酶工程整理(酶的分类)
- 格式:pdf
- 大小:86.45 KB
- 文档页数:2
名词解释1. 酶工程:又叫酶技术,是酶制剂的大规模生产和应用的技术。
2.自杀性底物:底物经过酶的催化后其潜在的反应基团暴露,再作用于酶而成为酶的不可逆抑制剂,这种底物叫自杀性底物??3.别构酶;调节物与酶分子的调节中心结合后,引起酶分子的构象发生变化,从而改变催化中心对底物的亲和力,这种影响被称为别构效应,具有别构效应的酶叫别构酶4.诱导酶:有些酶在通常的情况下不合成或很少合成,当加入诱导物后就会大量合成,这样的酶叫诱导酶5.Mol 催化活性:表示在单位时间内,酶分子中每个活性中心转换的分子数目6. 离子交换层析9比活力11葡萄糖效应13产酶动力学15双向凝胶电泳20固定化细胞21酶化学修饰1.酶的转换数:酶的转换数Kp。
又称为摩尔催化活性,是指每个酶分子每分钟催化底物转化的分子数。
2.酶的催化周期:酶进行一次催化所用的时间。
3.固定化酶的比活力:指每克干固定化酶所具有的6活力单位数,它是酶制剂纯度的一个指标。
4.抗体酶:又称催化行抗体。
是一类具有生物催化功能的抗体分子。
抗体是由抗原诱导产生的抗原特异结构免疫球蛋白,要使机体具有生物催化功能,只要在抗体的可变区赋予酶的催化特性,以及酶的高效催化能力。
是通过人工设计采用现代生物技术而获得的一类新的生物催化剂,有些是自然界原本不存在的。
5.端粒酶:是一种核酸核蛋白,包含蛋白质和RNA两种基本成分。
其RNA组分包含有构建端粒的重复序列的核苷酸摸板序列,在合成端粒的过程中,端粒酶以其本身的RNA组分为摸板把端粒的重复序列加到染色体DNA的末端上,使端粒延长。
6.核酶:核酸类酶。
为一类具有生物催化功能的核糖核酸分子。
它可以催化本身RNA剪切或剪接作用,还可以催化其他RNA,DNA多糖,酯类等分子进行反应。
7.KS分段盐析:指在一定温度和PH值条件下,通过改变离子强度使不同的酶和蛋白质分离的方法。
8.B分段盐析:指在盐和离子强度条件下,通过改变温度和PH使不同的酶或蛋白质分离的方法。
●酶工程的主要研究内容:酶的生产、分离纯化、酶的固定化、酶及固定化酶的反应器、酶与固定化酶的应用等内容。
●酶的分类(数字):①氧化还原酶类②转移酶类③水解酶类④裂合酶类⑤异构酶类⑥合成酶或连接酶类●酶的一级结构:指的是酶分子多肽链共价主链的氨基酸排列顺序。
酶的二级结构:指多肽链通过氢键排列成沿一维方向具有周期性结构的构象。
酶的三级结构:指单一的多肽链或共价连接的多肽链中所有的原子在空间上的排列,它是在二级结构的基础上,借助于各种次级键(非共价键),肽链进一步转曲、折叠和盘绕成具有特定肽链走向的紧密球状结构。
●酶的必需基团:必需基团包括活性中心必需基团和活性中心外必需基团。
其中活性中心必需基团包括结合基团和催化基团,结合基团具有结合酶和底物的作用,决定酶的专一性,催化基团具有催化酶和底物反应的作用,决定反应的催化性质。
活性中心外必需基团具有维持酶具有活性的空间结构。
●酶的类型:单体酶、寡聚酶、多酶复合体、多酶融合体等。
●酶催化特点:催化反应的高效性、专一性、温和性、酶活性可以调控。
●酶催化作用机制:⑴酸碱催化:反应物分子与酸碱相接触,或吸附在催化剂固体表面一定的酸碱部位上,就会发生酸碱反应,形成活性中间络合物,然后再分解出产物,使催化剂复原。
⑵共价催化:在催化时,亲核催化剂或亲电子催化剂分别放出电子或吸取电子并作用于底物的缺电子中心或负电子中心,迅速形成不稳定的共价配合物,降低反应的活化能,以达到加速反应的目的。
⑶邻近效应与定向效应:邻近效应,就是底物的反应基团与酶的催化基团越靠近,其反应速度越快。
定向效应,是指反应物的反应基团之间、酶的催化基团与底物的反应基团之间的正确取位后产生的反应速度增大的一种效应。
⑷扭曲变形和构象变化的催化效应⑸多元催化与协同效应⑹金属离子催化⑺微环境的影响●酶抑制作用类型:不可逆抑制、可逆抑制不可逆抑制剂:是指抑制剂与酶的活性中心发生了化学反应,抑制剂共价的连接到酶分子中的必须基团上,阻碍了底物与酶的结合或破坏了酶的催化基团。
绪论一.酶是生物催化剂酶是具有生物催化功能的生物大分子,按其化学组成的不同可以分为两类:蛋白类酶(P-酶)与核酸类酶(R-酶)。
理解:1、酶是由生物细胞产生2、酶发挥催化功能不仅在细胞内,在细胞外亦可二.酶学研究简史1897年,Buchner兄弟发现,用石英砂磨碎的酵母细胞或无细胞滤液能和酵母细胞一样进行酒精发酵。
标志着酶学研究的开始。
说明:酶分子不仅只是在细胞内起作用,而且在细胞外同样具有催化功能。
这一发现开启了现代酶学,乃至现代生物化学的大门。
三.酶工程的现状:目前大规模利用和生产的商品酶还很少。
第一章.酶学概论第一节.酶作为生物催化剂的显著特点一.酶作为生物催化剂的显著特点:高效、专一二.同工酶(概):能催化相同的化学反应,但其酶蛋白本身的分子结构组成不同的一组酶。
三.共价修饰调节1.概念:通过其它的酶对其结构进行共价修饰,从而使其在活性形式和非活性形式之间相互转变。
2.常见修饰类型:磷酸化与去磷酸化;腺苷酸化与脱腺苷酸化;尿苷酸化与脱尿苷酸化;泛素化;类泛素化3.例子:糖原磷酸化酶——磷酸化形式有活性(葡萄糖)n+Pi→(葡萄糖)n-1+1-磷酸葡萄糖4.常见磷酸化部位:丝氨酸/苏氨酸,酪氨酸和组氨酸四.酶活性调节方式要能判断所举酶的例子是什么类型调节1. 别构调节2. 激素调节:如乳糖合酶修饰亚基的水平是由激素控制的。
妊娠时,修饰亚基在乳腺生成。
分娩时,由于激素水平急剧的变化,修饰亚基大量合成,它和催化亚基结合,大量合成乳糖。
3. 共价修饰调节:如糖原磷酸化酶、磷酸化酶b激酶4.限制性蛋白水解作用与酶活性控制。
如酶原激活5.抑制剂和激活剂的调节6.反馈调节7.金属离子和其它小分子化合物的调节8.蛋白质剪接五.反馈调节(概):催化某物质生成的第一步反应的酶的活性,往往被其终端产物所抑制。
这种对自我合成的抑制叫反馈抑制。
A-J :代谢物实线箭头:酶促催化步骤虚线箭头:反馈抑制步骤代谢途径的第一步和共同底物进入分支途径的分支点是反馈抑制的最为重要的位点。
第一章绪论酶工程:酶的生产、改性和应用的技术过程。
酶的生产(enzyme production):通过各种方法获得人们所需的酶的技术过程,主要包括微生物发酵产酶、动植物培养产酶和酶的提取与分离纯化等。
酶的改性(enzyme improving ):通过各种方法改进酶的催化特性的技术过程,主要包括酶分子修饰、酶固定化、酶非水相催化和酶定向进化等。
酶的应用(enzyme application):通过酶的催化作用获得人们所需的物质或者除去不良物质的技术过程,主要包括酶反应器的选择与设计以及酶在各个领域的应用等。
酶工程的主要内容包括微生物细胞发酵产酶,酶的提取与分离纯化,酶分子修饰,酶、细胞和原生质体固定化,酶的非水相催化,酶反应器和酶的应用等。
酶工程的主要任务是经过预先设计,通过人工操作,获得人们所需的酶;并通过各种方法使酶充分发挥其催化功能。
酶是一类具有催化功能的生物大分子,亦称生物催化剂。
酶的分类:1、氧化还原酶(oxidoreductase)2、转移酶(transferase)3、水解酶(hydrolase)4、裂解酶(或裂合酶lyase)5、异构酶(isomerase)6、合成酶(synthease)或连接酶(ligase)酶的催化特性:高效性、高度专一性、反应条件温和且活力可调节影响酶催化反应速率的因素:底物浓度的影响,酶浓度的影响,pH、温度的影响,抑制剂的影响,激活剂的影响米氏方程式:[S]:底物浓度V:不同[S]时的反应速度V max:最大反应速度(maximum velocity)Km:米氏常数(Michaelis constant)米氏常数Km的意义:☐重要特征物理常数,与酶浓度无关。
不同的酶具有不同K m值☐物理意义:Km等于酶促反应速度为最大反应速度一半时的底物浓度。
☐Km值只是在固定的底物,一定的温度和pH条件下,一定的缓冲体系中测定的,不同条件下具有不同的Km值。
☐K m值近似等于[ES]的解离常数,可表示酶与底物之间的亲和力:K m值大表示亲和程度小,酶的催化活性低; K m值小表示亲和程度大,酶的催化活性高☐从k m可判断酶的专一性和天然底物。
第三章酶工程第一节概述酶工程简介生物工程包括四大技术体系:基因工程,细胞工程,酶工程和发酵工程。
基因工程不是一个独立的生产技术,通过基因工程可以改变生物的产酶量和酶系,真正发挥工业效益的还是发酵工程和酶工程。
酶工程是酶学研究发展和工程学相互渗透、结合,发展成一门新的技术科学—酶工程。
酶工程是工业上有目的的设计一定的反应器和反应条件,利用酶的催化功能,在常温常压下催化化学反应,生产人类需要的产品或服务于其他目的的一门应用技术。
酶工程这一术语出现在20世纪60年代末和70年代初,1971年召开了第一次国际酶工程会议:当时研究的范围包括酶的生产(包括微生物酶的发酵提取及从动植物中提取酶的技术、酶的固定化技术、酶的化学修饰、酶动力学研究、酶反应器的设计和应用及酶在医学、工业、农业、食品等方面的应用)近些年又增加了一些新的内容:酶的化学修饰:通过化学修饰(在分子水平上用化学方法对),提高酶的稳定性、改变其作用专一性或者最是反应条件,增加其稳定性,消除其抗原性(指某些酶能在体内诱导产生抗体而失活)。
模拟酶:根据酶的原理,用人工方法合成具有活性中心和催化作用的非蛋白质结构的化合物。
抗体酶:由于抗体和酶均属于蛋白质,两者都有求于互补性物质,具有相似性,前者结合的是直接的,后者的结合是过渡态的。
抗体酶是将类似酶反应中过渡态结合物注入动物体所诱发出来的一种抗体。
核酸酶:具有催化活性的RNA。
有机相酶反应:极端条件下进行得反应,可以改变某些酶的性质,两种方式:1 在水-水不容的有机溶剂双相体系中反应,底物在水和有机溶剂中溶解度大,产物在有机溶剂中溶解度大;2 采用形成反胶束的方式进行,即酶的水溶液都在表面活性剂的作用下在有机相中形成“油包水”的乳浊液,底物要求是能溶于有机相。
酶标免疫反应:酶传感器:生物传感器中的一类,一般包括两部分,1 固定化酶膜,膜允许被测小分子物质进入膜内,而固定在膜内侧的酶则不能泄到膜外;另一部分是基本传感器,酶膜即覆盖在其上。
酶⼯程原理与技术绪论第⼀节酶的基本概念酶:具有⽣物催化功能和特殊构象的⽣物⼤分⼦。
酶⼯程:利⽤酶的催化作⽤,在特定的酶反应器中,把相应的原料转变为产品的过程。
酶的催化作⽤具有:专⼀性、⾼效性,作⽤条件温和可控性。
第⼆节酶的分类与命名酶的分类:蛋⽩类酶(P酶)核酸类酶(R酶)两⼤类别。
蛋⽩类酶(P酶):氧化还原酶,转移酶,⽔解酶,裂合酶,异构酶,合成酶(或称连接酶)磷酸内酶(R酶):分⼦内催化磷酸内酶、分⼦间催化磷酸内酶。
第三节酶活⼒的测定酶活⼒⼤⼩可⽤⼀定条件下内酶所催化的反应初速率表⽰。
终⽌酶反应的⽅法:(1)加热使酶失活(2)加⼊适宜的酶变性剂(如三氯醋酸);(3)调节pH值;(4)低温终⽌反应。
⼆、酶活⼒单位在特定条件下,每1 min 催化1 µmol 的底物转化为产物的酶量定义为1 个酶活⼒单位。
这个单位称为国际单位(IU)在特定条件下,每秒催化1 mol底物转化为产物的酶量定义为1卡特(Kat) 1Kat = 6×10 7 IU 酶的⽐活⼒是指在特定条件下,单位重量(mg)蛋⽩质或RNA所具有的酶活⼒单位数。
酶⽐活⼒=酶活⼒(单位)/ mg (蛋⽩或RNA)第⼀篇酶的⽣产1、提取分离法2、⽣物合成法3、化学合成法⽣物合成法:经过预先设计,通过⼈⼯操作,利⽤微⽣物细胞、植物细胞或动物细胞的⽣命活动来获取所需酶的技术过程。
⽣物合成的过程:获得优良产酶菌株、优化培养、细胞新陈代谢、酶和其他代谢物、分离纯化。
反义链:在RNA的转录中,⽤作模板的DNA称为反义链。
(3’---5’)有义链:在RNA的转录中,不⽤作模板的DNA称为有义链。
不同的RNA的⽣物学功能:1.作为遗传信息的载体2.具有⽣物催化活性。
3.tRNA是在蛋⽩质合成过程中,作为氨基酸载体。
并由其中的反密码⼦识别mRNA上的密码⼦;mRNA是蛋⽩质合成的模板;rRNA是蛋⽩质合成的场所。
sRNA是⼩分⼦核糖核酸,在分⼦修饰和代谢调节⽅⾯起重要作⽤。
一、酶的分类(注意序号不能变,用于命名)
1.氧化-还原酶: 主要包括脱氢酶(dehydrogenase)、氧化酶(Oxidase)、
过氧化物酶、氧合酶、细胞色素氧化酶等。
(NAD+等辅酶再生困难,
费用高,因此应用受限)
2.转移酶:转移酶催化基团转移反应,即将一个底物分子的基团或原
子转移到另一底物分子上,包括酮醛基转移酶、酰基转移酶、糖苷基转
移酶、含氮基转移酶等。
(常用辅酶VB6)
3.水解酶:水解酶催化底物的加水分解反应,主要包括淀粉酶、蛋白
酶、核酸酶、脂肪(酯)酶、糖苷酶等,水解酶一般不需辅酶。
4.裂合酶:裂合酶催化从底物分子中移去一个基团或原子形成双键的
反应及其逆反应。
主要包括醛缩酶、水化酶及脱氨酶等。
5.异构酶:异构酶催化各种同分异构体的相互转化,即底物分子内基
团或原子的重排过程,外消旋、差向异构、顺反异构等。
(可遇不可
求)
6.连接酶或合成酶:催化C-O键(与蛋白质合成有关)、C-S键(与脂肪酸
合成有关)、C-C键和磷酸酯键的形成反应;特点是需要ATP等高能磷酸
酯作为结合能源,有的还需金属离子辅助因子。
7.核酶:核酶是唯一的非蛋白酶。
它是一类特殊的RNA,能够催化
RNA分子中的磷酸酯键的水解及其逆反应。
二、酶的分类
1.根据结构特点分类
| a.单体酶
|b.寡聚酶:多亚基,多为调节酶变构酶。
|c.多酶体系 | c1.多酶复合体:多个蛋白,如醇脱氢酶,丙酮酸脱氢酶。
功能酶:一些多酶体系在进化过程中由于基因的融合,形成由一条多肽链组成却具有多种不同催化功能的酶。
酶) b1.酶蛋白
辅助因子:辅酶,辅基,金属离子。
辅因子:酶的非蛋白质部分,可为无机离子也可为有机化合
物。
辅酶:有机辅因子与酶蛋白结合松散即为辅酶。
(e.g.
NAD+,NADP+,CoQ,CoA,生物素,地高辛,吡哆醛,叶酸)
辅基:有机辅因子与酶蛋白结合紧密即为辅基。
(e.g. FMN,
FAD,铁卟啉)
结合酶中的金属离子作为辅助因子有多方面功能,它们可能是
酶活性中心的组成成分,也可能通过稳定酶分子构象或作为桥
梁使酶与底物相连接发挥作用。
(e.g. 锌、铁、镁、锰)
大多数辅酶为核苷酸和维生素或它们的衍生物。
除水解酶和连接酶(只需要金属离子)外,其它酶都需要特定的辅酶。
三、酶的结构特点
a.结合部位(羟基,氨基,羧基,酰胺键)
b.催化部位
c.调节部位
活性中心:结合部位+催化部位。
直接与底物结合,并和酶催化作用直接有关的区域叫酶的活性中心(active center)或活性部位(active site)。
必需基团:参与构成酶活性中心和维持酶特定构象所必需的基团为酶的必需基团。