圆柱的体积导学案
- 格式:doc
- 大小:19.50 KB
- 文档页数:1
人教版数学六年级下册第10课圆柱的体积导学案(优选3篇)〖人教版数学六年级下册第10课圆柱的体积导学案第【1】篇〗一、教学内容:人教版教材六年级下册19——20页例5例6及相关的练习题。
二、教学目标:1、结合具体情境和实践活动,了解圆柱体积(包括容积)的含义,进一步理解体积和容积的含义。
2、经历“类比猜想——验证说明”的探索圆柱体积计算方法的过程,掌握圆柱体积的计算方法,能正确计算圆柱的体积。
并会解决一些简单的实际问题。
3、注意渗透类比、转化思想。
三、教学重点:理解、掌握圆柱体积计算的公式,能运用公式正确地计算圆柱的体积。
四、教学难点:推导圆柱的体积计算公式。
五、教法要素:1、已有的知识和经验:体积、体积单位,学习长方体正方体的体积公式的经验。
2、原型:圆柱模型。
3、探究的问题:(1)圆柱的体积和什么有关?圆柱能否转化成已学过的立体图形来计算体积?(2)把圆柱拼成一个近似的长方体后,长方体的长、宽、高是圆柱的哪个部分?(3)怎样计算圆柱的体积?六、教学过程:(一)唤起与生成。
1、什么叫物体的体积?我们学过哪些立体图形的体积计算?2、长方体和正方体的体积怎样计算?它们可以用一个公式表示出来吗?切入教学:怎样计算圆柱的体积?圆柱的体积计算会和什么有关?(二)探究与解决。
探究:圆柱的体积1、提出问题,启发思考:如何计算圆柱的体积?2、类比猜测,提出假设:结合长方体和正方体体积计算的知识,即长方体和正方体的体积都等于底面积×高,据此分析并猜测圆柱的体积与谁有关,有什么关系;提出假设,圆柱的体积可能等于底面积×高。
3、转化物体,分析推理:怎样来验证我们的猜想?我们在学圆的面积时是把圆平均分成若干份,然后拼成一个近似的长方形,推导出圆的面积计算公式。
我们能不能也把圆柱转化为我们学过的立体图形呢?应该怎样转化?结合圆的面积计算小组讨论。
学生汇报交流。
(拿出平均分好的圆柱模型,圆柱的底面用一种颜色,圆柱的侧面用另一种颜色,以便学生观察。
人教版数学六年级下册圆柱的体积导学案(优选3篇)〖人教版数学六年级下册圆柱的体积导学案第【1】篇〗尊敬的各位领导、老师:大家好!今天,我说课的内容是北师大版小学数学六年级下册《圆柱的体积》。
一、把握教材,目标定位《圆柱的体积》是在学生初步认识了圆柱体的基础上,进一步研究圆柱体的特征,让学生比较深入地研究立体几何图形,是学生发展空间观念的又一次飞跃。
圆柱体是基本的立体几何图形,通过学习,可以培养学生形成初步的空间观念,为下一步学习“圆锥的体积”打下基础。
根据本节课的性质特点和六年级学生以形象思维为主、空间观念还比较薄弱的特点,我确定本节课的教学目标为:1、知识与能力:通过推导圆柱体积公式的过程,向学生渗透转化思想,建立空间观念,培养学生判断、推理的能力和迁移能力。
2、过程与方法:结合具体情境和实践活动,理解圆柱体积的含义。
探索并掌握圆柱体积的计算方法,能正确计算圆柱的体积,并会解决一些简单的实际问题。
3、情感、态度、价值观:感悟数学知识的内在联系,增强学生应用数学的意识,激发学生的学习兴趣。
教学的重点和难点:由于圆柱体积计算是圆锥体积计算的基础,因此圆柱体积和应用是本节课教学重点。
其中,圆柱体积计算公式的推导过程比较复杂,需要用转化的方法来推导,推导过程要有一定的逻辑推理能力,因此,推导圆柱体积公式的过程是本节课的难点。
二、把握学情,选择教法(一)学情分析六年级的学生已经有了较丰富的生活经验,这些感性经验是他们进一步学习的基础,本节课的学习过程正是让学生的感性经验上升到理性经验的过程,符合学生的年龄特征和认知规律,在这一过程中,能使学生体会到认识事物和归纳事物特征的方法,学会运用数学的思维方式去认识世界。
(二)、选择教法,实践课题。
《新课程标准》指出:数学教学应联系现实生活,使学生从中获得数学学习的积极情感体验,感受数学的力量。
同时我紧密结合自己的课题“培养学生自主合作学习能力与学生数学素养的策略研究”、“在数学课上如何激发学生的学习兴趣”。
六年级下册数学教案-《圆柱体积》导学案北师大版教学目标通过本节课的学习,学生应达到以下目标:1. 理解并掌握圆柱体积的计算公式,并能运用其解决实际问题。
2. 培养学生的空间想象能力和逻辑思维能力。
3. 培养学生合作学习和自主探究的能力。
教学重点与难点教学重点1. 圆柱体积的计算公式。
2. 圆柱体积公式的推导过程。
教学难点1. 圆柱体积公式的理解和应用。
2. 圆柱体积公式的推导过程。
教学方法1. 讲授法:讲解圆柱体积的概念、计算公式及其应用。
2. 演示法:通过实物模型或多媒体演示,帮助学生理解圆柱体积的计算过程。
3. 小组讨论法:分组讨论圆柱体积公式的推导和应用,培养学生的合作学习能力和问题解决能力。
教学过程一、导入1. 复习回顾:引导学生回顾已学的长方体和正方体的体积计算方法,为新课的学习做好铺垫。
2. 提出问题:如何计算圆柱的体积?二、新课讲解1. 讲解圆柱体积的概念:圆柱体积是指圆柱所占空间的大小。
2. 讲解圆柱体积的计算公式:圆柱体积 = 底面积× 高。
3. 讲解圆柱体积公式的推导过程:通过将圆柱切割成若干等份,再拼凑成一个长方体,从而推导出圆柱体积公式。
三、巩固练习1. 让学生完成教材中的练习题,巩固圆柱体积的计算方法。
2. 老师针对学生的错误进行讲解和指导。
四、拓展与应用1. 让学生探讨如何计算生活中遇到的圆柱体积问题,如圆柱形水桶的容积等。
2. 引导学生运用所学的圆柱体积知识解决实际问题。
五、课堂小结1. 让学生总结本节课所学的圆柱体积知识。
2. 老师点评并总结本节课的教学内容。
六、课后作业1. 完成教材中的课后习题。
2. 观察生活中的圆柱体积问题,并尝试解决。
教学反思1. 教学过程中,注意关注学生的学习情况,及时调整教学方法和节奏。
2. 注重培养学生的动手操作能力和问题解决能力。
3. 鼓励学生积极参与课堂讨论,提高学生的合作学习能力。
通过本节课的学习,学生应能理解和掌握圆柱体积的计算公式,并能运用其解决实际问题。
人教版数学六年级下册第10课圆柱的体积导学案3篇〖人教版数学六年级下册第10课圆柱的体积导学案第【1】篇〗一、教学过程(一)课堂导入1.带领学生回顾之前所学习过的长方体、圆锥的体积计算方法方法,以及长方体、圆锥的特征。
长方体的体积=底面积×高(V=S·h)圆锥的体积=底面积×高(V=S·h)特征:都有底面、侧面、高、顶点2.试问学生圆柱体的体积应该怎么算?(让学生进行大胆的猜测)学生说完之后,至于对不对?是不是学生所说的那样的计算方法?教师先做以保留。
评析:通过回顾之前所学的内容,引出本节课教学内容,既可以很好的导入本节课所学内容,又可以让学生对之前所学的内容进行巩固。
另外,可以间接的告诉学生本节课所学的内容与之前学习的长方体、体圆锥体积的学习有着紧密联系。
第二环节问题的提出,又不直接进行回答,可以激发学生学习、探索新知识的兴趣。
(二)圆柱体积计算方法一:实践操作1.教师拿出课前准备好的教具,同底等高的圆柱体和圆锥体的容器各一个,让学生们观察这两个物体的共同点。
学生:一个是圆柱体,一个是圆锥体。
他们的底面相同,高相等。
2.随后教师将圆锥体容器装满水倒入圆柱体容器中,一共倒了三次将圆柱体装满水。
通过教师的这一实验,让学生们谈谈自己的发现。
学生:圆锥体容器里装水的多少代表圆锥体的体积有多大,圆锥体装满水,倒了三次才将圆柱体倒满,说明圆柱体的体积是圆锥体提及的三倍。
所以,圆柱体的体积=3×圆锥的体积=3×底面积×高学到这里,对课堂一开始提出的如何計算圆柱体体积的答案就可显而知了。
教师:注意我们刚开始拿的这两个容器他们是同底等高,如果圆柱和圆锥不是同底等高的话,那么圆柱的体积将不能说是圆锥的体积的3倍。
任何一个圆柱体积都是和它同底等高的圆锥的体积的3倍。
(三)圆柱体积计算方法二:动画演示通过多媒体技术,将圆柱转化为之前所学过的物体体积,引导学生学习圆柱的体积。
人教版数学六年级下册圆柱的体积导学案3篇〖人教版数学六年级下册圆柱的体积导学案第【1】篇〗教学内容:教材第15~16页的例4和第16页的试一试、练一练,完成练习三第1~3题。
教学目标:1.结合具体情境和实践活动,了解圆柱体积(包括容积)的含义,进一步理解体积和容积的含义。
2.经历类比猜想验证说明的探索圆柱体积的计算方法的进程,掌握圆柱体的计算方法,能正确计算圆柱的体积,并会解决一些简单的实际问题。
3.引导学生探索和解决问题,渗透、体验知识间相互转化的思想方法。
重点难点:掌握圆柱体积公式的推导过程。
教学资源:PPT课件圆柱等分模型教学过程:一、联系旧知,设疑激趣,导入新课。
1.呈现例4中长方体、正方体和圆柱的直观图。
2.提问:这几种立体的体积你都会求吗?你会求其中哪些立体的体积?启发:大家想不想知道圆柱的体积怎样计算?猜想一下:圆柱体积的大小与什么有关?怎么算?3.引入:我们的猜想对不对呢?今天我们就一起来探索一下圆柱的体积计算公式。
二、动手操作,探索新知,教学例41.观察比较引导学生观察例4的三个立体,提问⑴这三个立体的底面积和高都相等,它们的体积有什么关系?⑵长方体和正方体的体积一定相等吗?为什么?⑶圆柱的体积与长方体和正方体的体积可能相等吗?为什么?2.实验操作⑴谈话:大家都认为圆柱的体积与长方体、正方体的体积可能是相等的,而且都等于底面积乘高。
那用什么办法验证呢?让学生在小组中说说自己的想法。
提醒:圆的面积公式是怎么推导出来的?我们能不能将圆柱转化成长方体呢?⑵提出要求:你能想办法把圆柱转化成长方体吗?各小组说出自己的想法,有条件的拿出课前准备好的圆柱,操作一下。
⑶讨论交流:如果把圆柱的底面平均分成16份,切开后能否拼成一个近似的长方体?操作教具,让学生观察。
引导想像:如果把底面平均分的份数越来越多,结果会怎么样?演示一组动画(将圆柱底面等分成32份、64等份、128等份)课件演示使学生清楚地认识到:拼成的立体会越来越接近长方体。
2023-2024学年六年级下学期数学圆柱的体积(导学案)一、教学目标1. 让学生掌握圆柱的体积公式,并能运用公式解决实际问题。
2. 培养学生的空间想象能力和抽象思维能力。
3. 培养学生运用数学知识解决实际问题的能力。
二、教学内容1. 圆柱的体积公式2. 圆柱体积公式的推导3. 圆柱体积公式的应用三、教学重点与难点1. 教学重点:圆柱的体积公式及其应用。
2. 教学难点:圆柱体积公式的推导过程。
四、教学过程1. 导入:通过复习长方体和正方体的体积公式,引导学生思考圆柱体积的计算方法。
2. 探究:让学生分组讨论,如何计算圆柱的体积。
引导学生发现圆柱体积与长方体体积之间的关系。
3. 讲解:讲解圆柱体积公式的推导过程,强调圆柱体积等于底面积乘以高。
4. 练习:布置一些关于圆柱体积的练习题,让学生独立完成,巩固所学知识。
5. 应用:让学生运用圆柱体积公式解决实际问题,如计算圆柱形水桶的容量等。
6. 总结:对本节课的内容进行总结,强调圆柱体积公式的应用。
五、作业布置1. 课后练习:完成教材中的圆柱体积练习题。
2. 拓展思考:思考如何计算其他几何体的体积,如圆锥、球等。
六、教学反思在教学过程中,要注意引导学生主动参与,培养学生的空间想象能力和抽象思维能力。
同时,要关注学生的学习反馈,及时调整教学方法,提高教学效果。
七、教学评价通过课后练习和课堂表现,评价学生对圆柱体积公式的掌握程度,以及运用公式解决实际问题的能力。
八、教学建议1. 在教学过程中,注重启发式教学,引导学生主动思考,培养学生的创新意识。
2. 针对不同学生的学习特点,因材施教,提高教学质量。
3. 加强课后辅导,帮助学生巩固所学知识,提高学习效果。
需要重点关注的细节是圆柱体积公式的推导过程。
这个过程是理解圆柱体积计算方法的关键,也是培养学生空间想象能力和抽象思维能力的良好机会。
以下是对这个重点细节的详细补充和说明。
圆柱体积公式的推导过程:1. 引入长方体和正方体的体积计算方法,作为圆柱体积计算的前置知识。
人教版数学六年级下册第10课圆柱的体积导学案3篇〖人教版数学六年级下册第10课圆柱的体积导学案第【1】篇〗《圆柱的体积》数学教学设计1【教材简析】:本节内容包括圆柱的体积计算公式的推导,利用公式直接计算圆柱的体积,利用公式求:圆柱形物体的容积。
教材充分利用学生学过的知识作铺垫,采用迁移法,引导学生将圆柱体化成已学过的立体图形,再通过观察、比较找两个图形之间的关系,可推导出圆柱的体积计算公式。
【教学内容】:p19-20页的内容和例题,完成“做一做”及练习三第1~4题。
【教学目标】:1、通过用切割拼合的方法借助长方体的体积公式推导出圆柱的体积公式,能够运用公式正确地计算圆柱的体积和容积。
2、初步学会用转化的数学思想和方法,解决实际问题的能力。
3、渗透转化思想,培养学生的自主探索意识。
【教学重点】:掌握圆柱体积的计算公式。
【教学难点】:圆柱体积的计算公式的推导。
【教学过程】:第一课时本册总课时:1—2课时一、复习1、长方体的体积公式是什么?(长方体的体积=长×宽×高,长方体和正方体体积的统一公式“底面积×高”,即长方体的体积=底面积×高)2、什么叫做物体的体积?你会计算下面那些图形的体积?3、拿出一个圆柱形物体,指名学生指出圆柱的底面、高、侧面、表面各是什么,怎么求。
4、复习圆面积计算公式的推导过程:把圆等分切割,拼成一个近似的长方形,找出圆和所拼成的长方形之间的关系,再利用求长方形面积的计算公式导出求圆面积的计算公式。
二、新课1、圆柱体积计算公式的推导。
(1)用将圆转化成长方形来求出圆的面积的方法来推导圆柱的体积。
(沿着圆柱底面的扇形和圆柱的高把圆柱切开,可以得到大小相等的12块,把它们拼成一个近似长方体的立体图形——课件演示)(2)由于我们分的不够细,所以看起来还不太像长方体;如果分成的扇形越多,拼成的立体图形就越接近于长方体了。
(课件演示将圆柱细分,拼成一个长方体)(1)拼成近似长方体的体积与原来的圆柱体积有什么关系?(相等)(2)拼成的近似长方体的底面积与原来圆柱的底面积有什么关系?(相等)(3)拼成的近似长方体的高与原来的圆柱的高有什么关系?(相等)(3)通过观察,使学生明确:长方体的底面积等于圆柱的底面积,长方体的高就是圆柱的高。
《圆柱的体积》教案优秀5篇《圆柱的体积》教案篇一教学目标:1.知识与技能:运用迁移规律,引导学生借助圆面积计算公式的推导方法来推导圆柱的体积计算公式,会用圆柱的体积公式计算圆柱形物体的体积。
2.方法与过程:经历猜测、验证、合作、动手操作等过程,体验和理解圆柱体体积公式的推导过程。
3情感、态度、价值观:创设情境,激发学生学习的积极性。
让学生在主动学习的基础上,逐步学会转化的数学思想和数学法,培养学生解决实际问题的能力和培养学生抽象、概括的思维能力。
教学重点和难点:圆柱体积公式推导过程;正确理解圆柱体积公式推导过程。
教具:圆柱的体积公式演示教具,圆柱的体积公式演示课件教学过程:一、教学回顾1、交代任务:这节课我们来学习《圆柱的体积》。
2、回忆导入(1)、请大家想一想,我们在学习圆的面积时,是怎样把圆变成已学过的图形再计算面积的?(2)、我们都学过那些立体图形的体积公式。
二、积极参与探究感受1、猜测圆柱的。
体积和那些条件有关。
(电脑演示)2、.探究推导圆柱的体积计算公式。
小组合作讨论:(1)将圆柱体切割拼成我们学过的什么立体图形?(2)切拼前后的两个物体什么变了?什么没变?(3)切拼前后的两个物体有什么联系?课件演示拼、组的过程,同时演示一组动画(将圆柱底面等分成32份、64份?),让学生明确:分成的扇形越多,拼成的立体图形就越接近于长方体。
①把圆柱拼成长方体后,形状变了,体积不变。
(板书:长方体的体积=圆柱的体积)②拼成的长方体的底面积等于圆柱的底面积,高就是圆柱的高。
配合回答,演示课件,闪烁相应的部位,并板书相应的内容。
)③圆柱的体积=底面积×高字母公式是V=Sh(板书公式)2、练一练:一根圆柱形木料,底面积为75平方厘米,长90厘米,它的体积是多少?3、要用这个公式计算圆柱的体积必须知道什么条件?三、练习1、填空(1)、圆柱体通过切拼转化成近似的()体。
这个长方体的底面积等于圆柱体的(),这个长方体的高等于圆柱体()。
人教版数学六年级下册圆柱的体积导学案(精推3篇)〖人教版数学六年级下册圆柱的体积导学案第【1】篇〗教学目标1.使学生初步理解和掌握圆柱的体积计算公式。
会用公式计算圆柱的体积,并能应用分式解答一些实际问题。
2.在充分展示体积公式推导过程的基础上,培养学生推理归纳能力和自学能力。
教学重点和难点圆柱体积公式推导过程;正确理解圆柱体积公式推导过程。
教学过程设计我们已经认识了圆柱体,学会了圆柱体侧面积和表面积的计算,今天研究圆柱的体积。
(板书:圆柱的体积)(一)复习准备1.什么叫体积?(指名回答)生:物体所占空间的大小叫做体积。
师:你学过哪些体积的计算公式?(指名回答)根据学生的回答,板书:长方体体积=底面积×高2.圆面积公式是怎样推导出来的?生:把一个圆,平均分成数个扇形,拼成一个近似长方形,长方形的长相当于圆周长的一半,宽相当于圆的半径,(根据学生的叙述,边用幻灯片演示。
)得到圆面积公式S=πr2。
(二)学习新课1.动脑筋想一想,圆柱的体积,能不能转化成你学过的形体,推导出计算圆柱体积的公式?2.看书自学。
(1)圆柱体是怎样变成近似长方体的?(2)切拼成的长方体与圆柱体有什么关系?(3)怎样计算切拼成的长方体体积?3.推导圆柱体积公式。
(1)讨论自学题(1)。
圆柱体是怎样变成长方体的?(指名叙述)再看看书和你叙述的一样吗?把圆柱体底面分成许多相等的扇形(例如分成16份),然后把圆柱切开,拼成一个近似长方体。
(教师加以说明,底面扇形平均分的份数越多,拼成的立体图形越接近长方体。
)(2)动手操作切拼,将圆柱体转化成长方体。
出示两个等底等高圆柱体,让学生比一比,底面积大小一样,高相等,使学生确信,两个圆柱体的体积相等。
请两名同学按照你们的叙述,把圆柱体切拼成长方体。
(如有条件,每四人一个学具,人人动手切拼,充分展示切拼过程和公式推导过程。
)现在讨论自学题(2)。
师:这个长方体与圆柱体比较一下,什么变了?什么没变?生:形状变了,体积大小没变。
标题:六年级下册数学-第一单元第三课时《圆柱的体积》导学案北师大版一、教学目标1. 让学生理解圆柱体积的概念,掌握圆柱体积的计算方法。
2. 培养学生的空间想象能力和逻辑思维能力。
3. 培养学生运用圆柱体积知识解决实际问题的能力。
二、教学内容1. 圆柱体积的概念2. 圆柱体积的计算方法3. 圆柱体积的应用三、教学重点与难点1. 教学重点:圆柱体积的计算方法2. 教学难点:圆柱体积的应用四、教学过程1. 导入新课通过复习长方体和正方体的体积计算,引导学生思考圆柱体积的计算方法。
2. 探究圆柱体积的概念(1)引导学生观察圆柱模型,了解圆柱的构成。
(2)讨论:圆柱体积的定义是什么?3. 探究圆柱体积的计算方法(1)引导学生回顾长方体和正方体体积的计算方法,发现体积计算都与底面积和高有关。
(2)讨论:圆柱体积的计算公式是什么?(3)讲解圆柱体积的计算公式:V = πr²h,其中r为底面半径,h为高。
4. 深化理解圆柱体积的应用(1)出示例题,引导学生运用圆柱体积的计算公式解决实际问题。
(2)讲解例题,分析解题思路和方法。
(3)练习:让学生独立完成课后练习题,巩固圆柱体积的计算方法。
5. 总结与拓展(1)引导学生总结圆柱体积的计算方法。
(2)拓展:引导学生思考圆柱体积在实际生活中的应用,如水桶、汽油桶等。
五、课后作业1. 完成课后练习题。
2. 思考:如何计算一个不规则物体的体积?六、板书设计1. 圆柱体积的概念2. 圆柱体积的计算公式:V = πr²h3. 圆柱体积的应用七、教学反思本节课通过引导学生探究圆柱体积的概念和计算方法,培养了学生的空间想象能力和逻辑思维能力。
在教学过程中,要注意关注学生的学习情况,及时解答学生的疑问,确保学生掌握圆柱体积的计算方法。
同时,要注重培养学生的实际应用能力,让学生在实际问题中运用所学知识。
重点关注的细节是圆柱体积的计算方法,因为这是本节课的核心内容,学生需要理解和掌握。
圆柱体积教案精选3篇圆柱体积教案篇一教学目标1.1知识与技能:(1)、运用迁移规律,引导学生借助面积计算公式的推导方法来推导圆柱的体积计算公式,并理解这个过程。
(2)、会用圆柱的体积公式计算圆柱形物体的体积和容积,运用公式解决一些简单的问题。
1.2过程与方法:引导学生逐步学会转化的数学思想和数学方法,培养学生解决实际问题的能力。
1.3情感态度与价值观:借助实物演示,培养学生抽象、概括的思维能力。
教学重难点2.1教学重点圆柱体积计算公式的推导过程及其应用。
2.2教学难点理解圆柱体积公式的推导过程。
教学工具多媒体课件教学过程一、复习提问1、怎样求长方体和正方体的体积?【生】长方体体积=长×宽×高正方体体积=棱长×棱长×棱长【师】谁来说说他们怎么可以用一个公式来表示?【生】直方体体积=底面积×高【师】真聪明,那我们接下来来看题目【生】解:长方体体积=底面积×高=0.06×5=0.3m32、一块正方体石料,一个面的面积是36dm2,这块石料的体积是多少立方分米?【生】二、探求新知【师】同学们现在会计算长方体和正方体的图形的体积。
圆柱的体积怎样计算呢?能不能将圆柱转化成我们学过的立体图形,计算出它的体积呢?【师】同学们想不出来没有关系,我们先来看一看圆面积是怎么推出来的呢?【师】现在同学们能想到了吗?请同学们以小组为单位讨论一下,并将你讨论的结果拿到实物投影仪上。
【生】(小组讨论,交流,老师总结)【师】把拼成的长方体与原来的圆柱比较,你能发现什么?【生】长方体的底面积等于圆柱的底面积。
长方体的高等于圆柱的高。
【生】长方体的体积与圆柱的体积相等。
【师】三、知识运用【师】同学们,你们现在知道了怎么样求圆柱的体积,那么让我们实际来求一下吧。
[例6]下图的杯子能不能装下这袋牛奶?(数据是从杯子里面测量得到的。
)【师】同学们做得非常好,下面请同学们做一做。
六年级下册数学导学案-1.3圆柱的体积丨北师大版一、教学目标1. 让学生掌握圆柱的体积公式,并能运用公式解决实际问题。
2. 培养学生的空间想象能力和抽象思维能力。
3. 培养学生运用数学知识解决实际问题的能力。
二、教学内容1. 圆柱的体积公式。
2. 圆柱体积公式的推导过程。
3. 圆柱体积公式的应用。
三、教学重点与难点1. 教学重点:圆柱体积公式的推导和应用。
2. 教学难点:圆柱体积公式的推导过程。
四、教学过程1. 导入通过复习长方体和正方体的体积计算,引导学生思考圆柱的体积如何计算。
2. 新课导入(1)圆柱体积公式的推导首先,我们通过一个实验来观察圆柱体积的变化。
将一个圆柱形容器装满水,然后将水倒入一个长方体容器中,测量长方体容器中水的体积。
再将圆柱形容器中的水倒入另一个圆柱形容器中,观察圆柱形容器中水的高度变化。
通过实验,我们可以发现圆柱的体积与底面积和高度有关。
接下来,我们通过数学推导来得出圆柱体积的公式。
将圆柱沿底面半径和高切开,然后拼成一个近似长方体。
这个长方体的底面积等于圆柱的底面积,长方体的高等于圆柱的高。
根据长方体的体积计算公式,我们可以得出圆柱的体积公式:V=πr²h。
(2)圆柱体积公式的应用学习了圆柱体积的计算公式后,我们可以运用这个公式来解决实际问题。
例如,计算一个圆柱的体积,或者根据给定的体积和底面积来求圆柱的高度。
3. 巩固练习通过练习题,让学生巩固所学知识,提高运用圆柱体积公式解决实际问题的能力。
4. 总结与反思引导学生总结本节课所学内容,反思自己在学习过程中的收获和不足。
五、作业布置1. 请同学们完成课后练习题。
2. 观察生活中的圆柱,尝试计算其体积。
六、教学评价通过课堂提问、练习题和课后作业,评价学生对圆柱体积公式的掌握程度和运用能力。
七、教学资源1. 课本。
2. 教学课件。
3. 练习题。
八、教学时间1课时。
九、教学反思在教学过程中,要注意引导学生积极参与,关注学生的学习反馈,及时调整教学方法和节奏。
人教版数学六年级下册第10课圆柱的体积导学案(精推3篇)〖人教版数学六年级下册第10课圆柱的体积导学案第【1】篇〗第二课时教学目标1.经历同桌合作,测量、计算圆柱形物体体积的过程。
2.会测量圆柱形物体的有关数据,能根据圆柱的高及底面直径或周长计算圆柱的体积。
3.能与同伴合作寻找解决问题的有效方法,能表达解决问题的大致过程和结果。
教学重点能根据学生自己测量的数据进行圆柱体积的计算。
教学难点给出圆柱底面周长如何计算圆柱的体积。
教具准备学生自备的茶叶筒或露露瓶。
教学过程一、测量茶叶筒的体积1.师:同学们,我们要想计算这个茶叶筒的体积,应该首先知道哪些数据?生:茶叶筒的高,底面直径或半径。
师:很好,那么我们就来亲手量一量你们手里的圆柱体的各个数据,并计算出它们的体积。
学生同桌合作测量并计算。
2.交流测量数据的方法和计算的结果。
3.刚才同学大部分都测量的是茶叶筒的高和直径或半径,有没有测量茶叶筒的底面周长的?如果有,就说说是怎么测量和计算的。
如果没有,就提示大家,如果给出了圆柱底面周长,怎样计算圆柱的体积呢?生:利用周长先求出半径,再进行计算。
师:你们会不会测量茶叶筒的底面周长呢?如果已经忘记,就进行一下提示:在圆柱的底面上做一标记,然后把圆柱体在直尺上进行滚动。
或用皮尺测量。
请大家实际测量一下底面周长,并进行计算,看看和刚才计算的结果是否一致。
二、巩固练习1.一根圆柱形水泥柱子,它的底面周长是6.28分米,高200分米,求它的体积?2.独立完成练一练的1-3题。
三、家庭作业1.练一练的第4小题。
2.①一个圆柱的的体积是141.3立方厘米,底面半径3厘米,它的高是多少厘米?②一根圆柱形钢材,截下2米,量得它的横截面的直径是4厘米,如果每立方厘米钢重7.8克,截下的这段钢材重多少克?圆柱的体积第三课时容积教学目标1.结合具体事例,经历探索容积计算问题的过程。
2.掌握计算容积的方法,能解决有关容积的简单实际问题。
人教版数学六年级下册第10课圆柱的体积导学案(精选3篇)〖人教版数学六年级下册第10课圆柱的体积导学案第【1】篇〗最近,本人在《小学教学设计》看到一则“圆柱的体积”教学实录精彩片段,它以一种全新的视角诠释了新课标所倡导的理念,给我留下了较为深刻的印象。
现把它撷取下来与各位同行共赏。
……师:圆柱有大有小,你觉得圆柱体积应该怎样计算呢?生:(绝大部分学生举起了手)底面积乘高。
师:那你们是怎样理解这个计算方法的呢?生1:我是从书上看到的。
(举起的手放下了一大半。
很明显,大部分同学都看到或听到这个结论,并不理解实质的涵义。
但仍有几位学生的手高高举起,跃跃欲试,脸上的神情告诉老师:他们有更高明的答案。
老师便顺水推舟,让他们来讲。
)生2:我是这样思考的:长方体、正方体和圆柱体它们都是立体图形,体积都是指它们所占空间的大小。
而长方体、正方体的体积都可以用底面积乘高来计算,所以我想计算圆柱体的体积时也应该可以用底面积乘高吧!师:你能迅速地把圆柱体与以前学过的长方体、正方体联系起来,进而联想到圆柱体的体积计算方法。
真行!当然这仅是你的猜测,要是再能证明就好了。
生3:我可以证明。
推导长方体体积公式时,我们是采用摆体积单位的方法,用每层个数(底面积)×层数(高)现在求圆柱体积我们也可以沿袭这种思路,在圆柱体内部同样摆上合适的体积单位,用每层个数×层数,每层的个数也就是它的底面积,摆的层数也就是高。
那不就证明了圆柱体积的计算公式就是用底面积乘高吗?(教室里立刻响起了热烈的掌声,许多同学被他精彩的发言折服了,理性的思维散发出诱人的魅力。
)师:你真聪明,能用以前学过的知识解决今天的难题!(这时举起的手更多了。
)生4:我有个想法不知是否可行、在推导圆面积计算方法时,我们是把圆转化成了长方形,圆柱的底面就是一个圆,所以我就想是否可以把圆柱体转化成长方体呢?师:(翘起了大拇指)你这种想法很有意思!等会你可以试一试,想想怎样分割能把一个圆柱体转化成近似的长方体。
《圆柱的体积》教案《圆柱的体积》教案范文(通用5篇)作为一名老师,时常会需要准备好教案,教案有助于顺利而有效地开展教学活动。
那要怎么写好教案呢?以下是小编整理的《圆柱的体积》教案范文(通用5篇),希望能够帮助到大家。
《圆柱的体积》教案1教学目标:1.结合实际让学生探索并掌握圆柱体积的计算方法,能正确运用公式解决简单的实际问题。
2.让学生经历观察、猜想、验证等数学活动过程,培养学生空间想象能力和探究推理能力,渗透“转化”、“极限”等数学思想,体验数学研究的方法。
3.通过圆柱体积计算公式的推导、运用的过程,体验数学问题的探索性和挑战性,获得成功的喜悦。
教学重点:理解并掌握圆柱体积计算公式,并能应用公式计算圆柱的体积。
教学准点:掌握圆柱体积公式的推导过程。
教学准备:圆柱的体积演示教具、多媒体课件、圆柱实物2个(一个为橡皮泥)、水槽、水。
教学过程:一、情境激趣导入新课1、课始师首先出示一个长方体和一个正方体,说说怎样求它们的体积,接着师往正方体容器中倒入一定量的水,然后拿出一个圆柱形物体准备投入水中并让学生观察:有什么现象发生?由这个发现你想到了些什么?2、提问:“能用一句话说说什么是圆柱的体积吗?”(板书课题)二、自主探究,学习新知(一)设疑1、从刚才的实验中你有办法得到这个圆柱学具的体积吗?2、再出示一个用橡皮泥捏成的圆柱体模型,你又能用什么好办法求出它的体积?3、如果要求大厅内圆柱的体积,或压路机前轮的体积,还能用刚才的方法吗?(生摇头)师:看来,我们刚才的方法有一定的局限性,要是能像求长方体或正方体那样,有一个通用的公式(二)猜想1、猜想一下圆柱的体积大小可能与什么有关?理由是什么?2、大家再来大胆猜测一个,圆柱的体积公式可能是什么?说说你的理由?(三)验证1、为了证实刚才的猜想,我们可以通过实验来验证。
怎样进行这个实验呢?结合我们以往学习几何图形的经验,说说自己的想法。
(用转化的方法,根据学生叙述课件演示圆的面积公式推导过程)2、圆柱能转化成我们学过的什么图形呢?它又是怎么转化成这种图形的?(小组讨论后汇报交流)3、指名两位学生上台用圆柱体积教具进行操作,把圆柱体转化为近似的长方体。
人教版数学六年级下册圆柱的体积导学案推荐3篇〖人教版数学六年级下册圆柱的体积导学案第【1】篇〗教学内容:北师大版教学六年级《圆柱的体积》教学目标:1、结合具体的情境和实践活动,理解圆柱体体积的含义。
2、经历探索圆柱体积计算方法的过程,掌握圆柱体积的计算方法,能正确计算圆柱的体积,并会解决一些简单的实际问题。
3、培养学生初步的空间观念和思维能力;教学重点:理解和掌握圆柱的体积计算公式,会求圆柱的体积。
教学难点:理解圆柱体积计算公式的推导过程。
教具准备:圆柱体积演示教具。
教学过程:一、旧知铺垫1、谈话引入最近我们认识了圆柱和圆锥,还学会了计算圆柱的表面积。
现在请看老师的这个圆柱形杯子和这个圆柱比较,谁大?这里所说的大小实际是指它们的什么?(生答)2、提出问题:什么叫体积?我们学过那些图形的体积?怎么算的?(生答师随之板书)这节课我们就来学习圆柱的体积。
二、自主探究,解决问题(一)认识圆柱体积的意义。
圆柱的体积到底是指什么?谁能举例说呢?(二)圆柱体积的计算公式的推导。
1、我们学过长方体和正方体体积的计算,圆柱体的体积跟什么有关呢?你会有怎样的猜想?(小组内说说)2、回忆圆面积的推导过程。
3、教具演示。
(1)取圆柱体模型。
(2)将圆柱体切成两半。
(3)分别将两半均分成若干小块。
(4)动手拼成一个近似的长方体。
(三)归纳公式。
(板书:圆柱的体积=底面积高)用字母表示:(板书:V=Sh)三、巩固新知1、这个杯子的底面半径为6厘米,高为16厘米,它的体积是多少?审题。
提问:你能独立完成这题吗?指名一同学板演,其余学生做在练习本上。
现在这个杯子装了2/3的水,装了多少水呢?2、完成试一试3、跳一跳:统一直柱体的体积的计算方法。
四、课堂总结、拓展延伸这节课学习了什么内容?圆柱的体积怎样计算,这个公式是怎样得到的?这个公式适合哪些图形?他们有什么共同特点?五、布置作业练一练1-5题。
〖人教版数学六年级下册圆柱的体积导学案第【2】篇〗《圆柱的体积》教案文档合集八篇〖人教版数学六年级下册圆柱的体积导学案第【3】篇〗教学内容:人教版小学数学六年级下册《圆柱的体积》P25-26。
六年级下册《圆柱的体积》导学案北师大版数学教案标题:六年级下册《圆柱的体积》导学案北师大版数学教案一、教学目标:1. 知识与技能:理解并掌握圆柱体的体积公式,能够熟练运用公式计算圆柱体的体积。
2. 过程与方法:通过观察、比较和实践操作,培养学生的空间观念和几何直观能力,提高解决实际问题的能力。
3. 情感态度价值观:激发学生对学习数学的兴趣,体验数学在生活中的应用。
二、教学重难点:重点:理解和掌握圆柱体的体积公式,能灵活运用公式解决问题。
难点:理解圆柱体体积公式的推导过程。
三、教学过程:(一)导入新课1. 教师展示一个圆柱形的物体,提问:“同学们,你们知道这是什么形状的物体吗?”引导学生回答“圆柱体”。
2. 教师接着提问:“我们已经学习过长方体和正方体的体积,那你们知道如何计算圆柱体的体积吗?今天我们就来学习这个问题。
”(二)探究新知1. 探索圆柱体体积公式教师首先复习以前学过的知识,引导学生回忆长方体和正方体的体积公式。
然后让学生猜测圆柱体的体积可能与哪些量有关,并进行小组讨论。
2. 推导圆柱体体积公式教师给出一个圆柱体模型,让学生观察并思考其体积可能与哪些量有关。
引导学生发现,圆柱体的体积可能与底面半径r,高h以及π有关。
然后,教师指导学生用等分法将圆柱体分割成许多小块,再拼成一个近似的长方体,以此来推导出圆柱体的体积公式。
3. 讲解圆柱体体积公式教师讲解圆柱体体积公式的含义,即圆柱体的体积等于底面积乘以高,公式为V=πr²h。
(三)巩固练习教师设计一些练习题,让学生运用所学的知识计算圆柱体的体积,以此来巩固和加深对圆柱体体积公式的理解。
(四)课堂总结教师带领学生回顾本节课的主要内容,强调圆柱体体积公式的记忆和运用。
四、作业布置:1. 完成课本上的相关习题。
2. 寻找生活中的一些圆柱体,测量它们的底面半径和高,然后计算它们的体积。
五、板书设计:1. 圆柱体的定义及特点2. 圆柱体体积公式的推导过程3. 圆柱体体积公式的表达式:V=πr²h。