算法案例---辗转相除法与更相减损术
- 格式:doc
- 大小:37.50 KB
- 文档页数:4
辗转相除法与更相减损术学习目标:1°理解辗转相除法与更相减损术中蕴含的数学原理,根据原理进行算法分析; 2°能根据算法语句与程序框图的知识设计完整的程序框图并写出算法程序; 3°感受算法的意义和价值。
知识情境:1:10 WHILE 语句: 计算机执行语句的过程是20 UNTIL 语句: 计算机执行语句的过程是你能编写一个程序,用二分法求方程220(0)x x -=>的近似解吗?2:我们已经学过求最大公约数的方法,你能求出18与30的公约数吗?如果公约数比较大而且根据我们的观察又不能得到一些公约数,又应该怎样求它们的最大公约数?比如,如何求1424与801的最大公约数?知识生成:1. 教学辗转相除法:思路:可以利用除法将大数化小,找两数的最大公约数.(适于两数较大时)(1)用较大的数m 除以较小的数n 得到一个商0S 和一个余数0R ;(2)若0R =0,则n 为m,n 的最大公约数;若0R ≠0,则用除数n 除以余数0R 得到一个商1S 和一个余数1R ;(3)若1R =0,则1R 为m,n 的最大公约数;若1R ≠0,则用除数0R 除以余数1R 得到一个商2S 和一个余数2R ;……依次计算直至n R =0,此时所得到的1n R -即为所求的最大公约数.例题1:求两个正数1424和801的最大公约数.①以上我们求最大公约数的方法就是辗转相除法,也叫欧几里德算法.②由上述步骤可以看出,辗转相除法中的除法是一个反复执行的步骤,且执行次数由余数是否等于0来决定,所以可把它看成一循环体,写出辗转相除法完整的程序框图和程序语言.2. 教学更相减损术:我国早期也有求最大公约数问题的算法,就是更相减损术. 在《九章算术》中有更相减损术求最大公约数的步骤:可半者半之,不可半者,副置分母•子之数,以少减多,更相减损,求其等也,以等数约之.翻译为:(1) 任意给出两个正数;判断它们是否都是偶数. 若是,用2约简;若不是,执行第二步.(2) 以较大的数减去较小的数,接着把较小的数与所得的差比较,并以大数减小数. 继续这个操作,直到所得的数相等为止,则这个数(等数)就是所求的最大公约数.例题2. 用更相减损术求91和49的最大公约数.练一练::1.求两个正数8251和2146;228和1995;5280和12155的最大公约数.2.用更相减损术求72和168的最大公约数.3.编写一个程序, 求两个正数8251和2146的最大公约数.4.比较辗转相除法与更相减损术的区别(1)都是求的方法,计算上辗转相除法以法为主,更相减损术以法为主,计算次数上法计算次数相对较少,特别当两个数字时计算次数的区别较明显.(2)从结果体现形式来看,辗转相除法体现结果是以则得到,而更相减损术则以而得到.。
高一数学078 高一年级班教师方雄飞学生课题 1.3.1 算法案例————辗转相除法、更相减损术一、学习目的1.理解辗转相除法与更相减损术中蕴含的数学原理,并能根据这些原理进行算法分析。
2.了解秦九韶算法的计算过程,并理解利用秦九韶算法可以减少计算次数提高计算效率的实质。
3.基本能根据算法语句与程序框图的知识设计完整的程序框图并写出算法程序。
二、学习重点、难点重点:理解辗转相除法与更相减损术求最大公约数的方法。
理解秦九韶算法的思想。
难点:把辗转相除法与更相减损术、秦九韶算法的方法转换成程序框图与程序语言。
三、学习过程复习回顾直到型循环与当型循环的程序语言分别是什么?知识探究(一):辗转相除法思考1: 18与30的最大公约数是多少?你是怎样得到的?思考2: 对于8251与6105这两个数,由于其公有的质因数较大,利用上述方法求最大公约数就比较困难.注意到8251=6105×1+2146,那么8251与6105这两个数的公约数和6105与2146的公约数有什么关系?思考3: 又6105=2146×2+1813,同理,6105与2146的公约数和2146与1813的公约数相等.重复上述操作,你能得到8251与6105这两个数的最大公约数吗?例1:用辗转相除法求225和135的最大公约数练习1:利用辗转相除法求两数4081与20723的最大公约数.思考4:上述求两个正整数的最大公约数的方法称为辗转相除法或欧几里得算法.一般地,用辗转相除法求两个正整数m,n的最大公约数,可以用什么逻辑结构来构造算法?其算法步骤如何设计?第一步,给定两个正整数m,n(m>n).第二步,第三步,第四步,第五步,思考5:该算法的程序框图如何表示?思考6:该程序框图对应的程序如何表述?知识探究(二):更相减损术思考1:设两个正整数m>n,若m-n=k,则m与n的最大公约数和n与k的最大公约数相等.反复利用这个原理,可求得98与63的最大公约数为多少?练习2:用更相减损术求两个正数84与72的最大公约数思考2: 上述求两个正整数的最大公约数的方法称为更相减损术.一般地,用更相减损术求两个正整数m,n的最大公约数,可以用什么逻辑结构来构造算法?其算法步骤如何设计?第一步,给定两个正整数m,n(m>n).第二步,第三步,第四步,第五步,思考3: 该算法的程序框图如何表示?思考4:该程序框图对应的程序如何表述?知识探究(三):辗转相除法与更相减损术的区别(1)都是求最大公约数的方法,计算上辗转相除法以为主,更相减损术以为主,计算次数上辗转相除法计算次数相对,特别当两个数字大小区别较大时计算次数的区别较明显。
教师课时教案问题与情境及教师活动学生活动思考3:上述求两个正整数的最大公约数的方法称为辗转相除法或欧几里得算法.一般地,用辗转相除法求两个正整数m, n的最大公约数,可以用什么算法?其算法步骤如何设计?辗转相除法,就是对于给定的两个正整数,用较大的数除以较小的数,若余数不为零,则将余数和较小的数构成新的一对数,继续上面的除法,直到大数被小数除尽为止,这时的较小的数即为原来两个数的最大公约数.思考4:你能否把辗转相除法编程?辗转相除法求两个数的最大公约数,其算法步骤可以描述如下:第一步,给定两个正整数m, n.第二步,求余数I•:计算m除以n,将所得余数存放到变量I■中.第三步,更新被除数和余数:m=n, n=r.第四步,判断余数「是否为0.若余数为0,则输出结果;否则转向第二步继续循坏执行.程序框图如下图:程序:过程及方法思考4:你能用当型循环结构构造算法,求两个正整数的最大公约数吗?试画出程序框图和程序.当型循坏结构的程序框图如右图程序:探究二:更相减损术思考1:设两个正整数m>n,若m-n=k,则m 与 n 的最大公约数和n 与k 的最大公约数相 等.反复利用这个原理,可求得98与63 的最大公约数为多少? 解:由于63不是偶数,把98和63以大数减小数, 并辗转相减,如下图所示. 所以,98和63的最大公约数等于7. 思考2:上述求两个正整数的最大公约数的方法称 为更相减损术•一般地,用更相减损术求两个正整数m, n 的最 大公约数,可以用什么逻辑结构来构造算法? 更相减损术,就是对于给定的两个正整数,用较大的数减去较小 的数,然后将差和较小的 数构成新的一对数, 继续上面的减法, 直到差和较小的数相等, 此时相等的两数即为原来 两个数的最大公约数. 思考3:你能否把更相减损术编程? 探究三:辗转相除法与更相减损术的区别(1) 都是求最大公约数的方法,计算上辗转相除法以除法为主,更相减损术以减法为主,计算次数上辗转相除法计算次数相对较少, 特别当两个数字大小区别较大时计算次数的区别较明显。
课题:算法案例——辗转相除法和更相减损术教材:人教版普通高中课程标准实验教科书必修3第一章第1.3节1、教材分析与传统教学内容相比,《算法初步》为新增内容,算法是计算机科学的重要基础,算法思想已经渗透到社会的方方面面,算法思想也逐渐成为每个现代人应具有的数学素养。
算法思想即体现了时代的特点,也是中国古代数学灿烂的历史和巨大的贡献在新层次上的复兴。
本节内容是探究古代算法案例――辗转相除法和更相减损术,经历设计算法解决问题的全过程,体会算法在解决问题中的重要作用,体会算法的基本思想,提高逻辑思维能力,发展有条理的思考和数学表达能力,巩固算法三种描述性语言(自然语言、图形语言和程序语言),提高学生分析和解决问题的能力。
2、教学目标分析:(1)知识目标:①理解辗转相除法和更相减损术求两个正数的最大公约数的原理;②能用写算法步骤、画流程图和编程序表达辗转相除法;说明:在这里,理解案例中的新的知识是理解算法的必要的前提,但重要的是理解案例中的算法核心思想,而不是强调对案例中新知识的记忆和灵活运用。
(2)能力目标:①培养学生把具体问题抽象转化为算法语言的能力;②培养学生自主探索和合作学习的能力。
(3)情感目标:①使学生进一步了解从具体到一般思想方法。
②体会中国古代数学对世界数学的巨大贡献,培养爱国思想和学习数学的积极性。
3、教学重点与难点分析:(1)教学重点:能用写算法步骤、画流程图和编程序表达辗转相除法及更相减损术。
(体会算法解决问题的全过程)(2)教学难点:用不同逻辑结构的程序框图表达算法;4、教学方法与手段(1)、教法:阅读指导,以问题为载体,有引导的对话,让学生经历知识的形成过程和发展过程,有利于学生活动的充分展开。
(2)、学法:以观察、讨论、思考、分析、动手操作、自主探索、合作学习多种形式相结合,引导学生多角度、多层面认识事物,突破教学难点。
5、教学过程设计分析:辅助工具:ppt课件知识准备:带余除法6、评价分析:(1)、指导思想:①新知识与旧知识相结合的原则;②掌握知识与发展智力、能力相统一的原则;③教师的主导作用与学生的主体作用相结合的原则。
高中数学例题:辗转相除法与更相减损术例1.分别用辗转相除法和更相减损术求378与90的最大公约数.【答案】18【解析】用辗转相除法:378=90×4+18,90=18×5.∴378与90的最大公约数是18.用更相减损术:∵378与90都是偶数,∴用2约分后得189和45.189-45=144,144-45=99,99-45=54,54-45=9,45-9=36,36-9=27,27-9=18,18-9=9.∴378与90的最大公约数为2×9=18.【总结升华】比较辗转相除法与更相减损术的区别(1)都是求最大公约数的方法,计算上辗转相除法以除法为主,更相减损术以减法为主,计算次数上辗转相除法计算次数相对较少,特别当两个数字大小区别较大时计算次数的区别较明显;(2)从结果体现形式来看,辗转相除法体现结果是以相除余数为0则得到,而更相减损术则以减数与差相等而得到.由该题可以看出,辗转相除法得最大公约数的步骤较少.对比两种方法控制好算法的结束,辗转相除法是到达余数为0,更相减损术是到达减数和差相等.举一反三:【变式1】(1)用更相减损术求两个正数84与72的最大公约数.(2)利用辗转相除法求3869与6497的最大公约数与最小公倍数.【解析】(1)因为84=21×4,72=18×4,所以21-18=3,18-3=15,15-3=12,12-3=9,9-3=6,6-3=3.所以21和18的最大公约数等于3.所以84和72的最大公约数等于12.【总结升华】先约简,再求21与18的最大公约数,然后乘以约简的4得84与72的最大公约数.(2)6497=3869×1+2628,3869=2628×1+1241,2628=1241×2+146,1241=146×8+73,146=73×2+0.所以3 869与6 497的最大公约数为73,最小公倍数为3 869×6497÷73=344341.例2.求三个数:168,54,264的最大公约数.【思路点拨】运用更相减损术或辗转相除法,先求168和54的最大公约数a,再求a与264的最大公约数.【答案】6【解析】采用更相减损术先求168和54的最大公约数.(168,54)→(114,54)→(60,54)→(6,54)→(6,48)→(6,42)→(6,36)→(6,30)→(6,24)→(6,18)→(6,12)→(6,6).故168和54的最大公约数为6.采用辗转相除法求6和264的最大公约数.∵264=44×6+0,∴6为264与6的最大公约数,也是这三个数的最大公约数.【总结升华】求最大公约数通常有两种方法:一是辗转相除法;二是更相减损术,对于3个数的最大公约数的求法,则是先求其中两个数的最大公约数m,再求m与第三个数的最大公约数.同样可推广到求3个以上数的最大公约数.举一反三:【变式1】求三个数324,243,135的最大公约数.【答案】27【解析】∵324=243×1+81,243=81×3+0,∴324与243的最大公约数为81.又135=81×1+54,81=54×1+27,54=27×2+0,∴81与135的最大公约数为27.∴三个数324,243,135的最大公约数为27.更相减损术:∵324-243=81,243-81=162,162-81=81,∴81是324和243的最大公约数.又135-81=54,81-54=27,54-27=27,∴27是81与135的最大公约数.∴三个数324,243,135的最大公约数为27.例3.甲、乙、丙三种溶液分别重147g、343g、133g,现要将它们分别全部装入小瓶中,每个小瓶装入液体的质量相同,问每瓶最多装多少?【思路点拨】由题意,每个小瓶最多能装的溶液的质量应是三种溶液质量的最大公约数.【答案】7g【解析】先求147与343的最大公约数.343-147=196,196-147=49,147-49=98,98-49=49,∴147与343的最大公约数是49.再求49与133的最大公约数.133-49=84,84-49=35,49-35=14,35-14=21,21-14=7,14-7=7.∴147,343,133的最大公约数是7.故每瓶最多装7g.【总结升华】本题关键是分析清楚题意,找出三个数的最大公约数.求三个以上(含三个数)的数的最大公约数时,可依次通过求两个数的最大公约数与第三个数的最大公约数来求得.。
淄博五中高一级部数学学案
孙天军
编号:课题:1.3.1 算法案例(1)--辗转相除法与更相减损术
授课人:备课时间:授课时间:课型:新授课
学案内容
〖学习目标〗
1.通过算法的典型案例,经历设计算法解决问题的全过程,感受算法解决问题的重要作用;
2.理解辗转相除法与更相减损术中蕴含的数学原理,并能根据这些原理进行算法分析,设计出这两种算法的程序框图并写出它们的算法程序;熟练运用这两种算法求最大公约数.
3.进一步体会算法的基本思想,发展有条理地思考与解决问题的能力,提高逻辑思维能力.
〖重点难点〗随记
重点:掌握辗转相除法与更相减损术求最大公约数的方法.
难点:对辗转相除法与更相减损术的算法的基本思想的理解.
〖导学过程〗
板块一:课前自学
1 .回顾算法的三种表述:自然语言、程序框图(三种逻辑
结构)、程序语言(五种基本语句).
2.回顾求两个数的最大公约数的方法.
①24与30的最大公约数.
②求较大的两个数210与462的最大公约数.
板块二:新知探究
1 .问题提出:当两个数公有的质因数(如8251与6105)
较大时,用原来的显然困难,须改进算法,用什么方法好?
2 .点拨:辗转相除法是解决上述问题的有效方法之一,
此算法是欧几里得在公元前300左右首先提出的,因而,又
叫欧几里得算法.
3.师生探究:
例1.用辗转相除法求8251与6105的最大公约数.
探究1:用辗转相除法求两个正数225和135的最大公约数.
探究2:辗转相除法算法步骤如何?其蕴含的数学原理是什么?
请画出用辗转相除法求两个数的最大大公约数的程序框图,并编写程序?
4.问题提出:除了用上述算法求两个数的最大公约数之外还有没有别的算法?
5.点拨:用“更相减损术”:更相减损术,是我国数学家刘徽的专著《九章算术》中记载的.更相减损术求最大公约数的步骤如下:可半者半之,不可半者,副置分母分子之数,以少减多,更相减损,求其等也,以等数约之.翻译出来为:
第一步:任意给出两个正数;判断它们是否都是偶数.若是,用2约简;若不是,执行第二步.
第二步:以较大的数减去较小的数,接着把较小的数与所得的差比较,并以大数减小数.继续这个操作,直到所得的数相等为止,则这个数(等数)就是所求的最大公约数.
6.师生再探:
例2 .用更相减损术求91与49的最大公约数.
探究3:怎样用更相减损术求182与98的最大公约数?
探究4:用更相减损术求80与36的最大公约数,并用辗转相除法检验结果.探究5:“更相减损术”蕴含的数学原理是什么?
思考: “辗转相除法”与“更相减损术”的区别是什么?
(1)都是求最大公约数的方法,计算上辗转相除法以除法为主,更相减损术以为主,计算次数上辗转相除法计算次数相对,特别当两个数字大小区别较大时计算次数的区别较明显.
(2)从结果体现形式来看,辗转相除法体现结果是以相除余数为则得到,而更相减损术则以减数与差而得到.
板块三:知识拓展
问题提出:如何求三个正整数的最大公约数?
例3.求三个数175、100、75的最大公约数.
板块四:课堂总结
1.“辗转相除法”与“更相减损术”都是求最大公约数有的效方法;
2.计算上辗转相除法以除法为主,更相减损术以减法为主,计算次数上辗转相除法计算次数相对较少,特别当两个数字大小区别较大时计算次数的区别较明显;从结果体现形式来看,辗转相除法体现结果是以相除余数为0则得到,而更相减损术则以减数与差相等而得到.
3.求三个以上(含三个数)的数的最大公约数时,可依次通过求两个数的最大公约数与第三数的最大公约数来求得.
板块五:当堂反馈
1.用辗转相除法求294和84的最大公约数时,需要做除法的次数是()A.2 B.3 C.4 D.5
2.两个整数228和1995的最大公约数是()
A.38 B.57 C.76 D.171
3.用更相减损术求得78与36 的最大公约数为( )
A.24 B.18 C.12 D.6
4.是我国古代数学专著《》中介绍的一种求两数最大公约数的方法.
5.求三个数324、243、135的最大公约数.
6.求四个数84、108、132,156的最大公约数.
7.利用辗转相除法求3869与6497的最大公约数与最小公倍数.
板块六:分层作业:A层做1—3题;B层做1—2题.
1.(1)36与182的最大公约数为;
(2)1978与2008的最大公约数为;
(3)1624与899的最大公约数为;
(4)204与85的最大公约数为;
2.用辗转相除法求下列两数的最大公约数,并用更相减损术检验你的结果(1)300,2007;(2)5280,12155.
3.求三个数168、56、264的最大公约数.
思考题:请设计用“更相减损术”求两个数的最大大公约数的程序.
板块七:课后学习反思:。