当前位置:文档之家› 基于LM35的温度测量电路

基于LM35的温度测量电路

基于LM35的温度测量电路
基于LM35的温度测量电路

基于LM35的温度测量系统

王景景

(青岛科技大学信息学院山东青岛266061)

本文介绍了一种温度传感器选用LM35、单片机选用AT89C52的温度测量系统。该系统的温度测量范围为0~99℃,可以精确到一位小数,可适用于工业场合及日常生活中。

1 系统结构

本测温系统由温度传感器电路、信号放大电路、A/D转换电路、单片机系统、温度显示系统构成。其基本工作原理:温度传感器电路将测量到的温度信号转换成电压信号输出到信号放大电路,与温度值对应的电压信号经放大后输出至A/D转换电路,把电压信号转换成数字量送给单片机系统,单片机系统根据显示需要对数字量进行处理,再送温度显示系统进行显示。

2 硬件电路设计

2.1 温度传感器电路

温度传感器采用的是NS公司生产的LM35,他具有很高的工作精度和较宽的线性工作范围,他的输出电压与摄氏温度线性成比例,

且无需外部校准或微调,可以提供±1/4℃的常用的室温精度。

LM35的输出电压与摄氏温度的线形关系可用下面公式表示,0℃时输出为0 V,每升高1℃,输出电压增加10 mV。其电源供应模式有单电源与正负双电源两种,其接法如图3与图4所示。正负双电源的供电模式可提供负温度的测量,单电源模式在25℃下电流约为50 mA,非常省电。本系统采用的是单电源模式。

2.2 信号放大电路

由于温度传感器LM35输出的电压范围为0~0.99 V,虽然该电压范围在A/D转换器的输入允许电压范围内,但该电压信号较弱,如果不进行放大直接进行A/D转换则会导致转换成的数字量太小、精度低。系统中选用通用型放大器μA741对LM35输出的电压信号进行幅度放大,还可对其进行阻抗匹配、波形变换、噪声抑制等处理。系统采取同相输入,电压放大倍数为5倍,电路图如图5所示。

2.3 A/D转换电路

A/D转换电路选用8位AD转换器ADC0809。ADC0809是CMOS单片型逐次逼近式A/D转换器,可处理8路模拟量输入,且有三态输出能力。图5中运算放大器的输出电压V,送入ADC0809的模拟通道IN0。单片机AT89C52控制ADC0809的开始转换、延时等待A/D转换结束以及读出转换好的8位数字量至单片机进行处理。

2.4 单片机系统

单片机选用的是ATMEL公司的AT89C52,主要完成对A/D转换电路的控制、对转换后的数字量的处理以及对显示模块的控制,并且为ADC0809提供工作时钟。同时AT89C52外接锁存器74LS373,对AT89C52的P0口的地址信号进行锁存。74LS373的Q2,Q1,Q0接ADC0809的C,B,A,实现对模拟通道的选择。AT89C52的晶振选择3 MHz,则其ALE引脚的输出频率为0.5 MHz,小于ADC0809的时钟频率最高值640 kHz,正好为其提供工作时钟。其具体连接电路如图2所示,单片机的晶振电路及复位电路较简单,图中未给出。

2.5 温度显示系统

该温度显示系统较为简单,由可编程并行输入输出芯片8255A的A,B,C端口外接3个8段LED显示器来实现。AT89C52的P2.6为8255提供片选信号,74LS373的Q7,Q6接8255的A1,A0,可得到8255的A,B,C及控制口的地址为BF3FH,BF7FH,BFBFH,BFFFH。AT89C52处理好的温度数据输出至8255,并由AT89C52对8255编程控制其A,B,C端口输出高电平或低电平,以便从8段LED显示器显示实际温度。8段LED显示器选用共阳极,8255的A,B,C端口与8段LED显示器之间接限流电阻,图2中只画出了PA口,PB,PC口的接法类似。

3 系统软件设计

系统的软件部分用51汇编语言编程,采用模块化结构,主要由A/D转换模块、单片机内部数据处理模块、温度显示模块等3部分构成,便于修改和维护。

3.1 A/D转换模块

根据测量系统要求不同以及单片机的忙闲程度,通常可采用3种软件编程方式:程序查询方式,延时方式和中断方式。本系统采用延时方式。延时程序实际上是无条件传送I/O方式,当向A/D转换器发出启动命令后,即进行软件延时,延时时间稍大于进行一次A/D转换所需要的时间,之后打开A/D转换器的输出缓冲器读数即为转换好的数字量。A/D转换时间为64个时钟周期,因为系统中ADC0809的工作时钟为500 kHz,故A/D转换时间为128 μs,延时时间可大致选择160μs。程序段如下:

为了使采样数据更稳定可靠,系统还采用了8次采样平均值的方法以消除干扰。

3.2 单片机内部数据处理模块

系统通过ADC0809转换的数字量是与实际温度成正比的数字量,但系统最后显示的是实际温度值,因此需要对数据进行处理再通过8255输出到LED显示。

设所测温度值为T,A/D转换后的数字量为X,则有:

VOUT=0.01 V/℃×T℃

VOUT为LM35的输出电压,即运放μA741的输入电压,μA741的输出电压用V1表示。因为μA741的放大倍数为5,则有:

V1=5×VOUT=0.05×T

根据系统设置,温度传感器输出电压0~5 V对应于转换后的数字量0~255,则有:0.05T/5=X/255

可以近似写为:0.05T/5=X/256

这样除以256可通过把被除数右移8位来实现,编程较简单。由此可以得出X和T的关系:

T=100×X/256

程序段如下:

3.3 温度显示模块

单片机处理好的温度数据通过8255的3个端口输出到3个LED上显示,8255的A,B,C口的工作方式均设置为方式0,输出。编程时只需分别从40H,41H,42H单元取数据送A,B,C口输出即可。

4 结语

该测温系统经过多次测试,工作稳定可靠,体积小、集成度高、灵敏度高、响应时间短、抗干扰能力强等特点。此外该系统成本低廉,器件均为常规元件,有很高的工程价值。如稍加改动,该系统可以很方便地扩展为集温度测量、控制为一体的产品,具有一定工程应用价值。如对该系统进一步扩展,还可以实现利用USB协议标准与PC机进行数据通信,能够把监测到的温度值保存到PC机中。

lm35温度传感器中文资料

温度传感器LM35

LM35 是由National Semiconductor 所生产的温度传感器,其输出电压与摄氏温标

呈线性关系,转换公式如式,0 时输出为0V,每升高1℃,输出电压增加10mV。

LM35 有多种不同封装型式,外观如图所示。在常温下,LM35 不需要额外的校准

处理即可达到±1/4℃的准确率。其电源供应模式有单电源与正负双电源两种,其接

脚如图所示,正负双电源的供电模式可提供负温度的量测;两种接法的静止电流-

温度关系如图所示,在静止温度中自热效应低(0.08℃),单电源模式在25℃下静止电流约50μA,工作电压较宽,可在4—20V的供电电压范围内正常工作非常省电。

TO-92封装引脚

图 SO-8 IC式封装引脚图

TO-46金属罐形封装引脚

图 TO-220 塑料封装引脚图

单电源模

正负双电源模式

供电电压35V到-0.2V

输出电压6V至-1.0V

输出电流10mA

指定工作温度范围

LM35A -55℃ to +150℃

LM35C, LM35CA -40℃ to +110℃

LM35D 0℃ to +100℃

封装形式与型号关系

TO-46金属罐形封装引脚图LM35H,LM35AH,LM35CH,LM35CAH,LM35DH TO-220 塑料封装引脚图LM35DT

TO-92封装引脚图LM35CZ,LM35CAZ LM35DZ

SO-8 IC式封装引脚图LM35DM

Electrical Characteristics电气特性(注 1, 6)

Parameter 参数

Conditions

条件LM35A LM35CA

Units

(Max.)

单位Typical

典型

Tested

Limit

测试极

限(注

4)

Design

Limit

设计极

限(注

5)

Typical

典型

Tested

Limit

测试

极限

(注4)

Design

Limit

设计极

限(注

5)

Accuracy 精度(注7 )TA=+25℃ ±0.2 ±0.5 -±0.2 ±0.5 -℃ TA=?10℃ ±0.3 --±0.3 -±1.0 ℃ TA=TMAX ±0.4 ±1.0 -±0.4 ±1.0 -℃ TA=TMIN ±0.4 ±1.0 -±0.4 -±1.5 ℃

Nonlinearity非线性(注

8)

TMIN≤TA≤TMAX ±0.18 -±0.35 ±0.15 -±0.3 ℃

Sensor Gain传感器增益(Average Slope)平均斜TMIN≤TA≤TMAX +10.0 +9.9, -+10.0 -+9.9

mV/℃ --+10.1 ---+10.1

Load Regulation 负载调节(注3) 0≤IL≤1mA TA=+25℃ ±0.4 ±1.0 - ±0.4 ±1.0 - mV/mA TMIN≤TA≤TMAX ±0.5 -

±3.0 ±0.5 -

±3.0 mV/mA

Line

Regulation 线路调整( 注3) TA=+25℃

±0.01 ±0.05

±0.01 ±0.05 -

mV/V

4V≤VS≤30V ±0.02 - ±0.1 ±0.02 ±0.1 mV/V Quiescent

Current 静态电流(注9)

VS=+5V, +25℃ 56 67 -

56

67 - μA VS=+5V 105

-

131 91 -

114 μA VS=+30V, +25℃ 56.2 68

56.2 68

-

μA

VS=+30V 105.5 133 91.5 -

116 μA

Change of Quiescent Current 变化静态电流 (注3) 4V≤VS≤30V,

+25℃

0.2

1.0 - 0.2

1.0 -

μA

4V≤VS≤30V 0.5 -

2.0 0.5 2.0 μA

Temperature Coefficient of Quiescent Current 静态电流/温度系数

-

+0.39 -

+0.5 +0.39 -

+0.5 μA/℃

Minimum Temperature for

Rated Accuracy 最低温度 额定精度

In circuit of

Figure 1,IL=0

+1.5 -

+2.0 +1.5 -

+2.0 ℃

Long Term Stability 长期稳定性

T J=TMAX,for 1000 hours

±0.08 -

- ±0.08 - - ℃

Electrical Characteristics 电气特性(注 1, 6)

Parameter 参数 Conditions 条件

LM35

LM35C, LM35D

Units (Max)单位

Typical 典型

Tested Limit 测试 极限 (注4) Design

Limit 设计 极限 (注5)

Typical 典型 Tested Limit 测试 极限 (注4) Design Limit 设计 极限 (注5)

Accuracy,精度 LM35, LM35C (注7)

TA=+25℃ ±0.4 ±1.0 - ±0.4 ±1.0 - ℃

TA=?10℃ ±0.5 - -

±0.5 - ±1.5 ℃ TA=TMAX ±0.8 ±1.5 -

±0.8 -

±1.5 ℃ TA=TMIN ±0.8 -

±1.5 ±0.8 -

±2.0 ℃

Accuracy, 精度 LM35D (注7) TA=+25℃ -

±0.6 ±1.5 -

TA=TMAX ±0.9 - ±2.0 ℃ TA=TMIN

±0.9 -

±2.0 ℃ Nonlinearity 非线性(注8) T MIN≤TA≤TMAX ±0.3 -

±0.5 ±0.2 -

±0.5 ℃ Sensor Gain 传感

器增益(Average Slope) 平均斜率

T MIN≤TA≤TMAX +10.0 +9.8, -

+10.0 - +9.8, mV/℃

-

+10.2 -

-

-

+10.2

Load Regulation 负载调节(注3) 0≤IL≤1mA TA=+25℃ ±0.4 ±2.0 -±0.4 ±2.0 -mV/mA T MIN≤TA≤TMAX ±0.5 -±5.0±0.5 -±5.0 mV/mA

Line Regulation 线路调整(注3) TA=+25℃ ±0.01 ±0.1 -±0.01 ±0.1 -mV/V 4V≤VS≤30V ±0.02 -±0.2 ±0.02 -±0.2 mV/V

Quiescent Current 静态电流(注9) VS=+5V, +25℃ 56 80 -56 80 -μA VS=+5V 105 -158 91 -138 μA VS=+30V, +25℃ 56.2 82 -56.2 82 -μA VS=+30V 105.5 -161 91.5 -141 μA

Change of Quiescent Current 变化静态电流(注3) 4V≤VS≤30V,

+25℃

0.2 2.0 -0.2 2.0 -μA 4V≤VS≤30V 0.5 - 3.0 0.5 - 3.0 μA

Temperature

Coefficient of

Quiescent

Current 静态电

流温度系数

-+0.39 -+0.7 +0.39 -+0.7 μA/℃ Minimum

Temperature for Rated Accuracy 最低温度额定精度In circuit of

Figure 1,IL=0

+1.5 -+2.0 +1.5 -+2.0 ℃

Long Term Stability 长期稳定性T J=TMAX, for

1000 hours

±0.08 --±0.08 --℃

注1: Unless otherwise 注d, these specifications apply: ?55℃≤TJ≤+150℃ for the LM35 and LM35A; ?40°≤TJ≤+110℃ for the LM35C and LM35CA; and

0°≤TJ≤+100℃ for the LM35D. VS=+5Vdc and ILOAD=50 μA, in the circuit of Figure 2. These specifications also apply from +2℃ to TMAX in the circuit of Figure 1. Specifications in boldface apply over the full rated temperature range.

注2:Thermal resistance of the TO-46 package is 400℃/W, junction to ambient, and 24℃/W junction to case. Thermal resistance of the TO-92 package is

180℃/W junction to ambi ent. Thermal resistance of the small outline molded package is 220℃/W junction to ambient. Thermal resistance of the TO-220 package

is 90℃/W junction to ambient. For additional thermal resistance information see table in the Applications section.

注3: Regulation is measured at constant junction temperature, using pulse testing with a low duty cycle. Changes in output due to heating effects can be

computed by multiplying the internal dissipation by the thermal resistance.

注4: Tested Limits are guaranteed and 100% tested in production.

注5: Design Limits are guaranteed (but not 100% production tested) over the indicated

temperature and supply voltage ranges. These limits are not used to

calculate outgoing quality levels.

注6: Specifications in boldface apply over the full rated temperature range.

注7:Accuracy is defined as the error between the output voltage and 10mv/℃ times the device’s case temperature, at specified conditions of voltage, current,

and temperature (expressed in ℃).

注8: Nonlinearity is defined as the deviation of the output-voltage-versus-temperature curve from the best-fit straight line, over the device’s rated temperature

range.

注9: Quiescent current is defined in the circuit of Figure 1.

注10: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating

the device beyond its rated operating conditions. See 注1.

注11: Human body model, 100 pF discharged through a 1.5kW resistor.

注12: See AN-450 “Surface Mounting Methods and Their Effect on Product Reliability” or the section titled “Surface Mount” found in a current National

Semiconductor Linear Data Book for other methods of soldering surface mount devices

单电源模

式电流-温度关系正负双电源模式

LM35 温度控制器应用电路图

两线远程温度传感器电路(接地传感器)

4-20 mA 电流源 (0℃ to +100℃)

温度数字转换器(串行输出)(128摄氏度满量程)

PT100温度传感器测量电路

PT100温度传感器测量电路 温度传感器PT100是一种稳定性和线性都比较好的铂丝热电阻传感器,可以工作在 -200℃ 至650℃ 的范围.本电路选择其工作在 -19℃ 至500℃ 范围。 整个电路分为两部分,一是传感器前置放大电路,一是单片机 A/D 转换和显示,控制,软件非线性校正等部分。 前置放大部分原理图如下: 工作原理: 传感器的接入非常简单,从系统的 5V 供电端仅仅通过一支 3K92 的电阻就连接到 PT100 了.这种接法通常会引起严重的非线性问题,但是.由于有了单片机的软件校正作为后盾,因此就简化了传感器的接入方式. 按照 PT100 的参数,其在0℃ 到500℃ 的区间内,电阻值为 100 至280.9Ω,我们按照其串联分压的揭发,使用公式:Vcc/(PT100+3K92)* PT100 = 输出电压(mV),可以计算出其在整百℃时的输出电压,见下面的表格:

单片机的 10 位 A/D 在满度量程下,最大显示为 1023 字,为了得到PT100 传感器输出电压在显示 500 字时的单片机 A/D 转换输入电压,必须对传感器的原始输出电压进行放大,计算公式为:(500/1023 * Vcc)/传感器两端电压( mV/℃ ) ,(Vcc=系统供电=5V),可以得到放大倍数为10.466 。 关于放大倍数的说明:有热心的用户朋友询问,按照 (500/1023 * Vcc)/传感器两端电压不能得到 10.466 的结果,而是得到 11.635的结果。实际上,500 个字的理想值是无法靠电路本身自然得到的,自然得到的数字仅仅为 450 个字,因此,公式中的500℃ 在实际计算时的取值是 450 而不是 500 。450/1023*5/(0.33442-0.12438)≈10.47 。其实,计算的方法有多种,关键是要按照传感器的mV/℃ 为依据而不是以被测温度值为依据,我们看看加上非线性校正系数:10.47*1.1117=11.639499 ,这样,热心朋友的计算结果就吻合了。 运算放大器分为两级,后级固定放大 5 倍(原理图中 12K/3K+1=5),前级放大为:10.465922/5=2.0931844 倍,为了防止调整时的元器件及其他偏差,使用了一只精密微调电位器对放大倍数进行细调,可以保证比较准确地调整到所需要的放大倍数(原理图中 10K/(8K2+Rw)+1)。

集成温度传感器LM35测量水温

《传感器技术》课程设计 课题:集成温度传感器测量水温 班级______________________ 学生姓名__________ 学号 指导教师________________________ 淮阴工学院电子与电气工程学院

2013年6月21日 集成温度传感器LM35测量水温 1.系统方案设计 1.1概述 如今,随着科学技术的发展,传感器的种类也日益增多,如AD公司生产的模拟电压输出 型的温度传感器TMP35/36/37,它主要应用于环境控制系统、过热保护、工业过程控制、火灾报警系统、电源系统监控、仪器散热风扇控制等。还有NATIONAISEMICONDUCT生产的与微处理器相结合的测温及温度控制、管理的温度测量控制器LM8Q它主要应用于个人计算机 及服务器的硬件及系统的温度监控、办公室设备、电子测试设备等。以及MAXINE司生产的PW风扇控制器及遥控温度传感器MAX1669它主要应用于CPU冷却控制。因此,测量外界的 温度也有很多种方法,然而,由于热敏电阻及其放大电路受到环境的影响,在不同的条件下 会出现不同的测温偏差;TMP35/36/37,LM80 MAX166这些传感器的造价又太高,在相同条 件下,由于测温精度、处理精度等多方面的因素,不同的通道也会出现不同的偏差,因此必 须采用一种灵活的修正方式,这便用到了电压型温度传感器LM35D它的线性好(10mV/C), 宽量程(0--100 C)高精度(+0.4 C ),低成本,而且采集到的是电压型信号,易于处理,使得电路简单实用。 采集到的微弱电压信号经过放大器OP07放大十倍后送入ADC0804的输入端,A/D转换 器(ADC0804将模拟信号转换为数字信号后传给AT89C51,该系统以AT89C51单片机为核 心,通过单片机编程可以实现高温(50C)、低温(10C)报警的控制,以及预置温度的控 制,然后经过P1 口将数字信号传送给74LS138译码器以及驱动器CD4511使LED八段数码管动态显示室温。经实验调试,用该方法对0--100 C范围的温度测量时,测量误差+0.4 C, 可靠性好、抗干扰性能强。采用MC& 51系列单片机作为核心监控器对外界温度进行测量。 这样,既可以降低对温度传感器和放大电路的要求,从而降低成本,又可以针对不同外部环 境或不同通道对温度显示及报警设定进行灵活修改。 1.2系统方案框图 根据课题设计要求可知该系统需要利用电压型温度传感器采集室温并产生10mv/C的电压信号,将放大后的信号送给转换器进行转换,通过单片机设定上下限报警温度并显示转 换后的室温,具体流程图如图2:

温度检测放大电路的设计

温度检测放大电路的设计设计任务 目录 第1章电路设计原理与实验电路 1.1设计任务及要求 1.2 温度检测放大电路的特点及其应用 1.3 设计方案 1.4 单元模块 1.4.1电桥电路 1.4.1.1传感器的选择 1.4.1.2参数的设定 1.4.2一级放大电路 1.4.3滤波电路 1.4.4次级放大电路 第2章电路板的制作及电路焊接与调试 2.1 电路板的制作 2.2 电路的安装 2.3 电路测试 心得与体会 鸣谢 附录

设计要求 (1)基本要求: ①设计放大电路,确定电路的电压放大倍数A,其意义是当温度传感器的电阻变化量△R=0时,电路的输出电压为0V;当△R变化最大时,电路的输出电压为5V。 ②放大电路输出电压的实际值与理论值的相对误差小于5%。 ③具有调零电路,即输入电压为零时,电路的输出电压也应为零。 (2)提高要求: ①为减少或消除外界干扰,电路应具有低通功能。 1.2 温度检测放大电路的特点及其应用 温度检测放大电路能实时检测环境等的温度,将温度的变化转换成电信号,从而送给其他电路,如显示电路,控制电路等。选择不同的温度传感器配上适当的放大电路可以使用与不同的环境,而且随着技术的提高,温度传感器的的品质大大提高,灵敏度更高,体积更加小型,而且价格还比较便宜。 温度检测放大电路是其他电路的信号来源,广泛应用于温度检测和自动控制等电路。 1.3 设计方案 电路原理方框图如图1所示:

电桥电路输出的信号非常微弱,经过初级放大电路的放大过后,提供给低通滤波器滤波,滤掉高次谐波的干扰信号,然后再经过一级放大电路的放大输出。 1.4 单元模块 1.4.1电桥电路的设计 电桥电路是用来把传感器的电阻、电容、电感变化转换为电压或电流。分为 直流电桥和交流电桥,交流电桥主要用于测量电容式传感器和电感式传感器的电容和电感的变化,直流电桥主要用于电阻式传感器,例如,热敏电阻、电位器等 。我们这里是用来是用热敏电阻来测量温度的变化,所以先用直流电桥。电桥还可以分为单臂电桥,半桥差动和全桥差动。全桥差动和板桥差动虽然输出信号与电源的影响减小,但增加了传感器的个数,为了节约成本,我们选择了单臂电桥。电桥电路如图2所示: 图中R5,R6,R7,R8和R21构成电桥电路,其中R21起的作用是,在传感器变化为零时,调节R21使电桥平衡,输出为零。假设 R5=R6=R7=R8=R,电桥输出 U R R U O . 41?= ;电桥的输出受电源的影响 很大,因此要求电源为稳定的电源,我们选择的电源电路如图3所示: 图中稳压管1N4733稳定的电压为5.1V ,再进过R2,R3的分压,使得运放的通向输入端的电压为2.55V ,运放及R4构成精密电源的输出缓冲级,使输出的电压更加精确稳定,从而减小了电源对电桥输出信号的影响。 1.4.1.1温度传感器的选择

温度检测电路

第1章绪论 1.1 引言 温度检测在自动控制系统电路设计中的使用是相当广泛的,系统往往需要针对控制系统内部以及外部环境的温度进行检测,并根据温度条件的变化进行必要的处理,如:补偿某些参数、实现某种控制和处理、进行超温告警等。因此,对所监控环境温度进行精确检测是非常必要的,尤其是一些对温度检测精度要求很高的控制系统更是如此。良好的设计可以准确的提取系统的真实温度,为系统的其他控制提供参考;而相对不完善的电路设计将给系统留下极大的安全隐患,对系统的正常工作产生非常不利的影响。本文结合实践经验给出两种在实际应用中验证过的设计方案。 1.2 设计要求 1.确定设计方案画出电路图 2.完成所要求的参数计算 3.对电路进行焊接与组装 4.对电路进行调试 5.写出使用说明书 1.2.1 设计题目和设计指标 设计题目:温度检测电路 技术指标:1. 量程:0-30摄氏度 2. 两位数码管显示 1.2.2 设计功能 1. 温度检测

2. 信号调理 3. 数码显示 1.2.3 硬件设计 1.传感器可选择LM35(因为热敏电阻的精度不高)。 2.模数转换,译码可选择集成芯片ICL7107芯片。 3.显示电路可以选择数码管三位显示室温。 1.3 需要做的工作 1.器件选型 2.原理图绘制 3.各个流程设计 4.仿真之后做出实物

第2章电路的方框图 2.1 数字温度计电路原理系统方框图 数字温度计电路原理系统方框图,如图1-1所示。 图1-1 电路原理方框图 2.2 方框图工作流程介绍 通过温度传感器采集到温度信号,经过放大电路送到A/D 转换器,然后通过译码器驱动数码管显示温度。在温度采集过程中我们选择多种传感器进行比较,但我们最终选择LM35温度传感器,因为它校准方式简单,使用温度范围适中。在A/D转换和译码的过程中,我们选择了ICL7107芯片,因为他集模数转换与译码器于一体,使得外围电路简单,易于焊接,而且抗干扰能力强。

数字式温度测量电路设计概述

数字式温度测量电路设计 专业班级:电子 1035班 姓名:陈艳 时间:1月1日 ---1月12日指导教师:皇甫立群 2007 年 1 月 9日

数字远程温度测量 一. 设计目的 专业方向课程设计是一项重要的实践性教育环节,是学生在完成本专业所有课程学习后必须接受的一项结合本专业方向的,系统的,综合的工程训练.在教师指导下,运用工程的方法,通过一个较复杂课题的设计练习,可使学生通过综合的系统设计,熟悉设计过程,设计要求,完成的工作内容和具体的设计思想。 二. 设计要求及课程简介 本课题的具体要求即:基本测量范围-50℃-150℃,精度误差小于0.2℃,非线性度小于0.2%,LED数码直读显示,可远距离测量温度.温度传感器类型较多,近年来集成温度传感器被广泛应用,例如AD590就是一个线性度优良的电流型温度传感器。使用传感器将温度信号转换为电流信号后经放大预处理环节后将输出一个温度成比例的电压信号。 三. 设计分析 数字式温度测量是采用数码管直接显示出被测温度值,这种数字显示不仅直观,测量精度高而且便于控制.本设计根据课题要求,主控器单元是单片机 AT89C51和V/F转换器AD654,选用完全符合测量温度范围要求且价格低廉的AD590作为温度传感器,信号的调理主要由失调电压很低、线性误差极小的高精度仪用放大器AD622(也可以用三个LM324组成的减法器)来完成。具有温度数码显示(精确到0.1度),超出量程报警(红色LED管或用蜂鸣器)及自动断电等功能;也符合目前对工业现场参数远程监控的要求(用方波传数据,抗干扰强)!经过各项实验测试,该系统的性能指标达到了任务书的基本要求!该系统根据需要,稍加改造可方便地移植于对压力、液位、流量等方面的检测,其实就是换一个传感器就可以了!该设计控制器使用单片机AT89C51,测温传感器使用AD654,用4位共阳极LED数码管实现温度显示,能准确达到以上要求。 四. 总体设计方案 1.设计方案论证 ⑴方案一:由于本设计是测温电路,使用热敏电阻类器件作为感温器件(找了很多这样的器件, 精度达不到要求),然后把变化的电压或电流采集下来,进行A/D转换器转换后,送到单片机进行数据处理,然后就可以将被测温度显示出来。常用的热电阻材料有铂、铜、镍、铁等,它具有高温度系数、高电阻率、化学、物理性能稳定、良好的线性输出特性等,常用的热电阻如PT100、PT1000等。这类器件的最大缺点是测温的范围太窄,一般只有-55~+125℃,而且温度的测量精度都不高,好的才±0.5℃,一般有±2℃左右,因此在高精度的场合不太满足用户的需要。这种设计感温电路麻烦,数据准确度也不高,精度达不到要求,而且我对此了解不多,就放弃了。 ⑵方案二:重新考虑用温度传感器,一开始找到了LM92,是美国半导体公司近期生产的一种高精度数字温度传感器,内含12 b温度A/D转换器,工作电压:+2.7~+5.5 V;测温范围:-55~+150 ℃;精度:±0.333 ℃(30 ℃时)。但精度达不到本设计的要求,放弃!查找到AD公司生产的数字温度传感器AD741X 系列,其内部包括一个温度传感器和一个10位A/D转换器,精度可达0.25℃,但还是精度不够!找了很多温度传感器,综合考虑,最后还是采用温度传感器

温度测量控制系统的设计与制作实验报告(汇编)

北京电子科技学院 课程设计报告 ( 2010 – 2011年度第一学期) 名称:模拟电子技术课程设计 题目:温度测量控制系统的设计与制作 学号: 学生姓名: 指导教师: 成绩: 日期:2010年11月17日

目录 一、电子技术课程设计的目的与要求 (3) 二、课程设计名称及设计要求 (3) 三、总体设计思想 (3) 四、系统框图及简要说明 (4) 五、单元电路设计(原理、芯片、参数计算等) (4) 六、总体电路 (5) 七、仿真结果 (8) 八、实测结果分析 (9) 九、心得体会 (9) 附录I:元器件清单 (11) 附录II:multisim仿真图 (11) 附录III:参考文献 (11)

一、电子技术课程设计的目的与要求 (一)电子技术课程设计的目的 课程设计作为模拟电子技术课程的重要组成部分,目的是使学生进一步理解课程内容,基本掌握电子系统设计和调试的方法,增加集成电路应用知识,培养学生实际动手能力以及分析、解决问题的能力。 按照本专业培养方案要求,在学完专业基础课模拟电子技术课程后,应进行课程设计,其目的是使学生更好地巩固和加深对基础知识的理解,学会设计小型电子系统的方法,独立完成系统设计及调试,增强学生理论联系实际的能力,提高学生电路分析和设计能力。通过实践教学引导学生在理论指导下有所创新,为专业课的学习和日后工程实践奠定基础。 (二)电子技术课程设计的要求 1.教学基本要求 要求学生独立完成选题设计,掌握数字系统设计方法;完成系统的组装及调试工作;在课程设计中要注重培养工程质量意识,按要求写出课程设计报告。 教师应事先准备好课程设计任务书、指导学生查阅有关资料,安排适当的时间进行答疑,帮助学生解决课程设计过程中的问题。 2.能力培养要求 (1)通过查阅手册和有关文献资料培养学生独立分析和解决实际问题的能力。 (2)通过实际电路方案的分析比较、设计计算、元件选取、安装调试等环节,掌握简单实用电路的分析方法和工程设计方法。 (3)掌握常用仪器设备的使用方法,学会简单的实验调试,提高动手能力。 (4)综合应用课程中学到的理论知识去独立完成一个设计任务。 (5)培养严肃认真的工作作风和严谨的科学态度。 二、课程设计名称及设计要求 (一)课程设计名称 设计题目:温度测量控制系统的设计与制作 (二)课程设计要求 1、设计任务 要求设计制作一个可以测量温度的测量控制系统,测量温度范围:室温0~50℃,测量精度±1℃。 2、技术指标及要求: (1)当温度在室温0℃~50℃之间变化时,系统输出端1相应在0~5V之间变化。 (2)当输出端1电压大于3V时,输出端2为低电平;当输出端1小于2V时,输出端2为高电平。 输出端1电压小于3V并大于2V时,输出端2保持不变。 三、总体设计思想 使用温度传感器完成系统设计中将实现温度信号转化为电压信号这一要求,该器件具有良好的线性和互换性,测量精度高,并具有消除电源波动的特性。因此,我们可以利用它的这些特性,实现从温度到电流的转化;但是,又考虑到温度传感器应用在电路中后,相当于电流源的作用,产生的是电流信号,所以,应用一个接地电阻使电流信号在传输过程中转化为电压信号。接下来应该是对产生电压信号的传输与调整,这里要用到电压跟随器、加减运算电路,这些电路的实现都离不开集成运放对信号进行运算以及电位器对电压调节,所以选用了集成运放LM324和电位器;最后为实现技术指标(当输出端1电压大于3V时,输出端2为低电平;当输出端1小于2V时,输出端2为高电平。输出端1电压小于3V并大于2V时,输出端2保持不变。)中的要求,选用了555定时器LM555CM。 通过以上分析,电路的总体设计思想就明确了,即我们使用温度传感器AD590将温度转化成电压信号,然后通过一系列的集成运放电路,使表示温度的电压放大,从而线性地落在0~5V这个区间里。最后通过一个555设计的电路实现当输出电压在2与3V这两点上实现输出高低电平的变化。

热敏电阻温度测量电路

热敏电阻温度测量电路 下图是温度在0~50℃范围的测量电路。当温度为0℃时输出电压是0V ,温度为50℃时是5V 。他可以与电压表链接来测量温度,也可以连接AD 转换器变换为数字量,利用计算机之类进行测量。 1、工作原理 该电路由检测温度的热敏电阻和1个运算放大器电路,以及将0~50℃的温度信息变换为0~5V 电压的2个运算放大器电路构成。 热敏电阻检测温度时,利用热敏电阻TH R 与电阻3R 分压后的电压作为检测电压进行处理,在这里是利用运算放大器1OP 的电压跟随器电路提取的。输出电压的极性为正,随着温度的上升,热敏电阻的电阻值降低,所以输出电压也下降。 检出的信号加在1OP 和电阻~4R 7R 构成的差动放大电路的正输入端上,而加在负输入端上的是由8R 、9R 、1VR 对5V 分压后的电压,这部分是电压调整电路,可以在温度为0℃时将1OP 的输出电压调整为0V ,这样就可以输出与温度上升成比例的负电压。 2OP 的输出加在由3OP 构成的反转放大电路上被放大,放大倍数为—10211/)(R VR R +倍。调整2VR 可以使温度达50℃时3OP 的输出电压为+5V 。 通过调整1VR 和2VR ,可以在0℃时得到0V 的输出电压,50℃时得到5V 的输出电压,使输出电压与温度成比例。 2、设计 (1)温度测量范围以及输出电压、电源电压的确定:设定温度测量范围为0~50℃,这时的输出电压是0~5V 。电路使用的电源为±15V ,基准电压为5V 。 (2)热敏电阻和运算放大器的选定:这里使用NTC 型热敏电阻,选用25℃的电阻值为10K Ω,误差在±1%以内的NTH4G39A 103F02型,这种热敏电阻的常数为B=3900。 (3)补偿电阻3R 的确定:电阻3R 的作用是当热敏电阻的温度变化时,将相对应的输出电压的变化线性化。设线性化的温度范围是0~50℃,,那么补偿电阻3 R

LM35温度传感器中文资料

lm35温度传感器中文资料 LM35 是由National Semiconductor 所生产的温度传感器,其输出电压与摄氏温标 呈线性关系,转换公式如式,0 时输出为0V,每升高1℃,输出电压增加10mV。 LM35 有多种不同封装型式,外观如图所示。在常温下,LM35 不需要额外的校准 处理即可达到 ±1/4℃的准确率。其电源供应模式有单电源与正负双电源两种,其接 脚如图所示,正负双电源的供电模式可提供负温度的量测;两种接法的静止电流- 温度关系如图所示,在静止温度中自热效应低(0.08℃),单电源模式在25℃下静止电流约50μA,工作电压较宽,可在4—20V的供电电压范围内正常工作非常省电。 TO-92封装引脚图SO-8 IC式封装引脚图 TO-46金属罐形封装引脚图 TO-220 塑料封装引脚图

单电源模式正负双电源模式供电电压35V到-0.2V 输出电压6V至-1.0V 输出电流10mA 指定工作温度范围 LM35A -55℃ to +150℃ LM35C, LM35CA -40℃ to +110℃ LM35D 0℃ to +100℃ 封装形式与型号关系 TO-46金属罐形封装引脚图LM35H,LM35AH,LM35CH,LM35CAH,LM35DH TO-220 塑料封装引脚图LM35DT TO-92封装引脚图LM35CZ,LM35CAZ LM35DZ SO-8 IC式封装引脚图LM35DM Electrical Characteristics电气特性(注1, 6) Parameter 参数Conditions 条件 LM35A LM35CA Units (Max.) 单位Typical 典型 Tested Limit 测试极 限(注4) Design Limit设 计极限 (注5) Typical 典型 Tested Limit 测试 极限 (注4) Design Limit设 计极限 (注5) Accuracy 精度(注7 )TA=+25℃±0.2 ±0.5 -±0.2 ±0.5 -℃TA=?10℃±0.3 --±0.3 -±1.0 ℃TA=TMAX ±0.4 ±1.0 -±0.4 ±1.0 -℃TA=TMIN ±0.4 ±1.0 -±0.4 -±1.5 ℃ Nonlinearity非线性(注 8) TMIN≤TA≤TMAX ±0.18 -±0.35 ±0.15 -±0.3 ℃ Sensor Gain传感器增益(Average Slope)平均斜率TMIN≤TA≤TMAX +10.0 +9.9, -+10.0 -+9.9 mV/℃--+10.1 ---+10.1 Load Regulation 负载调节(注3) 0≤IL≤1mA TA=+25℃±0.4 ±1.0 -±0.4 ±1.0 -mV/mA TMIN≤TA≤TMAX ±0.5 -±3.0 ±0.5 -±3.0 mV/mA Line Regulation 线TA=+25℃±0.01 ±0.05 ±0.01 ±0.05 -mV/V

简易数字式温度计设计

摘要 随着人们生活水平的不断提高,单片机控制无疑是人们追求的目标之一,它所给人带来的方便也是不可否定的,其中数字温度计就是一个典型的例子,但人们对它的要求越来越高,要为现代人工作、科研、生活、提供更好的更方便的设施就需要从数单片机技术入手,一切向着数字化控制,智能化控制方向发展。 本设计所介绍的数字温度计与传统的温度计相比,具有读数方便,测温围广,测温准确,其输出温度采用数字显示,主要用于对测温比较准确的场所,或科研实验室使用,该高精度数字式温度计采用了由DALLAS公司生产的单线数字温度传感器DS18B20,它具有独特的单线总线接口方式。本毕业论文详细的介绍了单线数字温度传感器DS18B20的测量原理、特性以及在温度测量中的硬件和软件设计,该温度计具有接口简单、精度高、抗干扰能力强、工作稳定可靠等特点。 关键词:DS18B20 温度传感器STC89C51

目录 第一章绪论3 1.1 课题背景及研究意义3 1.2 国外的现状3 1.3 设计的目的4 1.4 设计实现的目标4 1.5 数字温度计简介5

第一章绪论 1.1 课题背景及研究意义 随着新技术的不断开发与应用,近年来单片机发展十分迅速,一个以微机应用为主的新技术革命浪潮正在蓬勃兴起,单片机的应用已经渗透到电力、冶金、化工、建材、机械、食品、石油等各个行业。传统的温度采集方法不仅费时费力,而且精度差,单片机的出现使得温度的采集和数据处理问题能够得到很好的解决。温度是工业对象中的一个重要的被控参数。然而所采用的测温元件和测量方法也不相同;产品的工艺不同,控制温度的精度也不相同。本系统所使用的加热器件是电炉丝,功率为三千瓦,要求温度在400~1000℃。静态控制精度为2.43℃。 本设计使用单片机作为核心进行控制。单片机具有集成度高,通用性好,功能强,特别是体积小,重量轻,耗能低,可靠性高,抗干扰能力强和使用方便等独特优点,在数字、智能化方面有广泛的用途。 1.2 国外的现状 温度控制系统在国各行各业的应用虽然已经十分广泛,但从国生产的温度控制器来讲,总体发展水平仍然不高,同日本、美国、德国等先进国家相比,仍然有着较大的差距。成熟的温控产品主要以“点位”控制及常规的PID控制器为主,它们只能适应一般温度系统控制,而用于较高控制场合的智能化、自适应控制仪表,国技术还不十分成熟,形成商品化并广泛应用的控制仪表较少。随着我国经济的发展及加入WTO,我国政府及企业对此都非常重视,对相关企业资源进行了重组,相继建立了一些国家、企业的研发中心,开展创新性研究,使我国仪表工

lm35温度传感器相关资料与引脚图

lm35温度传感器相关资料与引脚图 温度传感器LM35 LM35 是由National Semiconductor 所生产的温度传感器,其输出电压与摄氏温标呈线性关系,转换公式如式,0 时输出为0V,每升高1℃,输出电压增加10mV。 LM35 有多种不同封装型式,外观如图所示。在常温下,LM35 不需要额外的校准 处理即可达到 ±1/4℃的准确率。其电源供应模式有单电源与正负双电源两种,其接 脚如图所示,正负双电源的供电模式可提供负温度的量测;两种接法的静止电流- 温度关系如图所示,在静止温度中自热效应低(0.08℃),单电源模式在25℃下静止电流约50μA,工作电压较宽,可在4—20V的供电电压范围内正常工作非常省电。 TO-92封装引脚图SO-8 IC式封装引脚图

TO-46金属罐形封装引脚图 TO-220 塑料封装引 脚图 单电源模式正负双电源模式 供电电压35V到-0.2V 输出电压6V至-1.0V 输出电流10mA 指定工作温度范围 LM35A -55℃to +150℃

LM35C, LM35CA -40℃to +110℃ LM35D 0℃to +100℃ Electrical Characteristics电气特性(注1, 6)

Electrical Characteristics电气特性(注1, 6)

注1: Unless otherwise 注d, these specifications apply: ?55℃≤TJ≤+150℃for t he LM35 and LM35A; ?40°≤TJ≤+110℃for the LM35C and LM35CA; and 0°≤TJ≤+100℃for the LM35D. VS=+5Vdc and ILOAD=50 μA, in the circuit of Figure 2. These specifications also apply from +2℃to TMAX in the circuit of F igure 1. Specifications in boldface apply over the full rated temperature range. 注2:Thermal resistance of the TO-46 package is 400℃/W, junction to ambient, and 24℃/W junction to case. Thermal resistance of the TO-92 package is 180℃/W junction to ambient. Thermal resistance of the small outline molded p ackage is 220℃/W junction to ambient. Thermal resistance of the TO-220 pac kage

数字式温度测量电路的设计

泰山职业技术学院 毕业设计(论文) 题目:数字式温度测量电路设计 系部:汽车电子工程系 专业:应用电子 学号: 学生姓名:赵志广 指导教师:刘勇 职称:指导老师 二OO 年月日

泰山职业技术学院 毕业论文(设计)任务书 课题名称:数字式温度测量电路设计 系部:汽车与电气工程系_________ 专业:应用电子_________________ 姓名:赵志广___________________ 学号:_________________________ 指导教师:刘勇_____________________ 二〇〇年月日

摘要 温度是一种最基本的环境参数,人们生活与环境温度息息相关,在工业生产过程中需要实时测量温度,在工业生产中也离不开温度的测量,因此研究温度的测量方法和控 制具有重要的意义。 本设计是一款简单实用的小型数字温度计,所采用的主要元件有传感器18B20,单片机AT89S52,,四位共阴极数码管一个,电容电阻若干。本次数字式温度测量计的设计共分为五部分,主控制器,LED显示部分,传感器部分,复位部分,时钟电路。本论文首先是对其工作原理进行了叙述,然后对其各个电路进行分析与设计,最后完成整 个系统的设计。 【关键词】数字式温度测量电路、单片机、AT89C52、温度传感器、DS18B20 Digital temperature measurement circuit design Author: Directed by: Abstract:The temperature is a basic environmental parameters of people's lives are closely related to the ambient temperature in industrial processes require real-time measurements of temperature, is also inseparable from the temperature measurement in industrial production of temperature measurement and control of importantsignificance. This is a simple and practical design small digital thermometer, the main components of the sensor 18B20 MCU AT89S52 is, four digital cathode tube one, capacitive resistance of certain The design of the digital temperature gauge is divided into five parts, the main controller, LED display, sensor parts, reset part of the clock circuit. Firstly, its working principle is described and its various circuit analysis and design, to finalize the design of the entire system. Key words:Microcontroller, AT89C52, temperature sensor, DS18B20 第一章概述 1.1 电路功能和组成 数字式测量电路应具有下列基本功能; 1、能把温度转换为成比列的模拟电信号(电流或电压等)。 2、把模拟电信号变换成数字信号。 3、最后用过数字电路(计数、译码和显示)直接指示出温度值。 根据上述基本功能的要求,可画出数字式测温电路的方框图,如图1所示。它主要包括;温度变换处理器、A/D转换器和计数、译码、显示三大部分。 由图可以看出,在电路组成上数字式测温电路与其它数字式测量电路(比如数字式电压表等),有许多相同之处,差别仅在于测温电路多了温度变换和处理部分,这部分的作用是; 1、要把温度(非电量)转换成与之成比例的电信号 2、对转换后的电压进行线性化,零点校正等处理并加以放大。

温度检测与控制实验报告材料

实验三十二温度传感器温度控制实验 一、实验目的 1.了解温度传感器电路的工作原理 2.了解温度控制的基本原理 3.掌握一线总线接口的使用 二、实验说明 这是一个综合硬件实验,分两大功能:温度的测量和温度的控制。 1.DALLAS最新单线数字温度传感器DS18B20简介 Dallas 半导体公司的数字化温度传感器DS1820是世界上第一片支持“一线总线”接口的温度传感器。现场温度直接以“一线总线”的数字方式传输,大大提高了系统的抗干扰性。适合于恶劣环境的现场温度测量,如:环境控制、设备或过程控制、测温类消费电子产品等。与前一代产品不同,新的产品支持3V~5.5V的电压围,使系统设计更灵活、方便。 DS18B20测量温度围为 -55°C~+125°C,在-10~+85°C围,精度为±0.5°C。DS18B20可以程序设定9~12位的分辨率,及用户设定的报警温度存储在EEPROM中,掉电后依然保存。 DS18B20部结构 DS18B20部结构主要由四部分组成:64位光刻ROM、温度传感器、非挥发的温度报警触发器TH和TL、配置寄存器。DS18B20的管脚排列如下: DQ为数字信号输入/输出端;GND为电源地;VDD为外接供电电源输入端(在寄生电源接线方式时接地)。 光刻ROM中的64位序列号是出厂前被光刻好的,它可以看作是该DS18B20的地址序列码。64位光刻ROM的排列是:开始8位(28H)是产品类型标号,接 着的48位是该DS18B20自身的序列号,最后8位是前面56位的循环冗余校验 码(CRC=X8+X5+X4+1)。光刻ROM的作用是使每一个DS18B20都各不相同,这样 就可以实现一根总线上挂接多个DS18B20的目的。 DS18B20中的温度传感器可完成对温度的测量,以12位转化为例:用16位符号扩展的二进制补码读数形式提供,以0.0625℃/LSB形式表达,其中S为符号位。 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 232221202-12-22-32-4 Bit15 Bit14 Bit13 Bit12 Bit11 Bit10 Bit9 Bit8 S S S S S 262524这是12位转化后得到的12位数据,存储在18B20的两个8比特的RAM中,二进制中的

基于热电偶的温度测量电路设计

燕山大学 课程设计说明书题目:基于热电偶的温度测量电路设计 学院(系):电气工程学院 年级专业: 学号: 学生: 指导教师: 教师职称:

燕山大学课程设计(论文)任务书院(系):电气工程学院基层教学单位:

说明:此表一式四份,学生、指导教师、基层教学单位、系部各一份。 2011年6 月26 日燕山大学课程设计评审意见表

目录 第1章摘要 (2) 第2章引言 (2) 第3章电路结构设计 (2) 3.1 热电偶的工作原理 (2) 3.2 冷端补偿电路设计 (5) 3.3 运算放大器的设计 (6) 第4章参数设计及运算 (8) 4.1 补偿电路的计算 (8) 4.2 运算放大器的计算 (9) 4.3 仿真器仿真图示 (10) 心得体会 (12) 参考文献 (13)

第一章摘要 本文所要设计的是基于运算放大器的具有冷端补偿的热电偶测温。 所要设计包括三部分,热电偶,冷端补偿,运算放大器。热电偶选用的为K型热电偶,补偿采用是桥式补偿电路,运算放大器则用的是运放比例较大而输出阻抗比较小的仪器仪表放大器。 第二章引言 在工业生产过程中,温度是需要测量和控制的重要参数之一,在温度测量中,热点偶的应用极为广泛,它具有结构简单,制作方便,测量围广,精度高,惯性小和输出信号便于远传等许多优点。另外,由于热电偶是一种有源传感器,测量时不需外加电源,使用十分方便,所以常被用作测量炉子,管道的气体或液体的温度及固体的表面温度。热电偶作为一种温度传感器,热电偶通常和显示仪表,记录仪表和电子调节器配套使用。热电偶可以直接测量各种生产中从0℃到1300℃围的液体蒸汽和气体介质以及固体的表面温度。 第三章电路结构设计 3.1热电偶的工作原理 热电偶是一种感温元件,是一次仪表,它直接测量温度,并把温度信号转换成热电动势信号,通过电气仪表(二次仪表)转换成被测介质的温度。 热电偶测温的基本原理是两种不同成份的材质导体(称为热电偶丝材或热电极)组成闭合回路,当接合点两端的温度不同,存在温度梯度时,回路中就会有电流通过,此时两端之间就存在电动势——热电动势,这就是所谓的塞贝克效应。两种不同成份的均质导体为热电极,温度较高的一端为工作端(也称为测量端),温度较低的一端为自由端(也称为补偿端),自由端通常处于某个恒定的温度下。根据热电动势与温度的函数关系,制成热电偶分度表;分度表是自由端温度在0℃时的条件下得到的,不同的热电

实验十一 LM35温度传感器特性实验

实验十一 LM35温度传感器特性实验 【实验目的】 1、了解LM35温度传感器的基本原理和温度特性的测量方法; 2、测量LM35温度传感器输出电压与温度的特性曲线; 【实验仪器】 电磁学综合实验平台、LM35温度传感器、加热井、温度传感器特性实验模板 【实验原理】 1.电压型集成温度传感器(LM35) LM35温度传感器,标准T0-92工业封装,其准确度一般为±0.5℃。(有几种级别)由于其输出为电压,且线性极好,故只要配上电压源,数字式电压表就可以构成一个精密数字测温系统。内部的激光校准保证了极高的准确度及一致性,且无须校准。输出电压的温度系数K V=10.0mV/℃,利用下式可计算出被测温度t(℃): U O=K V*t=(10mV/℃)*t 即: t(℃)= U O/10mV (11-1)LM35温度传感器的电路符号见图11-1,V o为输出端实验测量时只要直接测量其输出端电压U o,即可知待测量的温度。 图11-1

图11-2LM35传感器特性实验连接图 【实验步骤】 1、按图11-2,将实验平台加热输出与加热井(加热接口)连接,实验台风扇接口与加热井(风扇接口)连接。 2、调节PID控温表,设置SV:在表面板上按一下(SET)按键,SV表头的温度显示个位将会闪烁;按面板上的“▲”或“▼”键调整设置个位的温度;在按面板上按一下(SET)按键即可,SV表头的温度显示个位将会闪烁,再按“<”键使表头的温度显示十位闪烁,按面板上的“▲”或“▼”键调整设置十位的温度;用同样方法还可设置百位的温度。调好SV所需设定的温度后,再按一下(SET)按键即可完成设置。将加热开关选择(快)档加热,待30秒后,仪器开始加热,控温表即可自动控制温度。调节不同温度,设定参照步骤2进行调节。 3、根据不同的实验连接不同的连接线,可参照上图。 【实验数据】 1、LM35传感器(工作电压5V)(直流电压表2V档测量) 表11-1 t(℃) 30 40 50 60 70 80 90 100 U 2、描绘.LM35传感器曲线,求出.LM35随温度变化的灵敏度S(mV/℃), 【注意事项】 1、加热器温度不能加热到120℃以上,否则将可能损坏加热器。

数显温度测量仪电路设计

,,,….大学 课程设计说明书 2011/2012 学年第 1 学期 学院:电子与计算机科学技术学院 专业:电子科学与技术 学生姓名:JJJJK 学号:VHGGHJHH 课程设计题目:数显温度测量仪电路设计 起迄日期:2011年12月19 日~ 2012年1 月5日课程设计地点:电子科学与技术系机房 指导教师:KLJKLJ 系主任:JKL 下达任务书日期: 2011年 12月 19日

目录: 1. 课程设计目的 (3) 2. 课程设计内容和要求 (3) 3. 设计方案 (3) 4. 设计流程图 (5) 5. 工作原理 (6) 5.1 测温部分 (6) 5.2 温度检测电路模块 (7) 5.3电压放大电路模块 (8) 5.4 温度数字显示 (9) 6. 课程设计总结 (15) 7. 参考文献 (16) 8. 附录 (17)

一.课程设计目的 (1)、了解数显温度测量仪电路的基本实现原理; (2)、掌握计数器、显示等中规模数字集成器件的逻辑功能和使用方法; (3)、掌握利用protel绘制电路原理图与制作PCB图的方法。 (4)、Protues仿真。 二.课程设计内容和要求 (1)查阅所用器件技术资料,详细说明设计的数显温度测量仪电路工作流程; (2)温度测量范围:20℃~100℃,测量精度为0.1℃,数字显示位数四位。 (3)选择适当的传感器,设计恰当的放大电路,且具有调零电路。 (4)为减少或消除干扰,电路应具有低通功能。 三.设计方案 本次课程设计任务为数显温度测量仪:测温范围20℃—100℃,用CC7107(ICL7107可用 位数字电压表显示。测温传感器铂-100热电阻(Pt-100)。热电阻变换TC7107代替)组装31 2 电路用全桥测量电路。通过网上查找资料以及自身理解我选择用ICL7107芯片,经过铂金属的传热和中间电路将热信号转换为电压信号再经放大后输入到ICL7107芯片,最后经数字显示电路将温度信号显示。 采用铂金属温度传感器来检测温度的变化,铂金属温度传感器的电阻值会随着外界温度的变化而变化,并且近似为线性关系。利用这种线性关系,可以组成温度测量电路。从这个电路中将会得到跟随外界温度变化而变化的带有当前温度特征的电压信号。 温度测量电路模块输出的电压信号的伏值一般较小,不能直接用于后续电路模块的输入信号。因此,要在温度测量电路模块后面加上电压放大电路。将温度测量电路输出的带有当前温度特征的电压信号进行放大,使得其输出的电压伏值能够满足后续电路模块的输入要求。 放大电路模块输出的电压信号分为两路:一路直接用于数字显示电路模块的输入信号,从而得到直观的温度数据。另一路将输出的电压信号作为继电器驱动电路模块中的电压比较器的一个输入信号。

温度测量与控制电路

《电子技术》课程设计报告 题目温度测量与控制电路 学院(部)电子与控制工程学院 专业电子科学与技术 班级 学生姓名郭鹏 学号 13 指导教师(签字) 前言 随着数字时代的到来,人们对于温度的测量与控制的要求越来越高,用传统的水银或酒精温度计来测量温度,不仅测量时间长、读数不方便、精度不够高而且功能单一,已经不能满足人们在数字化时代的要求。于是我们提出,测温电路利用温度传感器监测外界温度的变化,通过放大器将温度传感器接收到的信号进行放大,放大到比较有利于我们测量的温度范围,然后利用A/D转换器实现模拟信号到数字信号的转换,最后通过编程让FPGA实现8位二进制数与BCD码之间的转化,实现温度的显示;并利用比较器来实现对放大电压信号的控制,从而实现对温度的控制;再者还加载了报警装置,使它的功能更加完善,使用更加方便。

本设计是采用了温度的测量、信号放大、A/D转换、温度的显示、温度的控制、报警装置六部分来具体实现上述目的。 目录 摘要与设计要求 (4) 第一章:系统概述 (5) 第二章:单元电路设计与分析 (5) 1) 方案选择 (5) 2)设计原理与参考电路 (6) 1 放大电路 (6) 2 低通滤波电路 (7) 3 温度控制电路 (8) 4 报警电路 (9) 5 A/D转换器 (10)

6 译码电路 (11) 第三章:系统综述、总体电路图 (14) 第四章:结束语 (15) 参考文献 (15) 元器件明细表 (15) 收获与体会,存在的问题等 (16) 温度测量与控制电路 摘要: 利用传感器对于外界的温度信号进行收集,收集到的信号通过集成运算放大器进行信号放大,放大后的信号经过A/D转换器实现模拟信号与数字信号间的转换,再通过FPGA编程所实现的功能将转换后的数字信号在数码管上显示出来,实现温度测量过程。放大的信号可以与所预定的温度范围进行比较,如果超出预定范围,则自动实现声光报警功能,实现温度控制过程。 关键字:温度测量温度控制信号放大 A/D转换声光报警 设计要求: 1. 测量温度范围为200C~1650C,精度 0.50C; 2. 被测量温度与控制温度均可数字显示; 3. 控制温度连续可调; 4. 温度超过设定值时,产生声光报警。

相关主题
文本预览
相关文档 最新文档