变电设备状态监测管理中心平台系统技术设计完整
- 格式:doc
- 大小:480.00 KB
- 文档页数:16
智能变电站一体化监控系统建_设技术规范(正式发布版)标准化文件发布号:(9312-EUATWW-MWUB-WUNN-INNUL-DQQTY-ICSQ/GDW 国家电网公司企业标准Q / GDW679 — 2011智能变电站一体化监控系统建设技术规范Technical specifications for construction of integrated supervision and controlsystem of smart substation2011-02-07发布 2011-02-07实施国家电网公司发布目次前言 .................................................................................................................................................. I I 1范围 . (1)2规范性引用文件 (1)3术语和定义 (1)4 总则 (2)5 体系架构及功能要求 (2)智能变电站自动化体系架构 (2)一体化监控系统架构 (2)系统功能要求 (3)应用间数据流向 (6)6 一体化监控系统结构 (7)系统结构 (7)网络结构 (9)7 系统配置 (9)硬件配置 (9)系统软件配置 (10)时间同步 (11)性能要求 (11)8 数据采集与信息传输 (12)9 二次系统安全防护 (12)编制说明 (13)前言智能变电站是智能电网的重要环节,一体化监控系统是智能电网调度控制和生产管理的基础,是大运行体系建设的基础,是备用调度体系建设的基础。
为规范智能变电站建设,按照“统一规划、统一标准、统一建设”的原则,国家电网公司组织编写了《智能变电站一体化监控系统建设技术规范》。
本标准规定了智能变电站一体化监控系统体系架构、功能要求和系统配置等,为智能变电站设计和建设提供技术标准和依据。
智能变电站辅助系统综合监控平台一、系统概述智能变电站辅助系统综合监控平台以“智能感知和智能控制”为核心,通过各种物联网技术,对全站主要电气设备、关键设备安装地点以及周围环境进行全天候状态监视和智能控制,完成环境、视频、火灾消防、采暖通风、照明、SF6 安全防范、门禁、变压器、配电、UPS等子系统的数据采集和监控,实现集中管理和一体化集成联动,为变电站的安全生产提供可靠的保障,从而解决了变电站安全运营的“在控”、“可控”和“易控”等问题。
二、系统组成(一)、系统架构GPRS/3G/4G TCP/IP RS485/RS232智能变电站辅助系统综合监控平台变压器配电环境SF6 音视频安防消防门禁空调灯光(二八系统网络拓扑智能变电站辅助系统综合监控平台将各种子系统通过以太网或 RS232/485接口进行连接,包括前端的摄像机、各种传感器、中心机房的存储设备、服务器等, 并通过软件平台进行集成和集中监视控制,形成一套辅助系统综合监控平台。
(三八 核心硬件设备:智能配电一体化监控装置PDAS-100系列智能配电一体化监控装置,大批量应用在变电站、开闭所和基 站,实践证明产品质量的可靠性,能够兼容并利用现有绝大部分设备, 有效保护 客户的已有投资。
能够实现大部分的传感器解析和设备控制, 以及设备内部的联 动控制,脱机实现联动、报警以及记录等功能。
工业级设计,通过 EMC4级和国 网指定结构检测。
智能配电一体化监控装置是针对电力配电房的电缆温度以及母线温度无线 检测,变压器运行情况以及油温检测、配电、环境、有害气体以及可燃气体和腐 蚀性气体检测、安防、消防、采暖通风除湿机控制、灯光控制以及门禁而设计生 产的一款产品。
它通过以太网TCP/IP 或者GPRS/3G/4C 网络,主要解决分布式无 人值守配电房的监控和管理问题。
1)置触摸屏支持单机管理配置7寸TFT 触摸屏,可以在触摸屏上进行网络参数设置、监控对象上下限 设置,状态监测、设备控制等功能,即使不联网也可以实现绝大部分功能。
变电站一体化信息平台的设计摘要:电力作为国家基本的战略储备能源,电能的科学合理运行,可推动整个社会得到健康的可持续发展,智能变电站的创建是未来国家电网发展的主流趋势,唯有创建一体化的智能变电站才能够促使我国当下的能源运作体系得以完善,有效解决能源分布不均匀等现实问题。
然而,智能电网的建设需以一体化的智能变电站为前提,为此,做好智能变电站一体化信息平台设计工作非常关键。
关键词:智能变电站;一体化;信息平台;设计0 引言本文重点讲述智能变电站一体化平台的设计过程和实现过程。
在功能设计上,将对生产设备监测,视频联动,设备状态分析,智能巡检,设备智能分析决策等进行重点展开。
在性能设计上,为了实现平台的高可靠性和高可用性,将对系统架构设计进行优化升级,采用双网设计,集群架构。
在软件体系结构上,为了达到平台的可维护和可扩张性,将采用分层架构结合SOA架构设计实现。
通过智能变电站一体化平台,将使传统数字化变电站更高效更智能。
在视频巡检和视频联动上,将为无人变电站的实现走出重要一步。
在生产设备监测基础上展开的设备智能分析决策系统,将是数字化向智能化转变的重要贡献。
1 智能变电站一体化平台概述变电站智能应用平台作为智能变电站站控层的全景数据中心,收集、处理、存储设备状态监测分析结果数据、设备状态监控可视化数据、智能辅助系统数据、测控及保护数据、故障录波数据等的各种数据。
并具备智能告警及分析决策、故障信息综合分析决策、设备状态可视化、设备状态检修、智能巡检等高级应用功能。
通过智能应用平台,位于主站端的调度人员和技术专家能够对各个变电站的运行情况进行远程实时监控,对于变电站的安全管理、集中监控、无人值班的实现,以及智能变电站的建设具有重要意义。
同时能对变电站的控件数据进行智能分析,智能算法得出报告。
变电站智能平台包括:生产设备监测、设备状态分析、网络设备监控、智能告警分析与决策、设备状态报告生成,辅助系统管理等内容。
变电站电力设备综合状态在线监测系统变电站电力设备综合状态在线监测系统一、应用范围及特点变电站电力设备综合在线监测系统主要针对110kV及以上电压等级变电站内关键电力设备(变压器、GIS、断路器、容性设备、避雷器、电力电缆等)进行在线监测,并通过对不同电力设备多种运行参量的综合分析为全面评估设备的运行状态和寿命预测提供准确的现场运行数据。
系统主要特点:采用分层次监测的系统结构,将电力局管辖区域内的多个变电站内的多种电力设备在线监测作为一个整体进行规划和设计,在统一的硬件平台、统一的软件平台和统一的数据库上实现变电站多种电力设备、多个状态参量的集成监测,避免了在线监测简单拼凑带来的弊端,使监测系统具有良好的兼容性、可扩展性和可维护性。
采用目前国际上最先进的数据采集硬件和PXI测控总线结构,不同设备和数据中间之间的通讯采用IEC61850标准,能够保证监测数据的准确性和可靠性。
超高频局部放电监测采用外置的微带天线传感器(带宽:3000MHz)进行测量,并对采集到的单次放电波形进行多种分析,从真正意义上实现了超高频局部放电的在线监测。
所有传感器的安装不改变变压器的本体结构,不影响设备的正常运行。
现场前置机机柜、智能采集单元和所有外置传感器的结构设计均符合高海拔、大温差户外长期使用的要求,系统具备定期自检和故障自恢复功能,能在规定的工作条件下长期可靠工作。
远程数据监控中心采用双机热备+磁盘阵列的结构保证数据长期存储的可靠性,采用电力局区域互联网通信的方式,通过浏览器方式可以远程监控管理终端和监控中心连接,实现电力局办公桌面查看现场数据,并提供无线接入方式。
系统软件采用模块化结构设计和图元设计,同时具备自动监测和手动监测功能,具有良好人机界面,易操作,易升级。
二、技术参数1. 电容性设备:介质损耗角正切分辨率达1‰。
长期检测稳定性小于5‰。
检测单元测量误差小于5‰智能监测单元电磁兼容满足相关技术标准,同时支持现场通讯协议;2.避雷器电流测量精度小于2%(现场干扰条件下测量);能够对测量结果进行温湿度修正;长期监测稳定性小于1%;电磁兼容应足相关技术标准,同时支持现场通讯协议;3.断路器:a) 电寿命诊断分合闸过程电流波形正常工作和分合闸过程电流幅值电弧持续时间(准确性≤±10%)分合闸动作次数、时间及日期主触头累计电磨损(以I2T 或IT 表征)(受燃弧时间判断的影响,测量精度≤±15%)b) 机械系统诊断线圈分合闸时间分合闸线圈电流波形断路器分/合状态c) 控制回路状态监测辅助触点动作时间d) 储能机构状态监测储能电机工作电流波形储能电机启动次数4 变压器:a)射频局部放电监测单元传感器频带:100kHz~15MHz实时采样带宽:15MHz相位分析窗口数:4000放电统计参量分析功能,包括:基本放电参量:最大放电量、平均放电量、放电次数二次统计参量:偏斜度、峭度二维谱图显示:最大放电量相位分布Hqmax(φ)、平均放电量相位分布Hqn(φ)、放电次数相位分布Hn(φ)二维放电谱图三维放电谱图:放电次数-放电量-相位b)超高频局部放电监测单元传感器频带:10MHz~3000MHz实时采样带宽:300MHz实时采样速率:2000MS/s等效采样速率:2000MS/s纳秒单次放电分析功能,包括:时域指纹分析、频域指纹分析、联合时频分析、基于小波提取的分形分析c)油中气体色谱在线监测最小分析周期: ≤4小时;工作环境温度:-30℃~45℃;安装接口位置:油路循环范围内;测量精度:气体组分灵敏度测量范围检测精度H2 ≤1μL/L 1-2000μL/L ≤10%CO ≤1μL/L 1-5000μL/L ≤10%CH4 ≤1μL/L 0.1-2000μL/L ≤10%C2H6 ≤1μL/L 0.1-2000μL/L ≤10%C2H4 ≤1μL/L 0.1-2000μL/L ≤10%C2H2 ≤1μL/L 0.1-500μL/L ≤10%总烃≤1μL/L 1-8000μL/L ≤10%d)套管介质损耗角正切在线监测(可选)介质损耗角正切分辨率达10-3长期检测稳定性小于5×10-3检测单元测量误差小于±1%读数+0.0005e)油中温度在线监测温度检测范围:-30℃~+125℃温度测量精度:0.5℃f) 铁芯接地故障在线监测最小电流分辨率1mA最大可测量电流范围应达到100A5 环境参数监测:环境参数环境温度 -50~80℃ ±0.5% 环境湿度 0~98%RH ±2%三、系统构成采用分层次在线监测的方式,将需要在线监测的电力设备按照区域划分为多个单元(通常将一回出线上的所有电力设备划分为一个单元)。
变电站监控系统设计方案一、背景变电站是电力系统的重要组成部分,负责将电网中高压电能通过变压器降压至低压,向居民、企业提供稳定的电力供应。
为了确保变电站正常高效运行,需要安装监控系统对变电站的设备运行状态、电能质量、安全隐患等进行监测管理。
二、设计目标本文的设计目标为建立一套实用高效的变电站监控系统,能够对变电站设备运行状态进行实时监测,及时发现异常情况并做出响应,确保电能的稳定供应,保障变电站运行的可靠性。
三、系统架构1.硬件架构变电站监控系统的硬件架构主要由以下设备组成:传感器、数据采集设备、控制器、通信设备、存储设备和显示设备。
(1)传感器:安装在变电站的各个设备上,用于监测电流、电压、温度、湿度等相关参数。
(2)数据采集设备:连接传感器,用于采集传感器监测到的数据,并将数据传输给控制器进行处理。
(3)控制器:负责对采集的数据进行处理分析,并根据分析结果做出响应。
(4)通信设备:物联网技术应用,将采集的数据通过互联网传输到云端服务器,以便于后续的监测和分析。
(5)存储设备:用于存储传感器采集到的历史数据,并提供查询和分析功能。
(6)显示设备:用于显示变电站各个设备的运行状态、电能质量等相关信息。
2.软件架构变电站监控系统的软件架构主要由以下几个部分组成:操作系统、数据分析平台、Web应用、移动应用程序等。
(1)操作系统:通常采用嵌入式操作系统,用于控制器的管理和控制。
(2)数据分析平台:用于对采集的数据进行预处理、清洗、分析,并生成报表、图表等数据分析结果。
(3)Web应用:用于提供实时监控、数据查询、分析和报警等服务,管理员可以通过浏览器登录Web界面,查看变电站的运行状态和历史数据等信息。
(4)移动应用程序:为了方便变电站管理人员随时随地了解变电站运行状态,可以开发移动应用程序,通过手机或平板电脑等移动设备访问系统,监控变电站实时运行情况。
四、主要功能1.数据采集和处理功能变电站监控系统能够实现对各种传感器采集的数据进行快速、准确的处理和分析。
智能变电站综合监控系统技术方案第一章项目需求分析和建设目标智能变电站综合监控系统用以解决传统变电站监控平台自动化水平低、安全等级差、工作效率低、管理及维护成本高的问题,一旦变电站/电网企内部发生安全或者设备数据警讯,系统可通过综合监控系统集中管理、集中监控、集中存储,便于应急指挥,摆脱了传统系统各自独立、各自为政的旧模式,为变电站的管理向自动化、网络化、数字化、智能化方向发展提供有力的技术保障。
第二章系统设计规范及系统结构根据《智能变电站技术导则》(Q/GDW_383-2009)、《110kV~220kV智能变电站设计规范》(Q/GDW_393-2009)、《330kV~750kV智能变电站设计规范》(Q/GDW_394-2009)等文件精神,结合我公司实际应用案例,采用分布式和模块化架构,把智能变电站综合监控系统分为三级中心、六大功能模块、八大业务子系统。
1、三级中心:三级中心为省、市和集控站三级中心,或者市调、集控站和变电站三级中心,根据不同的实际情况进行配置和管理。
2、六大功能模块:管理服务器认证管理服务器(集群/分发管理)流媒体服务器(含网关服务器)通信服务器(前端设备通信)录像服务器(录像、磁盘管理)客户端(含解码)3、八大业务子系统视频监控子系统;环境监测子系统;安全警卫子系统;消防子系统;门禁子系统;设备控制子系统;SF6监测报警子系统;四遥联动子系统第三章统设计原则为确保系统建成后顺利运行及适应未来技术发展的需要,在本次智能变电站综合监控系统工程设计中,电科恒钛坚持长远规划分布实施的原则,将系统建设成为一种具有技术先进,实用可靠,扩展性好,有利管理,投资合理的监控系统。
1、可靠性原则在本次视频及环境监控系统工程中,我们首先考虑的是实用性和可靠性,遵循面向应用、注重实效、急用先上、逐步完善的原则,以确保使用的技术及设备成熟可靠。
在系统的设计和实施工程中,充分考虑系统的可靠性。
在整体设计时关键部位必须有充足的备份措施,对于重要的网络部位应当采取先进可靠的容错技术。
近几年,国内开展了大量的变电设备状态检修技术的研究和应用,有的以开发在线监测技术为主,有的以制定状态检修导则为主。
持续开展变电设备状态检修,需要有个平台支持,它在设计思路上要适应状态检修技术的特点,具备适应未来发展的构架,帮助电力企业实现从计划检修向状态检修的过渡。
1系统设计思路1.1以状态检修导则为依据状态检修导则是电力技术专家多年从事变电设备运行、诊断和检修实践的结晶。
针对变电设备的差异,需要分别制定相应的状态检修导则,导则制定时要充分考虑数字化的需要。
系统的功能框架、整合的数据源、人机交互界面等等都要围绕状态检修导则进行设计。
1.2综合利用各种检测手段获得数据系统综合利用预防性试验、带电测试、在线监测、运行巡视等手段来开展状态检修。
预防性试验的数据比较准确、可靠;电容型设备带电测试的数据比较稳定可靠,在在线监测技术还未完善的情况下,带电测试技术是个很好的补充;在线监测是发展的趋势,是及时发现设备故障的有效手段;人的感官是设备状态量采集的重要途径,很多设备缺陷都是在巡视中发现的。
这些手段需要根据设备的特点,分别加以适当组合应用,以准确把握设备的状态。
3参考OS BM 构架进行分层OSA-CBM 是Open System Architecture for Con-dition Based Maintenance 的简称,它是国际上一个开放的分布式的通用状态检修构架。
OSA-CBM 的7层模型如图1所示。
7层的主要功能如下:(1)数据采集使用各种传感器采集数据。
(2)信号处理使用特征量的算法对处理单通道/多通道的信号进行处理,加工成为状态量。
(3)状态监测将状态量与期望值或者警戒值等进行比较,提示设备状态。
(4)健康评估评估设备的健康状况,生成评估报告。
(5)状态预测评估设备的剩余寿命(RUL ),预测设备在未来的健康状况。
(6)检修决策提供检修建议及检修安排。
()展现界面进行状态提示、健康评估、预测和决策等的人机交互界面。
用电智慧管理系统设计方案电力智慧管理系统是一种基于信息技术和物联网技术的管理系统,通过智能化的设备和软件,实现对电力设备的监测、控制和管理。
该系统能够提高电力设备的使用效率和管理水平,有效降低能耗和运维成本。
下面是一个电力智慧管理系统的设计方案:一、系统架构电力智慧管理系统的总体架构分为硬件层、通信层、平台层和应用层四个层次。
硬件层:包括各种传感器、智能电表、智能插座等设备,用于实时监测电力设备的状态和电能消耗。
通信层:使用物联网技术,将硬件层采集到的数据传输到平台层,可以选择无线网络、有线网络等方式。
平台层:搭建一个数据中心,用于接收、存储和处理从通信层传输过来的数据,提供数据的实时查询和分析功能。
应用层:根据用户需求,提供各种功能模块,如电力设备的远程监控、电能消耗的实时统计、异常报警等。
二、系统功能1. 实时监测与控制:通过智能设备和传感器,实时监测电力设备的开关状态、功率消耗、电压电流等参数,并提供远程控制功能,用户可以通过手机、电脑等终端设备实现对设备的操作和控制。
2. 数据分析与统计:对采集到的数据进行统计和分析,可以生成电力消耗的报表,帮助用户了解设备的使用情况和能耗情况,以便优化设备的使用策略。
3. 预测与优化:通过对历史数据进行分析,结合先进的算法模型,可以预测未来的电能需求和电能消耗情况,帮助用户做出合理的用电计划和优化策略,提高用电效率。
4. 异常监测与报警:系统可以实时监测设备的工作状态,一旦发现设备出现异常,如电压波动、设备故障等,系统会及时发送报警信息给相关人员,提醒其进行处理和维修。
5. 用户管理与权限设置:系统允许多用户同时使用,可以根据用户的身份和权限,对不同的用户设置不同的操作权限,确保数据的安全和隐私。
三、系统优势1. 高效节能:通过实时监测和优化策略,帮助用户合理用电,减少能源浪费,提高能源利用效率。
2. 远程控制:用户可以通过手机、电脑等终端设备实现对电力设备的远程控制,方便快捷。
变电设备状态监测管理中心平台系统技术设计(论文用)一、系统概述变电设备状态统监测管理中心平台系统,通过收集电网运行参数、在线设备监测数据、巡视、例行及诊断试验、运行工况、视频监控等全景化的信息,对设备的健康状况进行综合评价和分析,并根据评价结果进行状态诊断、风险评估,最终提出检修策略、制定设备维护、检修计划,为动态调整设备的运行方式必要性分析和状态检修工作提供技术支撑。
变电设备状态统监测管理中心平台系统的建设和应用,其基本作用是对各变电站设备相关在线监测信息的收集、汇总、处理分析,同时与生产管理信息系统、SCADA、故障信息等系统结合获取相关设备台帐信息、预试信息、运行信息、故障和缺陷等信息,在系统中进行基于多类别主题和时间、温度、负荷等多维度综合分析,并将分析结果进行综合展现。
通过该系统的建设,将形成变电设备一体化的、网络化的、智能化的综合状态监测、诊断和和服务管理系统,辅助运行管理人员及时调整设备运行工况,同时,实现对变电站运行环境及现场检修活动的监控,实现预防性维护,为提高设备的营运率和电网的安全性提供了强大的技术支撑。
变电设备状态统监测管理中心平台系统以实时数据库、数据仓库和商业智能平台工具为关键技术手段,为各类实时信息、生产管理信息提供集中统一的集成与共享平台,建立变电设备状态统一集中监测系统,将实时信息与基于人工的业务信息进行有效采集、转换、整合、加载、展示,更好地为生产作业指挥、应急处置、保电管理、状态检修等各个业务领域提供更为全面和及时的信息服务。
二、系统总体设计嘉兴电力局变电设备状态统监测管理中心平台系统技术结构设计,兼顾各专业系统的现状,确保各系统相对独立,采用适度先进可靠的标准模型(协议)实现数据交换。
(一)系统互联结构在系统结构设计中,分为变电站层和地市级两层,考虑到不同应用系统在电力信息网中处于不同的安全区域,不同的应用系统保持独立,但需要对数据交换接口作标准化开发。
1、变电站层(1)调度SCADA系统和继电保护信息系统按其规定方式采集和传输数据。
(2)设备在线状态监测装置,主要通过IEC61850通信协议,与状态接入控制器CAC产生数据交互,CAC集中全站的设备状态监测数据,以电网公司规定的基于Webservice I2通信协议,向省级状态接入网关机CAG送数据。
在嘉兴局方案中,CAC同时以I2协议,向状态监测管理系统CACMS送数据。
(3)智能变电站辅助监控系统。
该系统在变电站端实现视频图像监控、变电站环境综合监控、消防安全监控以及现场作业移动视频监控功能。
其中图像数据存入站端视频服务器,控制信号和监控信号接入站端辅助系统主机,图像和监测信号通过规定的SIP协议,送往辅助系统地市级主站。
2、地市层(1)SCADA系统。
采用南瑞OPEN3000系统,该系统定义了电网运行的功率、电压、电流、开关量等电网运行实时数据以及电网拓扑关系,已经采用了IEC61968/61970定义的CIM模型,导入地区级PI实时数据库,数据通过安全隔离装置接入。
(2)继电保护综合信息管理系统。
系统定义了变电站继电保护及安全自动装置运行状态监视、运行参数、压板状态等。
系统正常运行时,根据厂站主接线图或装置列表,定制画面中显示装置的运行状态,装置自检、时采样值、开入量状态、运行定值等;电网故障后,统收集故障点位置、障类型、跳闸开关等故障信息,显示保护动作信息、相关保护的动作行为分析报告,显示故障时刻系统采样数据、故障录波数据等。
信息数据采用IEC61968/61970定义的CIM模型,导入地区级PI实时数据库,数据通过安全隔离装置接入。
(3)PMIS生产管理系统。
定义了设备资产信息、运行、检修试验等台账信息,以及工作计划管理、缺陷管理、运行检修管理、两票管理、专业技术管理、配电管理等功能。
(4)CBM状态检修辅助决策系统。
以国网公司状态评价导则和规程为基础,采用神经网络、动态规划、遗传算法等智能领域的相关知识和技术手段,以先进的检测、诊断手段为基础,以现场大量的运行、检修、试验、试验、不良工况等现场数据为参考,结合有关标准、规程、导则和输变电设备设备信息,实现对输变电设备状态评价、风险评估、检修决策、绩效评估、状态预警、故障诊断等全范围、全寿命周期的评价与分析,系统产生反映设备健康状态的状态量数据,以供监测预警和状态评价使用。
(5)CACMS 状态监测管理系统。
系统管理对象为变电站在线监测传感器、状态接入控制器CAC及数据通道,定义了对前端传感器运行状态、状态数据可行性、CAC装置的运行状态和功能模块运行、网络通道稳定性的管理。
系统具备对状态量进行运算判断功能。
(6)智能变电站辅助管理系统。
实现变电站全天候智能视频监控,以满足电力系统安全生产所需的监视设备关键部位的要求。
系统定义站内设备监视对象、机房的电源设备、空调设备和系统内分布的各安防设备、动力设备及机房环境进行遥信、遥测、遥控,实时监视系统设备的运行状态,并提供现场移动视频接入。
(二)系统功能结构根据目前应用系统建设、使用的现状,系统功能结构设计为四层,如下图:1、数据层运行在集群的数据库服务器上,以实时数据为核心,包括实时数据库、空间数据库、属性数据库、媒体数据库,周期性存储平台计算所需的数据。
其中:实时数据库主要存储设备运行和状态计算的数据。
空间数据库作为GIS数据的缓存,提高图形相应速度。
属性数据库,系统静态和动态配置用。
媒体数据库作为视频流等数据缓存和关键分析数据存储。
2、应用组件层数据处理的功能部件,以组件方式部署。
3、接口层运行在接口网关服务器上,定义标准数据交换模型基础上,处理周边系统的数据交换功能。
4、应用层。
基于WEB方式的功能表现以及人机交互,运行在WEB服务器上。
(三)系统数据交换根据系统功能结构,通过接口,定义系统之间数据交换。
数据交换包括系统与CACMS、PMS、GIS、CBM、辅助系统、SCADA、继电保护信息系统数据交换等。
数据交换的数据属性在系统详细设计中定义,系统之间接口通信协议应保持一致和透明,数据交换通过数据总线实现。
数据交换基本信息结构如下图:数据交换设计在一体化企业级信息集成平台的统一框架下,通过建立数据服务总线,定义服务之间良好的接口和通信协议标准实现,把系统内的软件和资源联系起来,保证公司关键的业务流程可以正常运行,提供跨组织、跨平台的人员协作、信息数据、商业流程等层面的集成和整合,加上各种核心的业务应用,形成完整的信息化系统。
(四)系统平台技术路线系统平台总体基于SOA组件结构,采用J2EE实现技术,运行环境优先采用Linux server。
J2EE是一套全然不同于传统应用开发的技术架构,包含许多组件,这些组件可简化并且规范应用系统的开发与部署,进而提高可移植性、安全与再用价值,各类服务采用SOA架构,实现插件应用模式。
J2EE核心是一组技术规范与指南,其中所包含的各类组件、服务架构及技术层次,均有共通的标准及规格,让各种依循J2EE架构的不同平台之间,存在良好的兼容性。
实现技术结构如下图所示,基于组件的分层实现方案。
本系统中数据库层包括:1、实时数据库:存储变电状态监测运行实时数据,并保存对应的历史数据。
2、空间数据库:用于缓存常用到的GIS访问空间信息,避免经常性调用GIS数据访问接口,提高系统运行效率。
3、属性数据库:存储系统应用业务属性数据。
4、媒体数据库:存储各类视屏、图形流多媒体数据。
应用组件层:1、用户权限管理:以通用用户和访问管理组件实现统一用户论证功能。
2、空间数据交换组件:实现多种类型空间数据模型的读写访问,为GIS平台数据交换提供支持。
3、视屏数据交换组件:实现国网标准视频A、B接口交换功能。
4、关系数据交换组件:实现各类业务属性数据交换功能,如PMIS数据、CAC传感器配置数据等,采用基于XML格式属性数据交换。
5、应急智能决策引擎:实现知识库管理和案例推理决策模型,为应急决策模块提供算法支持。
6、邮件、短信通道:实现邮件和短信接口为系统报警提醒功能提供支持。
接口层涉及多种不同系统的集成,从系统技术实现上以Webservice接口为数据交换基本方式,CAC数据交换遵循国网I2标准、视频数据交换遵循国网视频B(SIP)接口标准,SCADA和PMIS数据基于CIM模型。
三、系统功能设计(一)系统的运行环境要求目前,网络及服务器设备总体成本较低,设备变电设备状态监测管理中心平台应该建立在高可靠性的应用和数据服务硬件结构上。
基本配置如下图:1、数据服务器:2台,内置磁盘阵列,作RAID10模式,作集群运行,运行实时数据库和关系数据库。
2、WEB服务器:2台,部署应用功能,作集群运行。
3、接入网关机:1台,统一接口服务,内置磁盘阵列,作RAID10模式。
(二)系统软件功能1、系统功能部署图2、系统功能的目标要求(1)提供电力运行管理全景数据平台为变电设备(经扩展,也可接入输电设备)提供全景的数据信息,包括设备基本信息、试验信息、运行信息、缺陷信息、巡检记录、带电测试数据、在线监测数据等,以及对变电站视频、环境安全等信息。
对数据资源进行统一建模、提供标准的数据接口,提供实时数据服务和历史数据服务。
(2)提供统一高效的集成与共享的实时数据平台,并有效整合实时与非实时信息。
以实时数据库管理系统为基础,建设实时数据管理平台(也可以称为实时信息数据中心),提供各类实时信息的集成与共享。
实时数据管理平台通过对各类实时信息系统数据的统一采集、抽取、整合和集中存贮,避免原有各系统实时信息的差异,以统一的方式和标准对外提供实时信息服务。
(3)提供设备状态实时监测平台能够方便的对变电站内各种智能设备(例如变压器油色谱、变电站电源监控、机房环境、远动通道、开关柜测温等)信息进行实时采集,维护、运行人员可以在统一的界面下实时监测到这些设备运行状态信息,对一些异常的信号,系统将通过包括短信在内的多种告警方式及时的通知到相关人员。
使维护人员快速有效对缺陷、故障进行安排处理。
(4)提供检修作业辅助工作平台变电检修人员可以利用平台中全景信息以及平台提供的数据分析手段和高级应用功能,完成采集统计,信息处理,从而分析各设备的健康状况,制定维护和检修策略。
同时,通过站内移动视频的接入,可以监测现场安全作业情况,以及事故处理现场支持。
(5)提供视频及安全监控运行维护人员通过平台,不仅可以查看设备现场情况,也可以查看安全保卫、当地微气象、控制室环境温度等信息,并可远程操作相关设施。
(6)作为事故应急决策辅助在事故等应急指挥系统中,把决策者需要的各项数据、指标、现场实景通过该系统实时地反映给决策者,以便决策者及时地对管理制度进行调整。
(三)功能分类设计1、数据接入功能从不同信息系统通过接口获取数据,如下表所示。