疲劳试验
- 格式:pptx
- 大小:213.75 KB
- 文档页数:13
混凝土疲劳试验混凝土是建筑、道路、桥梁等工程中常见的材料。
长期以来,混凝土的强度、耐久性等性能指标一直是工程师们关注的重点。
然而,随着现代工程对混凝土要求越来越高,混凝土疲劳问题逐渐引起了人们的关注。
为了确保工程的安全以及延长混凝土的使用寿命,进行混凝土疲劳试验是非常必要的。
一、什么是混凝土疲劳试验?混凝土疲劳试验是一种模拟长期使用条件下混凝土的行为的实验方法。
疲劳试验通常采用交变载荷来模拟实际使用状态下混凝土受到的周期性荷载。
通过在试验中以一定频率施加交替载荷,可模拟长期使用条件下的混凝土疲劳性能。
试验结果能够反映混凝土在多次受到加载后的变形、开裂、破坏等情况。
二、混凝土疲劳试验的目的及意义混凝土作为建筑工程中必不可少的材料,其性能的稳定性和可靠性显得尤为重要。
进行混凝土疲劳试验的目的是为了评估混凝土的疲劳性能,了解混凝土在长期使用中所表现出来的特性,预测混凝土结构的寿命;同时还能评估混凝土的强度、韧性、耐久性等指标,为混凝土的设计和施工提供基础数据。
混凝土疲劳试验结果在工程施工和维护中具有重要的指导意义。
三、混凝土疲劳试验的方法混凝土疲劳试验的方法主要有旋转弯曲试验、交替拉拉试验、交替压压试验、交替剪切试验等。
其中旋转弯曲试验是最常用的方法之一,它可以模拟混凝土在实际使用中所受的往复外力,又能较好的反映混凝土的实际疲劳性能。
四、混凝土疲劳试验的步骤1. 制作样品:按照相关标准制作混凝土试件,通常采用标准筒模或标准板模成型。
2. 实验设备准备:准备好旋转弯曲疲劳试验机、传感器、数据采集与处理系统等实验设备。
3. 试验条件设置:根据设计要求,在试验机上设置压力、位移等要素的控制范围和频率。
4. 试验开始:将样品平放在试验机上,根据设计设置好试验参数,开始进行试验。
试验过程中需对混凝土的变化情况进行实时观测和记录。
5. 结果分析:通过分析试验结束时获得的数据,评估混凝土的疲劳性能、强度、韧性、耐久性等指标。
重症肌无力疲劳试验标准
重症肌无力(Myasthenia gravis,MG)疲劳试验是一种帮助诊断和评估MG疾病严重程度的常用方法。
下面是一些常见的重症肌无力疲劳试验标准:
1. 末梢肌疲劳试验(Peripheral Muscle Fatigability Test):通过检查患者的末梢肌肌力变化来评估肌无力。
这可以通过要求患者保持重复肌肉运动(如握力测试)或持续进行特定动作(如闭眼眼球运动)来完成。
在MG患者中,肌肉疲劳的程度更快、更显著。
2. 简单疲劳试验(Simple Fatigability Test):这个试验要求患者保持特定的肌肉活动一段时间,例如伸直手臂或举起双腿。
如果在持续活动后肌肉力量明显下降,则可能是MG症状。
3. 跳跃疲劳试验(Tensilon Test):这是一项常用的诊断肌无力的试验。
在试验中,将琼脂球碱(Tensilon)注射患者体内后观察症状变化。
如果肌无力症状显著改善,则可能是MG。
4. 静脉疲劳试验(Intravenous Fatigability Test):在这个试验中,患者经历一系列静脉注射及活动,以检测肌肉疲劳及其恢复情况。
需要注意的是,以上试验仅为常见的评估MG疲劳程度的方法之一,具体的试验方法和标准可能会根据个体情况和医生的判断而略有不同。
因此,在进行任何疲劳试验之前,请务必咨询医生以获得准确的诊断。
疲劳强度试验方法
疲劳强度试验是一种评估材料或结构在循环加载下的耐久性能的方法。
以下是常见的疲劳强度试验方法:
1. 疲劳弯曲试验:将试样放置在弯曲载荷下,通过循环加载和卸载来评估其弯曲疲劳强度。
2. 疲劳拉伸试验:将试样置于拉伸载荷下,进行循环加载和卸载,评估其拉伸疲劳强度。
3. 疲劳压缩试验:将试样置于压缩载荷下,进行循环加载和卸载,评估其压缩疲劳强度。
4. 疲劳扭转试验:将试样置于扭转载荷下,进行循环加载和卸载,评估其扭转疲劳强度。
5. 疲劳冲击试验:在试样上施加冲击载荷,通过循环冲击来评估其疲劳强度。
6. 疲劳振动试验:将试样置于振动载荷下,进行循环振动来评估其疲劳强度。
在进行疲劳强度试验时,通常会记录载荷循环次数和试样的破坏情况,通过统计和分析数据来评估材料或结构的疲劳寿命和强度。
疲劳试验标准疲劳试验是指在特定载荷或应力作用下,材料或构件在一定条件下进行循环加载,以模拟实际工作中的疲劳破坏情况,从而评定材料或构件的疲劳性能。
疲劳试验标准是对疲劳试验进行规范和标准化的要求,其制定的目的是为了保证试验结果的准确性和可比性,为材料和构件的设计、生产和使用提供依据。
一、疲劳试验标准的分类。
根据不同的试验对象和试验目的,疲劳试验标准可以分为金属材料疲劳试验标准、混凝土疲劳试验标准、复合材料疲劳试验标准等。
其中,金属材料疲劳试验标准是最为常见和重要的一类,其主要包括拉伸-压缩疲劳试验、弯曲疲劳试验、扭转疲劳试验等内容。
二、疲劳试验标准的要求。
1. 试验条件的确定,包括载荷类型、频率、试样尺寸、环境条件等。
2. 试验方法的规范,包括试验过程的控制、数据采集和处理方法等。
3. 试验结果的评定,包括疲劳寿命、疲劳极限、疲劳裂纹扩展速率等指标的评定方法。
4. 试验设备和仪器的要求,包括试验机、应变计、测力传感器等设备的选用和校准要求。
5. 试验报告的内容,包括试验目的、试验方法、试验结果和分析等内容的详细记录。
三、疲劳试验标准的意义。
疲劳试验标准的制定和执行对于材料和构件的设计、生产和使用具有重要意义。
首先,它可以评定材料的疲劳性能,为材料的选用提供依据;其次,它可以评定构件的耐久性能,为构件的设计和改进提供依据;最后,它可以评定材料和构件在特定工况下的寿命,为工程结构的安全评定提供依据。
四、疲劳试验标准的发展趋势。
随着材料科学和试验技术的不断发展,疲劳试验标准也在不断更新和完善。
未来,疲劳试验标准将更加注重多尺度、多尺寸、多工况的综合试验方法,更加注重试验数据的数字化、标准化和信息化管理,以适应材料和构件疲劳性能评定的新需求。
总之,疲劳试验标准是对疲劳试验进行规范和标准化的要求,其制定的目的是为了保证试验结果的准确性和可比性,为材料和构件的设计、生产和使用提供依据。
随着材料科学和试验技术的不断发展,疲劳试验标准也在不断更新和完善,以适应新的需求和挑战。
金属疲劳试验有哪些金属疲劳试验方法
疲劳试验,作为一种测定金属、非金属以及合金材料等拉伸、压缩等疲劳性能测试,常用于测量材料或产品的各项物理性能。
疲劳试验能测试哪些材料
金属:钢材、钢索、钢筋、钢板
非金属:橡胶、塑料、海绵、玻璃、胶管
合金材料:管件、五金、不锈钢、疲劳试验设备有哪些
根据试验频率:
低频疲劳试验机、中频疲劳试验机、高频疲劳试验机、超高频疲劳试验机、根据应力循环:
等幅疲劳试验机、变频疲劳试验机、程序疲劳试验机、随机疲劳试验机根据试验环境:
室温疲劳试验机、低温疲劳试验机、高温疲劳试验机、热疲劳试验机、腐蚀疲劳试验机、接触疲劳试验机、微动磨损疲劳试验机根据应力循环周次:
低周疲劳试验机、高周疲劳试验机
根据式样加载方法:
拉-压疲劳试验机、弯曲疲劳试验机、扭转疲劳试验机、复合应力疲劳试验机疲劳试验有哪些试验方法
扭转、弯曲、动态、拉伸、旋转、拉扭、纯弯、扭矩、静态、提吊、弯扭、弹跳、滚动、摇摆、屈曲、弹性、传动、。
疲劳试验机原理
疲劳试验机是一种用于测试材料疲劳性能的设备,其原理是通
过施加交变载荷,模拟材料在实际使用过程中受到的交变载荷作用,从而研究材料的疲劳寿命和疲劳性能。
疲劳试验机的原理主要包括
载荷施加原理、试样夹持原理和试验控制原理。
首先,载荷施加原理是疲劳试验机的核心原理之一。
在疲劳试
验过程中,试样会受到交变载荷的作用,这些载荷可以是拉伸载荷、压缩载荷或者扭转载荷。
通过施加不同幅值、频率和波形的载荷,
可以模拟材料在实际使用过程中所受到的各种交变载荷,从而研究
材料的疲劳性能。
其次,试样夹持原理也是疲劳试验机的重要原理之一。
试样的
夹持方式对疲劳试验结果有着重要影响。
合适的试样夹持方式可以
保证试样在载荷作用下不发生额外的变形或损伤,从而保证试验结
果的准确性和可靠性。
常见的试样夹持方式包括拉伸试样夹持、压
缩试样夹持和扭转试样夹持等。
最后,试验控制原理是疲劳试验机的另一个关键原理。
通过采
用不同的试验控制方式,可以实现对疲劳试验过程中载荷、频率、
温度等参数的精确控制。
试验控制系统可以根据预先设定的试验方案,自动完成试验过程中的载荷施加、数据采集和试验结果分析,从而实现对材料疲劳性能的全面评估。
总的来说,疲劳试验机的原理涉及载荷施加、试样夹持和试验控制等多个方面,通过这些原理的相互作用,可以对材料的疲劳性能进行全面、准确的评估。
疲劳试验机在材料科学、工程设计和制造领域具有重要的应用价值,对于提高材料的疲劳寿命、改善产品的可靠性和安全性具有重要意义。
疲劳试验分类
疲劳试验有多种分类方法,以下就举出一些疲劳试验分类方法。
1.按试样破断时应力(应变)循环周次高低可分为:低周疲劳试验、高周疲劳试验。
失效循环周次大于5X104的称为高周疲劳试验,于5X104的称为低周疲劳试验。
2.按试验环境可分为:室温疲劳试验、低温疲劳试验、高温疲劳试验、热疲劳试验、腐蚀疲劳试验、接触疲劳试验、微动磨损疲劳试验等。
3.按试样的加载方式可分为:拉-压疲劳试验、弯曲疲劳试验、扭转疲劳试验、复合应力疲劳试验。
弯曲疲劳试验又可分为旋转弯曲疲劳试验、圆弯曲疲劳试验、平面弯曲疲劳试验;又可分为三点弯曲、四点弯曲、悬臂弯曲疲劳试验。
4.按应力循环的类型可分为:等幅疲劳试验、变频疲劳试验、程序疲劳试验、随机疲劳试验等。
5.按应力比可分为:对称疲劳试验,非对称疲劳试验。
非对称疲劳试验又可以分为单向、双向加载疲劳试验。
单向加载疲劳试验又可以分为脉动疲劳试验、波动疲劳试验。
6.按试验目的可分为:性能测试疲劳试验、影响系数疲劳试验、对比疲劳试验、筛选疲劳试验、验证疲劳试验等。
7.按试样有无预制裂纹可分为:常规疲劳试验、疲劳裂纹扩展试验。
疲劳试验(fatigue test)利用金属试样或模拟机件在各种环境下,经受交变载荷循环作用而测定其疲劳性能判据,并研究其断裂过程的试验,即为金属疲劳试验。
1829年德国人阿尔贝特为解决矿山卷扬机服役过程中钢索经常发生突然断裂,首先以10次/分的频率进行疲劳试验。
1852~1869年德国人沃勒hler)为研究机车车辆,开始以15次/分的频率对车辆部件进行拉伸疲劳试验,以后又用试样以72次/分的频率在旋转弯曲疲劳试验机进行旋转弯曲疲劳试验,他的功绩是指出一些金属存在疲劳极限,并将疲劳试验结果绘成应力与循环周次关系的S-N曲线(图1),又称为W hler曲线。
1849年英国人古德曼首先考虑了平均应力不为零时非对称载荷下的疲劳问题,并提出耐久图,为金属制件的寿命估算和安全可靠服役奠定理论基础。
1946年德国人魏布尔对大量疲劳试验数据进行统计分析研究,提出对数疲劳寿命一般符合正态分布(高斯分布),阐明疲劳测试技术中应采用数理统计。
60年代初,从断裂力学观点分析金属疲劳问题,进一步扩大了疲劳研究内容。
近年来,由于电液伺服闭环控制疲劳试验机的出现以及近代无损检验技术、现代化仪器仪表等新技术的采用,促进了金属疲劳测试技术的发展。
今后应着重各种不同条件(特别是接近服役条件)下金属及其制件的疲劳测试技术的研究。
试验种类和判据金属疲劳试验种类很多,通常可分为高周疲劳、低周疲劳、热疲劳、冲击疲劳、腐蚀疲劳、接触疲劳、声致疲劳、真空疲劳、高温疲劳、常温疲劳、低温疲劳、旋转弯曲疲劳、平面弯曲疲劳、轴向加载疲劳、扭转疲劳、复合应力疲劳等。
应根据金属制件的服役(工作)条件来选择适宜的疲劳试验方法,测试条件要尽量接近服役条件。
进行金属疲劳试验的目的在于测定金属的疲劳强度(抗力),由于试验条件不同,表征金属疲劳强度的判据(指标)也不一样。
高周疲劳:高周疲劳时,金属疲劳强度判据是疲劳极限 (或条件疲劳极限)即金属经受“无限”多次(或规定周次)应力循环而不断裂的最大应力,以σr表示,其中γ为应力比,即循环中最小与最大应力之比。
金属疲劳试验方法金属疲劳试验是一种常见的材料力学试验方法,用于研究金属材料在交变载荷下的疲劳寿命和疲劳性能。
疲劳是材料在交变载荷下反复加载引起的损伤累积现象,对金属材料的使用寿命和可靠性具有重要影响,因此金属疲劳试验在工程领域中具有广泛的应用价值。
金属疲劳试验的基本原理是将试样加装在疲劳试验机上,通过施加交变载荷或交变应力,观察试样在多次重复载荷下的破坏情况,并记录下试样的疲劳寿命和疲劳性能。
疲劳试验通常包括疲劳强度试验、疲劳寿命试验和疲劳裂纹扩展试验等。
在进行金属疲劳试验时,需要首先选择合适的试验方法和试验设备。
常见的试验方法包括拉伸疲劳试验、弯曲疲劳试验、旋转弯曲疲劳试验、扭转疲劳试验等。
具体选择哪种试验方法取决于所研究材料的形状和应用条件。
在拉伸疲劳试验中,试样通常为圆柱形或平板状。
试样被夹紧在疲劳试验机的夹具上,载荷通过试样的上下拉伸实现。
在试验过程中,应该保持良好的试验环境,避免影响试验结果的因素存在。
弯曲疲劳试验中,试样通常为梁状,通过施加交变弯曲力加载试样。
由于金属材料的应变分布不均匀,疲劳寿命试验中,存在应力集中效应和裂纹起始等问题,试验结果需要进行合理的数据处理和分析。
旋转弯曲疲劳试验是一种用于研究轴类零件或旋转零件的疲劳性能的试验方法。
试样被固定在试验机上,通过施加交变载荷实现试样的旋转弯曲运动。
在试验中,需要控制载荷的频率和振幅,并根据试样的疲劳寿命和变形情况来评估其疲劳性能。
扭转疲劳试验是一种用于研究圆轴类零件的疲劳性能的试验方法。
试样通过一端固定在试验机上,通过扭矩加载试样的另一端,实现试样的交变扭转运动。
在试验中,也需要控制载荷的频率和振幅,并根据试样的变形情况和疲劳寿命来评估其疲劳性能。
除了选择合适的试验方法和试验设备外,金属疲劳试验还需要进行试验参数的选择和试验条件的控制。
试验参数包括载荷幅值、载荷频率、试样几何尺寸等,通过调整这些参数可以研究载荷对试样疲劳寿命和疲劳性能的影响。
疲劳试验
疲劳试验是一种常见的实验方法,用来评估材料在持续加载和循环加载下的疲劳性能。
在工程领域,疲劳是一种重要的失效模式,可以导致材料和结构的意外损坏。
因此,疲劳试验在材料研究和工程设计中具有重要意义。
疲劳试验的基本原理
疲劳试验的基本原理是通过施加不同形式的加载,如循环加载或不规则加载,来模拟实际工作条件下材料所承受的疲劳应力。
在试验过程中,监测材料的应力应变曲线和应变振幅,以评估材料在疲劳加载下的性能表现。
疲劳试验的分类
根据试验条件和加载方式的不同,疲劳试验可以分为不同的类型,如拉伸-压缩疲劳试验、弯曲疲劳试验和扭转疲劳试验等。
每种类型的疲劳试验都有其特定的试验流程和数据分析方法。
疲劳试验的应用
疲劳试验在航空航天、汽车制造、机械工程等领域中被广泛应用。
通过疲劳试验,工程师可以评估材料的疲劳寿命、设计更加可靠的产品和结构。
疲劳试验的发展趋势
随着材料科学和工程技术的不断发展,疲劳试验的方法和技术也在不断创新。
新型材料的疲劳性能评估、多尺度疲劳试验和数字化疲劳试验成为当前研究的热点方向。
总结
疲劳试验作为一种重要的材料性能评估方法,对于提高产品的可靠性和安全性具有重要意义。
通过深入研究疲劳试验的原理和方法,可以更好地理解材料在疲劳加载下的行为规律,为工程实践提供可靠的技术支持。
疲劳试验方法1、单点疲劳试验法适用于金属材料构件在室温、高温或腐蚀空气中旋转弯曲载荷条件下服役的情况。
该种方法在试样数量受限制的情况下,可近似测定疲劳曲线并粗略估计疲劳极限。
试验所需的疲劳试验机一般为弯曲疲劳试验机和拉压试验机。
2、升降法疲劳试验法升降法疲劳试验是获得金属材料或结构疲劳极限的一种比较常用而又精确的方法,在常规疲劳试验方法测定疲劳强度的基础上或在指定寿命的材料或结构的疲劳强度无法通过试验直接测定的情况下,一般采用升降法疲劳试验间接测定疲劳强度。
主要用于测定中、长寿命区材料或结构疲劳强度的随机特性。
所需试验机一般为拉压疲劳试验机。
3、高频振动疲劳试验法常规疲劳试验中交变载荷的频率一般低于200Hz,无法精确测得一些零件在高频环境状态下的疲劳损伤。
高频振动试验利用试验器材产生含有循环载荷频率为1000Hz左右特性的交变惯性力作用于疲劳试样上,可以满足在高频、低幅、高循环环境条件下服役金属材料的疲劳性能研究。
高频振动试验主要用于军民机械工程的需要。
试验装置通常包括:控制仪、电荷适配器、功率放大器、加速度计、振动台等。
4、超声法疲劳试验法超声法疲劳试验是一种加速共振式的疲劳试验方法,其测试频率(20kHz)远远超过常规疲劳测试频率(小于200Hz)。
超声疲劳试验可以在不同载荷特征、不同环境和温度等条件下进行,为疲劳研究提供了一个很好的手段。
超声疲劳试验一般用于超高周疲劳试验,主要针对10^9以上周次疲劳试验。
高周疲劳时,材料宏观上主要表现为弹性的,所以在损伤本构关系中采用应力、应变等参量的弹性关系处理,而不涉及微塑性。
5、红外热像技术疲劳试验方法为缩短试验时间、减少试验成本,能量方法成为疲劳试验研究的重要方法之一。
金属材料的疲劳是一个耗散能量的过程,而温度变化则是研究疲劳过程能量耗散极为重要的参量。
红外热像技术是一种波长转换技术,即将目标的热辐射转换为可见光的技术,利用目标自身各部分热辐射的差异获取二维可视图像,用计算机图像处理技术和红外测温标定技术,实现对物体表面温度场分布的显示、分析和精确测量。
轴向疲劳试验轴向疲劳试验是一种常用的材料力学性能测试方法,用于评估材料在受到轴向载荷作用下的疲劳寿命。
本文将从试验原理、试验过程、试验结果分析等方面进行介绍,以帮助读者更好地了解轴向疲劳试验。
我们来了解一下轴向疲劳试验的原理。
轴向疲劳试验是将试样置于疲劳试验机中,施加周期性的轴向载荷,通过不断加载与卸载的循环过程,观察试样的疲劳寿命。
试验结果可以得到材料在不同载荷水平下的疲劳曲线,进而评估材料的疲劳强度和疲劳寿命。
接下来,我们将介绍轴向疲劳试验的具体过程。
首先,选择合适的试样尺寸和形状,通常采用圆柱形试样。
然后,将试样安装在试验机上,调整试验机的加载速度和载荷幅值。
开始试验后,试验机将自动施加载荷并进行循环加载与卸载,直到试样发生破坏或达到预设的试验次数。
试验过程中,需要记录试样的应力和应变数据,以便后续分析。
试验完成后,我们需要对试验结果进行分析。
首先,可以绘制疲劳曲线,该曲线表示不同载荷水平下的疲劳寿命。
通过分析曲线的形状和斜率变化,我们可以得到材料的疲劳强度和疲劳寿命。
此外,还可以进行疲劳断口分析,观察试样破坏的形态和特征,以了解疲劳破坏的机制和原因。
轴向疲劳试验在工程领域具有广泛的应用。
首先,它可以用于评估材料的疲劳性能,指导材料的选择和设计。
不同材料的疲劳强度和寿命差异很大,通过轴向疲劳试验可以比较不同材料的性能,选择最合适的材料。
其次,轴向疲劳试验还可以用于评估材料的可靠性,预测材料在实际使用中的疲劳寿命,为工程设计提供参考。
此外,轴向疲劳试验还可以用于研究材料的疲劳断裂机制,揭示材料的内部结构和性能特点。
总结起来,轴向疲劳试验是一种重要的材料力学性能测试方法,通过施加周期性的轴向载荷,评估材料的疲劳强度和疲劳寿命。
它在工程领域具有广泛的应用,可以指导材料选择、设计和可靠性评估。
通过轴向疲劳试验,我们可以更好地了解材料的疲劳性能和断裂机制,为工程设计提供科学依据。
疲劳试验方法标准概述说明以及解释1. 引言1.1 概述疲劳试验方法是一种重要的工程实验方法,用于评估材料或构件在循环加载条件下的耐久性和可靠性。
在现代工程设计和材料科学领域,疲劳试验方法被广泛应用于各种应用中,如航空航天、汽车制造、机械工程等。
通过模拟真实使用环境下的循环负载,疲劳试验可以揭示材料和构件在长时间使用过程中存在的弱点和故障机理。
1.2 文章结构本文将详细介绍疲劳试验方法及其标准,并对其进行解释和讨论。
文章由引言、疲劳试验方法、疲劳试验标准、疲劳试验概述说明、解释与讨论以及结论等部分组成。
引言部分将给出关于疲劳试验方法的整体概述,并简单介绍文章结构。
1.3 目的本文旨在提供对疲劳试验方法及其标准的全面理解。
通过对常见的疲劳试验方法和标准进行介绍和解析,读者将了解到选择适当的疲劳试验方法的考虑因素,以及疲劳试验标准的重要性和作用。
此外,本文还将详细说明疲劳试验的基本原理和过程概述,以及分析疲劳试验结果、对不同标准进行疲劳试验比较和解读疲劳断口特征及其含义的常用方法。
最后,通过总结疲劳试验方法和标准的重要性,并对未来发展进行展望,希望能够促进相关领域的研究与应用。
(文章正文内容根据实际需求填写即可)2. 疲劳试验方法2.1 定义和背景疲劳试验方法是用于评估材料、结构或设备在重复加载下的耐久性能的实验方法。
疲劳是指物体在反复循环载荷作用下逐渐损坏的现象,它可能导致结构失效或材料断裂。
疲劳试验方法旨在模拟实际使用条件下的循环荷载以确定材料或结构的疲劳极限、寿命和可靠性。
2.2 常见的疲劳试验方法常见的疲劳试验方法包括:- 轴向拉压疲劳试验:通过施加轴向拉力或压力来对材料进行循环加载,以评估其抗拉/压疲劳性能。
- 弯曲疲劳试验:施加弯曲力以模拟结构在实际使用中所受到的曲度变化,并评估材料或结构的抗弯曲疲劳性能。
- 扭转疲劳试验:通过扭转加载对材料进行循环应变,以评估其抗扭转疲劳性能。
- 振动疲劳试验:通过施加振动载荷模拟实际使用条件下的震动环境,评估材料或结构的抗振动疲劳性能。