聚羧酸类高性能减水剂的合成及复配--
- 格式:ppt
- 大小:198.50 KB
- 文档页数:32
浅谈聚羧酸系高效减水剂的作用机理及合成工艺近几十年来,我国的混凝土工程技术取得了很大进步,高性能混凝土、自密实混凝土的应用越来越广泛,因此,对高效减水剂的要求也越来越高。
聚羧酸系高效减水剂是近几年发展的新型高效减水剂,其主要成分为聚羧酸盐或脂的聚合物,其分散能力强,减水率高,对水泥的适应性好,将是今后高效减水剂研究和发展的重点。
研究开发新型的聚羧酸系减水剂受到国内外广泛关注,代表了高效减水剂的主要发展方向。
1、聚羧酸系高效减水剂的作用机理聚羧酸系减水剂由于其优异性能而引起业内广泛的关注。
为了有效开发这一类型的减水剂,对其减水机理的研究非常重要。
减水剂分散减水机理主要包括以下几个方面。
1.1水化膜润滑作用。
聚羧酸减水剂由于分子结构中存在具有亲水性的极性基,可使水泥颗粒表面形成一层具有一定机械强度的溶剂化水膜。
水化膜的形成可破坏水泥颗粒的絮凝结构,释放包裹于其中的拌合水,使水泥颗粒充分分散,并提高了水泥颗粒表面的润湿性,同时对水泥颗粒及骨料颗粒的相对运动具有润滑作用,所以在宏观上表现为新拌混凝土流动性增大,和易性好。
1.2静电斥力作用。
水泥颗粒的稳定性主要由静电斥力和范德华引力的平衡来决定。
减水剂加入到新拌混凝土中,其中的负离子就会在水泥粒子的正电荷的作用下定向吸附在水泥颗粒表面,形成扩散双电层的离子分布,使得水泥颗粒表面带上电性相同的电荷,产生静电斥力,使水泥颗粒絮凝结构解体,颗粒相互分散,释放出包裹于絮团中的自由水,从而有效地增大拌合物的流动性。
1.3空间位阻作用。
一般认为所有的离子聚合物都会引起静电斥力和空间位阻斥力两种作用力,聚羧酸类减水剂吸附在水泥颗粒表面,虽然使水泥颗粒的负电位降低较小,静电斥力较小,但是由于其主链与水泥颗粒表面相连,支链则延伸进入液相形成较厚的聚合物分子吸附层,从而具有较大的空间位阻斥力,所以在掺量较小的情况下便对水泥颗粒具有显著的分散作用。
1.4引气隔离“滚珠”作用。
浅谈聚羧酸高性能减水剂的合成及复配技术综述本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要使用本文档,请点击下载按钮下载本文档(有偿下载),另外祝您生活愉快,工作顺利,万事如意!0 前言聚羧酸高性能减水剂是应用于水泥混凝土中的一种水泥分散剂,早期开发的产品是以主链为甲基丙烯酸,侧链为羧酸基团和MPEG(Methoxy polyethylene glycol)的聚酯型结构,目前多为主链为聚合丙烯酸和侧链为聚醚Allyl alcoholpolyethylene glycol 的聚醚型结构,聚羧酸减水剂是具有一定长度和数量的亲水性长侧链及带有多样性强极性活性基团主链组成的特殊分子结构表面活性剂。
聚羧酸减水剂产品在润湿环境下,其多个侧链支撑的向外伸展的梳齿结构为水泥粒子的进一步分散提供了充分的空间排列效应,能使水泥分散能力和保持的时间区别于其他类型的减水剂,从而满足混凝土施工流动性及其保持时间。
聚羧酸减水剂的结构多样化使得此类产品的开发和发展更具有意义,工程师可以通过合成技术的“分子设计”方法,改变聚羧酸高效减水剂的梳形结构、主链组成,适当变化侧链的密度与长度,在主链上引入改性基团调整或改变分子结构,而获得适用于不同需求的聚羧酸产品,实现产品的功能化和更佳的适应性。
聚羧酸减水剂产品除了母液合成技术中“分子设计”方法外,也通过添加缓凝剂、引气剂、消泡剂、增稠剂、抗泥剂等小料的方法,使其适应不同季节、不同材料和配合比的混凝土施工需要,最终获得性能优异的复合型高效减水剂。
对于大中型的聚羧酸厂家,从聚羧酸合成技术入手研制混凝土所需要的优质聚羧酸减水剂、获得不同类型的功能型母液是必须的选择,对于复配为主的聚羧酸减水剂应用型小厂,应该能够掌握母液间的复配及辅助小料的物理性复配,由母液特点和小料的物理性复配来解决技术问题。
1 聚羧酸高性能减水剂的合成聚羧酸减水剂产品于2005 年前后陆续投放市场之后,经历了早期的APEG 聚醚类、酯类产品到甲基烯基聚醚的更新,目前,APEG 聚醚类、酯类产品几乎已退出了市场。
聚羧酸盐类高效减水剂的原料与合成工艺本文介绍目前国外聚羧酸系高效减水剂合成的主要三种方法,供大家参考,如果需要进一步合作请与本网联系。
(一)可聚合单体直接共聚这种合成方法一般首先需制备具有聚合活性的大单体,如甲氧基聚乙二醇甲基丙烯酸酯,然后将一定配比的单体混合在一起直接采用溶液聚合而得成品。
这种合成工艺的关键在于活性大单体的合成,中间需经比较繁琐的分离纯化过程,成本较高。
日本采用短链甲氧基聚乙二醇甲基丙烯酸酯、长链甲氧基聚乙二醇甲基丙烯酸酯、甲基丙烯酸三种单体直接共聚合成了一种坍落度保持性好的商品混凝土外加剂。
其典型的合成示例如下:在装有温度计、搅拌器、滴液漏斗、N2导人管和回流冷凝管的玻璃反应容器中,装入500份水(质量份,下同),搅拌下通N2除氧,在N2气保护下加热到和摄氏80度,接着在4小时内滴加混合了250份短链甲氧基聚乙二醇甲基丙烯酸酯(EO加成摩尔数为4个)、50份长链甲氧基聚乙二醇甲基丙烯酸酯(EO加成摩尔数为23个)、200份甲基丙烯酸、150份水和13.5份链转移剂3-硫代乳酸的单体水溶液以及40份10%过硫酸按水溶液。
滴加完毕后,再在1h内滴加10份10%过硫酸铰水溶液并保温1h,得到重均相对分子质量为15000的聚合物水溶液为最终成品。
(二)聚合后功能化法该方法主要利用现有聚合物进行改性,通常采用已知分子量的聚羧酸,在催化剂的作用下与聚醚在较高温度下通过酯化反应进行接技,形成接技共聚物。
这种方法受现成的聚羧酸产品种类和规格的限制,调整组成和分子量比较困难。
此外,制备过程中聚羧酸和聚醚的相容性不好,酯化实际操作困难,伴随酯化的不断进行,水分不断逸出,也易出现相分离现象。
典型合成工艺:以烷氧基胺H2N(BO)—R为反应物与聚授酸接技出(BO代表氧化烯基团,n为整数,R为C1~C4烷基),利用聚羧酸在烷氧基胺中的可溶性,使酷亚胺化进行得比较彻底。
反应时,胺反应物加量一般为—COOH摩尔数的10%~20%。
聚羧酸类减水剂的制备及性能张赐容;黄易云;宁平【摘要】通过采用聚乙二醇单甲醚和丙烯酸在甲基苯磺酸的催化作用下合成得大分子单体聚乙二醇单甲基丙烯酸酯,再将大分子单体与丙烯酸、烯丙基磺酸盐按一定的摩尔比进行聚合,得到聚羧酸系高效减水剂。
研究了单体的不同比例对高效减水剂性能的影响;并将聚羧酸系高效减水剂在高强混凝土中的应用进行了测试和探讨。
结果表明:以聚乙二醇单甲醚、丙烯酸、烯丙基磺酸盐等为原材料合成聚羧酸系减水剂对水泥具有十分优越的分散性和分散稳定性。
在实验中选用了不同的阻聚剂,阻聚剂的品种及用量对酯化反应有较大的影响。
聚羧酸系高效减水剂中添加消泡剂可以降低混凝土的含气量,提高混凝土的强度。
%Poly-carboxyl superplasticizer was prepared by utilizing acrylic acid,sodium allyl sulfonate and PEG-M acrylic ester.The influences of different monomer ratios and reaction conditions on the superplasticizer performance were studied.The superplasticizer was used in high performance concrete,and had excellent water reduce ability in concrete even at low dosage and the strength of the concrete was also improved.Experiments showed that PEG-M,acrylic acid,and sodium allyl sulfonate used as raw materials in preparing poly-carboxyl superplasticizer which was a very good and stable disperser in cement.Different monomers ratio was used in the preparation process of superplasticizer.Carboxyl and sulfonic group content in superplasticizer had a larger influence on the cementhydration.Hydroquinone and phenothiazine as inhibitors were used in the esterification,and the experiments showed that the phenothiazine hadbetter inhibit ability,and the color of finish good was also lighter than that of using hydroquinone.Defoamer was used in poly-carboxyl superplasticizer to reduce air existing in the concrete and to improve the strength of the concrete.【期刊名称】《广州化工》【年(卷),期】2012(040)024【总页数】4页(P75-77,90)【关键词】聚羧酸;高效减水剂;高性能混凝土【作者】张赐容;黄易云;宁平【作者单位】广州从化鳌头凌丰树脂加工厂,广东从化510900;华南理工大学材料科学与工程学院,广东广州510641;华南理工大学材料科学与工程学院,广东广州510641【正文语种】中文【中图分类】TU528纵观我国50多年混凝土外加剂的发展历史,第一代木质素减水剂与第二代萘系减水剂对混凝土综合性能的提高、生产施工方式的改善起到了巨大的作用[1]。
聚羧酸减水剂生产工艺一、引言一般认为,减水剂的发展分为三个阶段:以木质素磺酸钙为代表的第一代普通减水剂阶段;以萘系为代表的第二代高效减水剂阶段;以聚羧酸系为代表的第三代高性能减水剂阶段。
与传统的减水剂相比,聚羧酸系高性能减水剂有很多特点:1.在合成工艺上,聚羧酸系高性能减水剂采用不饱和单体共聚合成而不是传统减水剂使用的缩聚合成,因此该类减水剂的合成原料非常之多,通常有聚乙二醇、(甲基)丙烯酸、烯丙醇聚氧乙烯醚等。
2.在分子结构上,聚羧酸系高性能减水剂的分子结构是线形梳状结构,而不是传统减水剂单一的线形结构。
该类减水剂主链上聚合有多种不同的活性基团,如羧酸基团(—COOH)、羟基基团(—OH)、磺酸基(—SO3Na)等,可以产生静电斥力效应;其侧链带有亲水性的非极性活性基团,具有较高的空间位阻效应。
由于其广泛的原料来源,独特的分子结构,故而具有前两代减水剂不可比拟的优点,加上在合成过程中不使用甲醛,属绿色环保产品,因此,已成为混凝土外加剂研究领域的重点和热点之一。
但是,也许是涉及技术秘密,目前该领域的研究成果报道较少,尤其是聚羧酸系高性能减水剂的合成工艺。
因此,本文在此予以简介之。
二、聚羧酸系高性能减水剂合成工艺简介。
聚羧酸系高性能减水剂目前主要存在聚酯类和聚醚类两大主流产品。
聚酯类:包括酯化和聚合两个过程。
聚醚类:只有聚合一个过程。
(一)、聚酯类聚羧酸系高性能减水剂合成工艺。
1、合成工艺简图冷凝器去离子水↓↓聚乙二醇过硫酸铵↓→→→→→→酯化→→→→→计量槽→→聚合中和成甲基丙烯酸→→→→→→→→→→反应→→→→→计量槽→→反应反应品↑↑↑↑去离子水氢氧化钠2、反应过程如下:(1)、酯化反应(制备大单体):计量聚乙二醇1200料3960kg,将其在水浴中溶化,加入反应釜内,同时加入甲基丙烯酸1140kg,以及小料1份(对苯二酚:5.28kg、吩噻嗪:1.06kg),升温至90℃,加入浓硫酸69.3kg,继续升温至120℃,保持4.5小时,后充氮气2小时,(6㎡/时,每30分钟充1瓶,共4瓶),反应完成,得到减水剂中间大分子单体聚乙二醇单甲基丙烯酸酯和水。
混凝土外加剂合成技术复配技术的工程应用在众多高性能减水剂中,具有梳形分子构造的聚羧酸系减水剂由于其具有减水率高,混凝土坍落度经时损失小,掺量低。
等优点,已成为国内外外加剂研究与开发的热点[1~3]。
本文在总结现有聚羧酸系减水剂合成方法的根底上,采用了一种新的合成途径,试验合成了一代号为NKY的聚羧酸系减水剂。
1 现有的合成方法根据现在公开报道的文献,可以把聚羧酸减水剂的合成方法简单地归结为两类:一是先缩合后共聚;二是先共聚后缩合。
1.1 先缩合后共聚所谓先缩合后聚合就是先将脂肪族羧酸单体,通常是丙烯酸或甲基丙烯酸单体,与聚乙二醇醚进展缩合反响,在聚醚上引入活性双键,缩合成分子量在200至3000之间的活性大单体,然后由该大单体与各种羧酸单体共聚而得。
T.Hirate等人网采用不同链长的甲氧基聚乙二醇醚与甲墓丙烯酸缩合,再由该大单体与甲基丙烯酸共聚而得一混凝土坍落度保持性很好的外加剂。
M.Ki-noshitam等人先合成了甲基封端的聚氧乙烯丙烯酸酯,然后与丙烯酸钠、烯丙基磺酸钠在水溶液中共聚,制得水溶性共聚物,作为混凝土外加剂使用时,只需添加0.01%—0.2%,便可改善混凝土的和易性,提高了混凝土的强度。
清华大学的李崇智[3]那么用过量的丙烯酸与不同分子量的聚乙二醇局部酯化,得到系列的聚乙二醇单丙烯酸酯,再与(甲基)丙烯酸及(甲基)丙烯磺酸钠共聚,所合成减水剂的水泥净浆流动度1h根本无变化。
华东理工大学包志军等的[6]合成方法如下:第一步在四口烧瓶中依次按配比参加聚乙二醇单甲醚、对苯二酚、对甲苯磺酸和甲基丙烯酸,加热搅拌,并升温至110~C,反响5h,得到大分子单体(MAMPEC);第二步同时滴加MAMPEG、丙烯酸和过硫酸铵水溶液经共聚反响后得成品,该产品在0.8%掺量,时的减水率达25.1%。
国内的研究者大多采用此种方法。
这种方法的优点是各官能团的摩尔比率可任意调节,分子设计多样性。
但缺点也是很多的,其一是功能性大分子单体的合成难度大,未形成商品化生产,如何保证双羟基的聚乙二醇只有一个羟基与丙烯酸发生酯化反响比拟困难,工艺复杂,控制不好那么会交联成网状高分子而失去流动性。
混凝土外加剂中聚羧酸盐减水剂的制备原理及作用机理聚羧酸盐高性能减水剂是由带有磺酸基、羧基、氨基以及含有聚氧乙烯侧链等的大分子化合物,在水溶液中,通过自由基共聚原理合成的具有梳型结构的高分子表面活性剂。
合成聚羧酸盐高性能减水剂所需的主要原料有:甲基丙烯酸、丙烯酸、丙烯酸乙酯、丙烯酸羟乙酯、烯丙基磺酸钠、甲基丙烯酸甲酯、2-丙烯酰胺基-2-甲基丙烯酸、甲氧基聚氧乙烯甲基丙烯酸酯、乙氧基聚乙二醇丙烯酸酯、烯丙基醚等,在聚合过程中可采用的引发剂为:过硫酸盐水性引发剂、过氧化苯甲酰、偶氮二异丁氰;链转移剂有:3-疏基丙酸、疏基乙酸、疏基乙醇以及异丙醇等。
虽然聚羧酸盐高性能减水剂是一种新型减水剂,具有许多突出的优点,但其作用机理目前仍尚未完全清楚,因此总结了以下一些常见观点,仅供参考:(1)聚羧酸类聚合物对水泥有较为显著的缓凝作用,主要由于羧基充当了缓凝成分,r-coo~与ca2+离子作用形成络合物,降低溶液中的ca2+离子浓度,延缓ca(oh)2形成结晶,减少c-h-s凝胶的形成,延缓了水泥水化。
(2)羧基(-cooh),羟基(-oh),胺基(-nh2),聚氧烷基(-o-r)n等与水亲和力强的极性集团主要通过吸附、分散、湿润、润滑等表面活性作用,对水泥颗粒提供分散和流动性能,并通过减少水泥颗粒间摩擦阻力,降低水泥颗粒与水界面的自由能来增加新拌商品混凝土的和易性。
同时聚羧酸类物质吸附在水泥颗粒表面,羧酸根离子使水泥颗粒带上负电荷,从而使水泥颗粒之间产生静电排斥作用并使水泥颗粒分散,导致抑制水泥浆体的凝聚倾向(dlvo理论),增大水泥颗粒与水的接触面积,使水泥充分水化。
在扩散水泥颗粒的过程中,放出凝聚体锁包围的游离水,改善了和易性,减少了拌水量。
(3)聚羧酸分子链的空间阻碍作用(即立体排斥)。
聚羧酸类物质份子吸附在水泥颗粒表面呈“梳型”,在凝胶材料的表面形成吸附层,聚合物分子吸附层相互接近交叉时,聚合物分子链之间产生物理的空间阻碍作用,防止水泥颗粒的凝聚,这是羧酸类减水剂具有比其他体系更强的分散能力的一个重要原因。