(8min讲稿)水力喷砂压裂技术研究与应用0209
- 格式:ppt
- 大小:1.99 MB
- 文档页数:28
水力喷射压裂技术在水平井中的应用探讨【摘要】水力喷射压裂工艺参数主要包括油管排量、环空排量、前置液量、顶替液量、最高砂比控制和环空压力控制,其中,精确控制环空压力是水力喷射压裂关键技术之一。
本文将应用基本方法,介绍如何优化设计水力喷射压裂工艺参数,最终给出设计实例。
【关键词】水力喷射压裂水平井工艺参数目前,各油气田储层物性逐步变差,随着开采的深入,储量的有效动用越来越难。
较为成熟的储层分段压裂改造技术是封隔器分段压裂,但封隔器分段压裂时存在固井问题、封隔器失效、后期管柱不能上提等缺点。
在此背景下,水力喷射分段压裂技术得到了大力发展和推广运用。
自中国首次水力喷射压裂试验成功以来,短短的五年间,水力喷砂射孔与分段压裂联作技术已在中国大庆油田、四川气田、中原油田等8个油气田进行了现场应用。
多数应用于水平井分段压裂,逐步成为中国水平井压裂新工艺之一。
1 水力喷射压裂工艺参数设计方法1.1 喷嘴参数优化合理选择喷嘴直径和喷嘴个数是前提条件。
如果选择小直径、个数少的喷嘴组合,那么施工排量将受限制;如果选择小直径、个数多的喷嘴组合,那么水力喷射压裂工具成本将会剧增:如果选择大直径、个数多的喷嘴组合,那么对地面泵功率要求较高。
因此,需要综合考虑施工排量要求,加砂量和喷嘴耐磨性等因素才能最终确定喷嘴直径及个数。
优选原则有三:(1)保证水力射孔穿深的情况下喷嘴压降最低,实践证明,保持射流速度在200~250m/s才能达到良好的射孔效果;(2)保证油管要求的施工排量;(3)满足加砂规模,降低单只喷嘴的磨损率。
1.2 确定喷砂射孔参数喷砂射孔参数包括磨料类型、射孔砂浓度、喷嘴压降、喷砂射孔时间等。
射孔液一般选择基液,磨料可选20~40目天然石英砂或陶粒,磨料最佳浓度值(体积浓度)为6%~8%,喷砂射孔时间控制在15~20min为宜。
根据油管排量和喷砂射孔时间就可以得出所需的射孔液量,然后确定磨料体积浓度,即可计算得到所需的磨料体积。
水力喷射压裂技术研究与应用1. 引言1.1 研究背景水力喷射压裂技术是一种在油田开发中广泛应用的新型技术,它通过高压液体射流作用于裂隙岩石,从而使岩石发生裂缝并增加渗透性,有利于油气的产出。
随着油气资源开采难度的增加,传统的压裂技术已经不能满足对高效、高产的需求,水力喷射压裂技术应运而生。
研究背景是水力喷射压裂技术在油田开发中的应用历史较短,相关研究相对较少,而且存在一些问题和挑战。
目前对水力喷射压裂技术的理论研究还不够深入,工程实践中存在一定的技术难点,如流体动力学特性、裂缝扩展规律等方面的研究仍需加强。
由于水力喷射压裂技术在油田开发中具有重要的应用价值,因此对其进行深入研究具有积极意义。
本文将对水力喷射压裂技术的原理、工艺流程、应用案例以及未来发展趋势进行探讨,旨在为该技术的进一步应用提供理论参考和实践指导。
1.2 研究意义研究水力喷射压裂技术的意义在于解决油气田开采中存在的一系列挑战和问题。
水力喷射压裂技术可以提高油气井的产能和采收率,加快油气的开采速度,从而提高油气田的经济效益。
水力喷射压裂技术还可以降低油井的产能下降速度,延长油气田的产出周期,延长油井的寿命。
水力喷射压裂技术的研究和应用不仅可以提高单井生产能力,还可以改善整个油气田的开发效果,为油气资源的高效开发和利用提供技术支持和保障。
深入研究水力喷射压裂技术的原理和工艺,探索其在油气田开采中的应用范围和效果,具有重要的实际意义和推广价值。
1.3 研究目的研究目的是为了深入了解水力喷射压裂技术在地下岩石中的应用及效果,为油气田的开发提供技术支持和指导。
通过研究水力喷射压裂技术的原理和工艺流程,探讨其在不同地质条件下的适用性和优势,为进一步优化和完善该技术提供参考。
通过分析水力喷射压裂技术的应用案例和发展趋势,可以为相关领域的研究人员和工程师提供实际操作的指导和经验分享,推动水力喷射压裂技术的进一步应用和推广。
最终目的是为了推动油气勘探开发领域的技术创新和发展,提高油气勘探开发效率和产量,促进能源行业的持续发展和进步。
水力喷射定点压裂改造技术研究与应用水力喷砂压裂技术原理:射流在喷射通道中形成增压。
环空中泵入流体增加环空压力,喷射流体增压和环空压力的叠加超过破裂压力压开地层。
水力喷砂射孔参数设计优化1、喷嘴选择:要具有良好的耐磨性和较高的流量系数。
2、压力、流速根据水力学的动量定律,当喷嘴的截面一定时,射流速度与压力成正比。
试验证明,当通过喷嘴的流速保持在120米/秒、工作压力12MPa以上时,可以取得较好的切割效能。
3、喷射时间在一定的工作压力下,当射流达到一定深度后,继续延长喷射时间是无意义的。
喷射时间一般在15-20分钟。
4、含砂浓度:含砂量越高,切割效能越好。
但是,过多的含砂量容易引起砂堵,并会在途中互相碰撞,降低速度,影响喷射效果。
确定砂浓度120 kg/m3。
5、砂粒直径砂粒直径越大,质量越大,冲击力就越大。
一般讲,砂粒直径取喷嘴直径的1/6为最佳,确定选用40-70目和20-40目的石英砂或陶粒均适用。
6、围压:射孔深度随着围压的增大成线性递减。
(三)水力喷砂压裂工艺步骤1、洗井,下喷射工具到预定位置,进行水力喷砂射孔。
2、泵入前置液,环空迅速增压产生裂缝,排量增加到设计压裂排量,进入主压裂施工程序,施工结束。
3、关井、放喷、压井上提油管到上一个压裂的位置。
4、重复以上步骤,至整个井段压裂结束。
创新点:创新点一:设计优化水力喷砂射孔所需的流速、最佳喷射时间、喷砂液浓度、砂粒直径等参数。
创新点二:利用水力喷砂射孔定点压裂工艺技术,不用机械封隔一趟管柱实现多段改造。
压裂排量:考虑压裂液摩阻、喷嘴的节流压差、裂缝延伸压力、喷射工具强度、套管强度、压裂限压等。
创新点三:水力喷射压裂管柱结构设计,实现多段压裂,又能解决砂堵后的反洗问题。
管柱结构:引鞋+筛管+单流阀+短节+喷枪+油管关键技术:应用了高耐磨喷嘴喷嘴需承受高压和高速工作液的冲蚀,容易导致喷嘴变形、破损。
要求喷嘴具有高耐磨性,是保证工艺成功的关键。
油气开采中的水力压裂技术研究及应用水力压裂技术,是一种利用水或其他压缩介质对岩层进行注入并形成裂缝,从而使地下气体、原油等资源能够顺利流出地面的技术。
自二十世纪七十年代进入人们的视野以来,水力压裂技术在国内外的油气开采中得到越来越广泛的应用,成为一项极具前景并备受关注的技术手段。
那么,为何水力压裂技术能够在油气开采中如此受到大家的欢迎和认可呢?今天,我们就来一探究竟。
一、水力压裂技术的优势1、适用范围广:水力压裂技术能够适应各种不同类型的岩层,包括致密砂岩、页岩、煤层气等。
由于能够从地下深处提取出可用资源,因此水力压裂技术在能源领域的应用广泛,被誉为能源产业的一员。
2、提高了油气开采效率:传统的油气开采方式效率低下,只能提取部分可用资源,而水力压裂技术则可以把地下被困住的资源都释放出来。
通过注入高压流体,可以使岩层产生裂缝,增加储层的通透性,提高了油气的开采率。
一项研究表明,美国采用水力压裂技术,每天可获得约五百万桶的油和天然气,为该国提供了重要的能源支撑。
3、减少了环境污染:水力压裂技术相对于传统的油气开采方式,可以让气体和原油更直接地流到地面,减少了可能产生的地下难以发现的泄漏和污染。
虽然水力压裂技术本身也存在一些环境问题,如地震风险等,但在恰当的条件下进行,它能够帮助减少对环境的负面影响。
二、水力压裂技术的具体操作过程在了解水力压裂技术优势的基础上,我们深入探究一下它是如何操作的。
1、注水管具备渐进性:从地面通过专门的管道将水流注入到地下裂隙中,使岩层开始渗漏。
2、压裂液的制备工艺:压裂液通常由水、沙子、粘土和化学添加剂组成,其中沙子是为了防止岩层过度裂开,化学添加剂则可以帮助减缓水的黏度并使粘土更容易与岩石结合。
还有其他的添加剂用于抑制气体溢出和防止水垢等问题。
3、添加化学物质:为了使压裂液更加适合与岩石结合,添加剂中常使用丙烯酸类物质来填补裂隙。
然后在岩层中注入高压止水措施来增加其中心腔的压力。
水力喷射压裂技术推广与应用摘要:现阶段水平井(特别是长裸眼水平井)的压裂工艺欠缺,并且现有常规压裂方式已经逐渐不能满足油田压裂增产任务,对老油田改造增产任务产生较大的制约。
在这种情况下,2010年,采油四厂积极同中国石油大学以及各相关科研单位结合,引进适用于水平井以及各种井况复杂井的水力喷砂射孔压裂技术并在油田推广应用。
2010年成功将水力喷射压裂技术应用于文南油田油井压裂9井次,取得良好的经济及社会效益。
关键词:水力喷砂射孔;水力压裂;分层压裂;水平井;特殊井况随着油田开发时间增长,井下技术状况恶化,现有几种常规压裂方式已经不能完全满足油田压裂增产的任务,并且现阶段水平井(特别是长裸眼水平井)的压裂工艺欠缺,对老油田改造增产任务产生较大的制约。
在这种情况下,2010年,采油四厂积极同中国石油大学以及各相关科研单位结合,引进水力喷砂射孔压裂技术并在油田推广应用。
水力喷射压裂是集射孔、压裂、隔离一体化的增产措施,经过专用喷射工具产生高速流体穿透套管、岩石,形成孔眼,孔眼底部流体压力增高,超破裂压力起裂,造出单一裂缝。
该技术具有一次管柱可连续进行多段压裂,不需机械设备即可起封隔作用,施工程序简单、施工周期短、造缝位置准确、作业成本低等特点,在低渗透、水平井、老油田改造和分层作业方面具有极强的适用性。
2010年成功将水力喷射压裂技术应用于两口水平井W88-P1、W138-P1新投压裂,解决套变问题井压裂2口W43-9、W269-13,应用于4寸套小套管完井压裂1口W33-419H ,解决套损井无法卡封分层压裂应用1口井W33-177,解决固井质量差井压裂问题1口W72-426,成功解决特殊井压裂问题并取得良好增产效果及社会经济效益。
研究(推广)内容水力喷射压裂工艺是集射孔、压裂、隔离一体化的新型增产改造技术,适用于低渗透油藏直井、水平井的增产改造,是低渗透油藏压裂增产的一种有效方法。
根据伯努利(Bernoulli)方程原理,将压能转变为动能,射流增压与环空压力叠加超过破裂压力并维持裂缝延伸。
水力喷射压裂技术研究与应用引言水力喷射压裂技术是一种通过高压水将岩石破碎的技术,广泛应用于油气开采、地下水开采和岩层改造等领域。
随着我国石油、天然气资源勘探开发深入,水力喷射压裂技术的研究和应用也越来越受到重视。
本文将介绍水力喷射压裂技术的研究现状和应用前景,探讨其在油田开发中的重要作用。
一、水力喷射压裂技术概述水力喷射压裂技术是一种将水以极高的压力注入地层,通过水的冲击力使岩石破裂,从而增加地层渗透性的技术。
它通过高压水射流对地层进行破碎,增加油气流体的渗流能力,从而提高油气产量。
与传统的机械压裂技术相比,水力喷射压裂技术不需要大型设备和复杂的施工流程,施工成本低、效率高,对地层破坏小,有利于环境保护。
水力喷射压裂技术通常包括以下几个步骤:首先是选取合适的压裂液,通常使用水或液体二氧化碳;其次是确定压裂参数,包括压裂液的流量、压力和注入时间等;然后是进行压裂过程监测,通过监测岩石中的应力变化和裂缝扩展情况,以及岩石孔隙度和渗透率的变化情况;最后是对压裂效果进行评估,包括油气产量的变化、地层渗透性的增加等。
二、水力喷射压裂技术的研究现状1. 技术原理研究水力喷射压裂技术的研究主要包括压裂液的选择、压裂参数的确定、岩石破裂机理的研究等方面。
近年来,随着地质勘探和工程技术的进步,对压裂液的研究逐渐深入,不仅在稳定性、黏度、密度等方面进行了优化,还研究了特殊条件下的压裂液配方。
对压裂参数的确定也有了更加准确和系统的研究,通过对地层岩石物理力学性质的研究,确定最佳的压裂参数。
岩石破裂机理的研究也为水力喷射压裂技术提供了理论支持,为进一步提高压裂效果提供了依据。
2. 设备技术研究水力喷射压裂技术的研究还包括相应的设备技术研究。
目前,主要涉及高压水泵、压裂车、压裂管道等设备的研发和改进。
高压水泵是水力喷射压裂技术中最关键的设备之一,其性能的稳定性和耐用性对技术的应用起到了至关重要的作用。
压裂车和压裂管道的设计和制造也决定了施工的高效性和安全性。
水力喷射分段压裂技术研究技术背景:水平井低产主要归因于储层低渗、非均质性,近井污染或表皮损害以及无效的改造技术。
传统水力压裂应用于水平井改造增产效果并不理想,经常最多产生两个主要裂缝区,而且位置也不确定。
许多高产段仍然没被改造而维持着表皮损害。
水力喷射压裂技术就是最近引入的可代替传统压裂工艺的有效方法。
水力喷射压裂工艺技术是近年石油工程领域的新技术,它将水力喷射射孔和水力压裂工艺合为一体,且自身具有独特的定位性,能够快速准确的进行多层压裂而不用机械密封装置。
该技术在国外水平井已应用于几百口井,在一些低压、低产、低渗、多薄互层的油气层压裂改造中取得了较好的效果。
水力喷射压裂技术原理:水力喷射压裂技术结合了水力射孔和水力压裂的新型增产工艺。
该工艺由三个过程共同完成,水力喷砂射孔、水力压裂(通过普通油管或钻杆或连续油管)以及环空挤压(通过另外一个泵)。
通过安装在施工管柱上的水力喷射工具,利用水击作用在地层形成一个(或多个)喷射孔道,从而在近井地带产生微裂缝,裂缝产生后环空增加一定压力使产生的微裂缝得以延伸,实现水力喷射压裂(见图1)。
该技术基于伯努力方程:方程表明流体束中的能量维持常量,虽然实际上摩擦缓慢消耗能量使其转化为热能(但这个简化方程不包含温度因素)。
由方程可知流体束的速度变化引起压力反向变化。
喷嘴出口处速度最高压力就最低,随着流体不断深入孔道速度逐渐减小,压力不断升高,到孔道端处速度达到最低压力最高。
常规造缝方法需要对整个井筒加压,大多数情况下观察到的破裂压力比裂缝扩展压力要大得多,而且井内的每个裂缝都必须克服该压力。
水力喷射压裂通过喷射流体在孔道内动能到压能的转换利用喷射滞止压力破岩从而在喷射点处产生微裂缝。
由于能量集中在孔道端处,井筒不受破裂压力的影响,从而消除了压力曲线中地层破裂时的压力峰值(见图2),并且近井筒扭曲问题很少出现。
水力喷射裂缝一旦形成,由于喷嘴出口周围流体速度最高,其压力就最低,故流体会自动泵入裂缝而不会流到其它地方。