造工艺利用实际应用场景,让学生理解微电子技术的发展和应用领域第五章:微电子器件的应用5.1 教学目标了解微电子器件在不同领域的应用掌握微电子器件的选型和使用方法理解微电子器件在现代科技中的重要作用5.2 教学内容微电子器件在电子设备中的应用微电子器件在通信系统中的应用微电子器件在计算机领域的应用微电子器件在其他领域的应用通过讲解和示例,让学生了解微电子器件在不同领域的应用利用实验和仿真,使学生掌握微电子器件的选型和使用方法结合具体应用场景,让学生理解微电子器件在现代科技中的重要作用第六章:功率器件和功率集成电路6.1 教学目标掌握功率器件的结构、原理和性能了解功率集成电路的基本概念和分类理解功率器件和功率集成电路在电力电子领域的应用6.2 教学内容功率器件的结构和工作原理功率器件的性能参数和测试方法功率集成电路的基本概念和分类功率器件和功率集成电路在电力电子领域的应用6.3 教学方法通过讲解和示例,让学生掌握功率器件的结构和工作原理利用实验和仿真,使学生了解功率器件的性能参数和测试方法结合具体应用案例,让学生了解功率集成电路的基本概念和分类介绍功率器件和功率集成电路在电力电子领域的应用,激发学生的学习兴趣和探究精神第七章:传感器和微电子器件7.1 教学目标了解传感器的基本概念和分类掌握传感器的原理和性能理解传感器和微电子器件在智能化领域的应用7.2 教学内容传感器的基本概念和分类传感器的原理和性能传感器和微电子器件在智能化领域的应用7.3 教学方法采用讲解和互动讨论相结合的方式,引导学生了解传感器的基本概念和分类通过案例分析和实验,使学生掌握传感器的原理和性能利用实际应用场景,让学生理解传感器和微电子器件在智能化领域的应用第八章:光电器件和光电子集成电路8.1 教学目标掌握光电器件的结构、原理和性能了解光电子集成电路的基本概念和分类理解光电器件和光电子集成电路在光通信领域的应用8.2 教学内容光电器件的结构和工作原理光电器件的性能参数和测试方法光电子集成电路的基本概念和分类光电器件和光电子集成电路在光通信领域的应用8.3 教学方法通过讲解和示例,让学生掌握光电器件的结构和工作原理利用实验和仿真,使学生了解光电器件的性能参数和测试方法结合具体应用案例,让学生了解光电子集成电路的基本概念和分类介绍光电器件和光电子集成电路在光通信领域的应用,激发学生的学习兴趣和探究精神第九章:微电子器件的可靠性9.1 教学目标了解微电子器件的可靠性基本概念掌握微电子器件的可靠性参数和测试方法理解微电子器件可靠性对系统的影响9.2 教学内容微电子器件的可靠性基本概念微电子器件的可靠性参数和测试方法微电子器件可靠性对系统的影响9.3 教学方法采用讲解和互动讨论相结合的方式,引导学生了解微电子器件的可靠性基本概念通过案例分析和实验,使学生掌握微电子器件的可靠性参数和测试方法利用实际应用场景,让学生理解微电子器件可靠性对系统的影响第十章:微电子器件的发展趋势10.1 教学目标了解微电子器件的最新发展动态掌握未来微电子器件的技术发展趋势理解微电子器件对现代社会的影响10.2 教学内容微电子器件的最新发展动态未来微电子器件的技术发展趋势微电子器件对现代社会的影响10.3 教学方法通过讲解和示例,让学生了解微电子器件的最新发展动态利用实验和重点和难点解析:1. 微电子器件的分类和性能指标:学生需要理解不同类型微电子器件的特点和应用场景,以及如何评估它们的性能。
微电子器件授课教案第一章:微电子器件概述1.1 微电子器件的定义与分类1.2 微电子器件的发展历程1.3 微电子器件的基本原理1.4 微电子器件的应用领域第二章:半导体物理基础2.1 半导体的基本概念2.2 半导体的能带结构2.3 半导体材料的制备与分类2.4 半导体器件的掺杂原理第三章:晶体管器件3.1 晶体管的基本原理3.2 晶体管的结构与类型3.3 晶体管的制备与加工3.4 晶体管的性能参数及应用第四章:集成电路概述4.1 集成电路的基本概念4.2 集成电路的分类与结构4.3 集成电路的制备工艺4.4 集成电路的应用领域第五章:微电子器件的可靠性5.1 微电子器件可靠性的基本概念5.2 微电子器件失效的原因及机制5.3 微电子器件可靠性提升的方法5.4 微电子器件的可靠性测试与评估第六章:二极管器件6.1 二极管的基本原理与结构6.2 二极管的制备与掺杂6.3 二极管的性能参数及测试6.4 二极管的应用领域第七章:场效应晶体管(FET)7.1 FET的基本原理与结构7.2 FET的制备与加工7.3 FET的性能参数及特性曲线7.4 FET的应用领域及发展趋势第八章:双极型晶体管(BJT)8.1 BJT的基本原理与结构8.2 BJT的制备与掺杂8.3 BJT的性能参数及工作原理8.4 BJT的应用领域及发展趋势第九章:集成电路设计9.1 集成电路设计的基本流程9.2 数字集成电路设计9.3 模拟集成电路设计9.4 集成电路设计工具与方法第十章:微电子器件的封装与测试10.1 微电子器件封装的基本概念10.2 常见封装形式及其特点10.3 微电子器件的测试方法10.4 微电子器件的质量控制与可靠性提升第十一章:功率半导体器件11.1 功率半导体器件的分类与原理11.2 功率晶体管和功率二极管11.3 绝缘栅双极型晶体管(IGBT)11.4 功率集成电路与模块第十二章:微波半导体器件12.1 微波半导体器件的分类与原理12.2 微波二极管和微波三极管12.3 微波集成电路与系统12.4 微波半导体器件的应用第十三章:光电子器件13.1 光电子器件的基本原理13.2 激光二极管与光检测器13.3 光电子集成电路与系统13.4 光电子器件的应用与发展第十四章:半导体存储器14.1 存储器的基本原理与分类14.2 随机存取存储器(RAM)14.3 只读存储器(ROM)与闪存14.4 存储器系统与新技术第十五章:微电子器件的进展与未来15.1 微电子器件的技术发展趋势15.2 纳米电子学与量子器件15.3 生物医学微电子器件15.4 环境与能源相关的微电子器件重点和难点解析第一章:微电子器件概述重点:微电子器件的定义、分类和应用领域。