那么方程x3+x2-2x-2=0的一个近似根(精确到0.1)为
.
解析:由表知,f(1.375)· f(1.437 5)<0,故方程的根x0∈(1.375,1.437 5), 且|1.437 5-1.375|=0.062 5<0.1, 故x0≈1.4. 答案:1.4
类型三 易错辨析 【例3】 用二分法求方程x2-3=0的一个近似正解,要求精确到0.1. 错解:因为f(1)=-2<0,f(2)=1>0,f(1)· f(2)<0,所以x0∈[1,2]. 取区间[1,2]的中点x1=1.5, f(1.5)=-0.75<0, 因为f(1.5)· f(2)<0,所以x0∈[1.5,2]. 取区间[1.5,2]的中点x2=1.75, f(1.75)=0.062 5,因为0.062 5<0.1, 所以原方程的近似解可取为1.75. 纠错:错解在于理解精确度不正确,精确度ε满足的关系式为|a-b|<ε, 错解中认为是|f(x)|<ε, 并且精确到0.1也误取成了小数点后两位.
2.下列图象与x轴均有交点,其中不能用二分法求函数零点的是(
A )
解析:只有A中函数零点不是变号零点.
3.(2018· 北京市海淀中关村中学高一上期中)已知定义在R上的函数f(x)的 图象是连续不断的,且有如下对应值表: x 1 2 2.9 C ) 3 -3.5 f(x) 6.1 那么函数f(x)一定存在零点的区间是( (A)(-∞,1) (C)(2,3) (B)(1,2) (D)(3,+∞)
因为f(1.5)· f(1.75)<0,所以x0∈[1.5,1.75].
取区间[1.5,1.75]的中点x3=1.625,f(1.625)=-0.359 375, 因为f(1.625)· f(1.75)<0,所以x0∈[1.625,1.75].