恒压供水变频PID控制
- 格式:ppt
- 大小:2.26 MB
- 文档页数:58
基于PLC的PID控制变频恒压供水系统摘要基于PLC的PID控制的变频恒压控制是现代供水控制系统的主要方式,利用PLC(可编程控制器)、PID调节器、压力检测传感器、压力变送器、电气控制设备、变频器及水泵机组组成闭环控制系统,使供水管网压力保持恒定。
关键词PLC;PID控制;变频器;闭环控制在实际生产生活中,用户用水的多少是经常变动的,因此供水不足或供水过剩的情况时有发生。
而用水和供水之间的不平衡集中反映在供水的压力上,即用水多而供水少,则压力低;用水少而供水多,则压力过大。
因此,保持供水压力的恒定,可使供水和用水之间保持平衡,即用水多时供水也多,用水少时供水也少,从而提高了供水的质量。
恒压供水是指在供水网中用水量变化时,出水口压力保持恒定不变的供水方式。
1恒压供水的基本原理1.1变频恒压供水系统的组成及原理变频恒压供水系统压力控制主要有PID调节器、变频器、水泵、压力传感器和变送器、PLC可编程控制器等组成。
变频恒压供水系统压力控制系统原理框图如图1所示,用PID调节器和变频器构成闭环系统控制,可以提高供水压力的控制精度,改善控制系统的动态响应。
图1变频恒压供水系统压力控制系统原理框图系统工作时,先启动主水泵,管网水压达到设定值,变频器的输出稳定在某数值上。
而当用水量增加,水压降低时,压力变送器SP将该信号实时送入比较器与给定压力H比较,其差值输入PID控制器,PID的输出量作为控制变频器的转差给定输入,从而控制电动机的转速上升,水压力恢复到给定值,保持供水系统中管网中压力的恒定。
变频恒压供水系统压力控制原理如下:1)用水量增加,压力下降,压力变送器输出降低,PID输出上升,变频器频率增大,电机(M)转速升高,水泵流量增大,压力上升。
2)用水量减少,压力上升,压力变送器输出增大,PID输出降低,变频器频率下降,电机(M)转速降低,水泵流量减小,压力下降。
如果用水量增加很多,主泵达到最大流量仍不能使管网水压达到设定值,将自动启动备用泵;反之,当用水量减少时,可自动切断备用泵。
复用水泵ATV71变频器参数专家访问√屏幕显示 RUN Term 23.4A +38.3A 管道压力表显示0.38MPA左右1.1简单起动2/3线控制:2线控制宏设置:标准起停/车用户宏设置:YES标准电机频率:50HZ IEC电机额定功率:30KW电机额定电压:380V电机额定电流:55.7A电机额定频率:50HZ电机额定速度:2950rpm最大输出功率:50HZ自整定:完成自整定状态:电阻已整定改变输出相序:A-C-B相序电机热保护电流:72A加速时间:106.1S减速时间:114.1S低速频率:25HZ高速频率:50HZ1.2监视1.2.1输入/输出映像逻辑输入映像PR L11 L12 L13 L14 L15 L16模拟输入映像AI1 +3.741VAI2 -0.008m A逻辑输出映像R1 R2模拟输出映像AO1 +15.328MA1.2.2通信映像命令通道:端子排命令字:0000H ex当前给定通道:端子排频率给定:+38.3HZETA状态字:0437HexWO :-----1.2.3报警信号组: ---1.2.4图形终端频率给定:+41HZ1.2.5内部PID给定:6001.2.6图形终端转矩给定:0.0%1.2.7频率给定:+38.3HZ 1.2.8输出频率:+38.3HZ 1.2.9电机电流:23.4A 1.2.10电机速度:2299rpm 1.2.11电机电压:291V1.2.12电机功率:+29%1.2.13电机转矩:+36.9% 1.2.14电机电压:+379V 1.2.15电机热状态:11%1.2.16变频器热状态:37% 1.2.17功率:1111.2.18电机运行时间:26311h 1.2.19变频器已上电时间:52481h 1.2.20 IGBT报警计时器:0S1.2.21 PID给定 6001.2.22 PID反馈 6031.2.23 PID误差 -31.2.24 PID输出 +38.3HZ1.2.25当前设置组设置组0 1.2.26报警(故障)信号√1.3设置斜坡增量:0.1S加速时间:106.1S减速时间:114.1S低速频率:25HZ高速频率:50HZ电机热保护电流:72A变频器开关频率:2KHZ电流限幅1 :99A电机预磁设置:不预磁低速运行超时:999.9SPID比例增益:1.03PID积分增益:0.05PID微分增益:0.01PID斜坡:99.9SPID最小输出值:0HZPID最大输出值:+50HZ反馈超下限报警:0反馈超上限报警:1600PID误差报警:200电机电流阈值:66A电机频率阈值:50HZ频率阈值2 :50HZ电机热阈值:100%1.4电机控制标准电机频率:50HZ IEC 最大输出频率:50HZ自整定:完成自整定:NO自整定状态:电阻已整定改变输出相序:A-C-B相序电机控制类型:2点压频比UO :0V冷态定子电阻:105Lm额定励磁电流:23.4ALs漏电感:1.69mH转子时间常数:669ms电机额定滑差:0.8HZ 极对数:1电流限幅1 :99A电机噪声抑制:YES电机电压波动限幅:YES瞬态过压限幅优化:10微秒制动单元释能阈值:785V制动平衡:NO1.5输入/输出设置2/3线控制:2线控制2线控制:0/1电平反转:L12LI1设置LI分配LI1 0→1延时:0MS给定模板:标准AI1设置AI1 分配AI1类型:10V电压AI1最小值:0.0VAI1最大值:10VAI1过滤器:0.3SAI1拐点X:0%AI1拐点Y:0%AI2设置AI2分配AI2类型:电流AI2最小值:4.0MAAI2最大值:20MAAI2过滤器:0SAI2拐点X、Y :0%R1设置继电器R1分配器:变频器故障继电器R1延时:0MS继电器R1有效条件:1继电器R1保持时间:0MSAO1设置AO1分配:电机电流AO1类型:电流AO1最小输出值:0MAAO1最大输出值:20MAAO1滤波器:0MS报警信号组1L16=PTC报警□PTC1报警□. □. □. □变频器热阈值到达□1.6命令给定1通道:AI1给定反向禁止:NO停止按钮优先:YES组合模式:组合通道给定2切换:通道1有效给定2通道:AI2给定复制通道1→2 :不复制F1—F4键分配:未设置1.7应用功能给定切换√给定运算斜坡斜坡类型:线性斜坡斜坡增量:0.1S加速时间:106.1S减速时间:114.1S斜坡2切换阈值:0HZ斜坡切换设置:未分配减速时间自适应:有停车设置停车类型:斜坡停车自动直流注入寸动预设速度给定附近加减速给定记忆加减速逻辑输入控制预磁限位开关制动逻辑控制负载测量高速提升PID调节器√PID 反馈分配:AI1给定PID反馈最小值:0PID反馈最大值:1600 PID给定最小值:0PID给定最大值:1600内部PID给定分配:YES 内部PID给定:600PID比例增益:1.03 PID积分增益:0.05 PID微分增益:0.01 PID斜坡:99.9SPID误差求反:NOPID最小输出值:0HZPID最大输出值:+50HZ反馈超下限报警:0反馈超上限报警:1600PID误差报警:200PID积分重设:未分配速度给定分配:未设置自动/手动选择分配:未分配低速运行超时:999.9SPID唤醒误差阈值:0.0。
运用PID与变频器实现恒压供水控制方案2008-01-20 19:58一:PID概念1. PID解释:即由比例(Proportion)+积分(Integral)+微分(Differential coefficient)组合而成。
2. 比例P控制:调节量按误差成比例输出,纯比例时误差不会为零。
即一对一的对应关系。
3. 积分I控制:调节量按误差的积分输出,误差为零时,输出恒定。
既有一定的延迟。
4. 微分D控制:调节量按误差的微分输出,误差突变时,能及时控制。
既快速反应。
5. PI控制动作:所谓PI控制就是将比例控制P和积分控制I结合起来,根据偏差及时间变化,产生一个操作变量。
二:运用PI控制系统方框图运用于PID可实现压力负反馈单闭环控制。
控制理论与算法。
1. PID配合变频器与压力传感器实现单泵闭环恒压供水控制系统。
2. 通常压力传感器分电流型与电压型两种。
PID有内置变频器与单独的外置两种。
三:设定任何一个控制系统都需要经过反复地调试后方可达到最佳性能,没有调试的系统是不能工作或不能良好地运行。
下面举例AMB-G7系列单泵恒压供水调试方法。
A. 首先必须知道控制对象的参数。
对象特征、需要的最大供水压力、需要给定用户的恒定压力、供水最小压力、上限压力、下限压力等。
B. 假设对一小区进行恒压供水改造,其要求管道最大供水压力为(A)11Kpa ,对应传感器输出电流为20mA , 要求最小供水压力为(B)1Kpa,对应输出的电流为4mA , 用户要求恒定的供水压力为(C)5Kpa 。
根据以上三个参数可以确定PID的设定值,既:(必须保证在最大供水压力时对应于压力传感器电流输出最大,反之亦然,可求出用户要求供水压力时的传感器电流)C. 传感器给定电流(Iset)正比于用户所需的恒定供水压力。
(假设压力传感器输出电流为4~20mA)既:Iset/(Imax-Imin)=C/(A-B)→Iset/(20mA-4mA)=5/(11-1)→Iset/16=5/10→Iset=16*0.5=8mA(5 0%电流)其中Imax=最大电流 Imin=最小电流 Iset=需要给定的电流值D. 而G7系列F84设定电压也正比与设定电流。
V20-变频器PID-控制恒压供水操作指南1.硬件接线西门子基本型变频器SINAMICS V20 可应用于恒压供水系统,本文提供具体的接线及简单操作流程。
通过BOP设置固定的压力目标值,使用4~20mA管道压力反馈仪表构成的PID控制恒压供水系统的接线如下图所示:图1-1.V20变频器用于恒压供水典型接线2调试步骤2.1 工厂复位当调试变频器时,建议执行工厂复位操作:P0010 = 30P0970 = 1(显示50? 时按下OK按钮选择输入频率,直接转至P304进入快速调试。
)2.2 快速调试表2-1 快速调试参数操作流程参数功能设置P0003 访问级别=3 (专家级)P0010 调试参数= 1 (快速调试)P0100 50 / 60 Hz 频率选择根据需要设置参数值:=0: 欧洲[kW] ,50 Hz (工厂缺省值)=1: 北美[hp] ,60 HzP0304[0] 电机额定电压[V] 范围:10 (2000)说明:输入的铭牌数据必须与电机接线(星形/ 三角形)一致P0305[0] 电机额定电流[A] 范围:0.01 (10000)说明:输入的铭牌数据必须与电机接线(星形/ 三角形)一致P0307[0] 电机额定功率[kW / hp] 范围:0.01 ... 2000.0说明:如P0100 = 0 或2 ,电机功率单位为[kW]如P0100 = 1 ,电机功率单位为[hp]P0308[0] 电机额定功率因数(cosφ )范围:0.000 ... 1.000说明:此参数仅当P0100 = 0 或 2 时可见P0309[0] 电机额定效率[%] 范围:0.0 ... 99.9说明:仅当P0100 = 1 时可见此参数设为0 时内部计算其值。
P0310[0] 电机额定频率[Hz] 范围:12.00 ... 599.00P0311[0] 电机额定转速[RPM] 范围:0 (40000)P0314[0] 电机极对数设置为0时内部计算其值。
PID PLC1.前言恒压供水系统是目前市场上运用最为广泛的供水系统之一。
变频器PID 控制系统是整个恒压供水系统的控制核心。
通过PLC (可编程逻辑控制器)对整个系统进行可靠的控制,不仅提高了水压的稳定性,同时也提高了系统运行效率,降低了能源消耗。
2. 恒压供水系统概述恒压供水系统是指在不同供水流率和负荷状态下,系统所维持的压力都是恒定的。
相比较其他常见的供水系统,恒压供水系统可以满足一些特殊的供水需求,比如公寓、办公楼、酒店、医院等高层建筑物的供水。
恒压供水系统一般可以分为两类:一类是调速泵房恒压供水系统,另一类是变频器恒压供水系统。
调速泵房恒压供水系统采用调速泵进行水压控制,系统通过加减泵数来维持恒定的工作水压。
这种方式适合较小规模的恒压供水系统。
变频器恒压供水系统则采用变频器控制泵的转速,通过控制水泵的转速来保持一定的供水压力。
对于大规模的高楼、大型公共建筑物等供水系统,采用变频器恒压供水系统更为常见。
3. 变频器PID 功能PID 控制是一种最广泛应用的控制方法之一,在变频器控制系统中,同样可以采用PID 控制算法来控制水泵的输出,实现恒压供水系统的控制。
PID 控制器的核心算法为比例(P)、积分(I)和微分(D)三部分,分别调节系统的稳定性、抗干扰性和响应速度。
在恒压供水系统中,通过调整PID 控制器的参数,可以实现快速反馈,实时调整水泵的输出,保持系统稳定性。
4. PLC 控制恒压供水系统PLC 是一种专门用于工业自动化的可编程电子控制器。
PLC 芯片可以通过编程实现对数字信号的处理、控制逻辑、数据存储和通信等功能。
在恒压供水系统中,PLC 的主要任务是控制变频器PID 控制器的输入和输出,采集水泵和供水系统的运行数据。
PLC 控制系统的核心模块为CPU (核心处理单元)和I/O 模块(输入输出模块)。
对于PLC 恒压供水系统的实现,可以通过编写PLC 程序来实现PID 控制器的参数调整、水泵的开关控制、水压监测和数据传输等任务。
恒压供水系统的MCP-PID控制摘要本文介绍了恒压供水系统中MCP-PID控制的应用。
该控制方案是基于模型预测控制(MPC)和比例积分微分控制(PID)的结合,能够实现恒定的水压控制和减小水泵的能耗。
对于水泵系统的运行,本文将其建模为一个非线性时间不变系统,并且针对其特点提出了MCP-PID控制器的设计方法。
该控制器能够通过预测模型进行优化控制,并且通过PID控制器实现控制,从而实现稳定的供水过程。
关键词:恒压供水系统、MCP-PID控制、模型预测控制、比例积分微分控制、非线性时间不变系统正文1. 引言恒压供水系统在现代城市生活中起着重要的作用。
为了满足市民的日常用水需求,水泵系统需要保持稳定的压力并减小水泵的能耗。
然而,传统的PID控制方法往往难以满足这一要求,因为该方法只能对已知系统进行稳定的控制,同时可能会存在运行效率低下的问题。
为了解决这些问题,在本文中,我们提出了一种新的恒压供水系统控制方案:MCP-PID控制。
2. 恒压供水系统的建模恒压供水系统可以看作是一个非线性时间不变系统。
其动态特性与控制需要取决于给定的水泵和管道参数。
在此基础上,我们将该系统的动态特性建模为以下方程组:$\dot{x}(t) = Ax(t) + Bu(t)$$y(t) = Cx(t)$其中,$x(t)$是系统状态向量,$u(t)$是控制输入向量,$y(t)$是输出向量。
$A、B、C$是系统的系数矩阵,分别表示系统的状态转移系数、输入系数和输出系数。
3. MCP-PID控制器的设计基于以上系统模型,我们提出了一种基于MCP-PID控制的方案,并针对该控制器的设计、实施、实现等环节进行详细分析。
3.1 MCP-PID控制器的MPC部分模型预测控制(MPC)是一种主要用于工业过程控制的高级控制技术,其能够通过预测模型进行优化控制。
在MCP-PID控制器中,我们采用MPC来预测水泵系统的未来发展情况,并根据预测的结果来调整控制器的参数,从而达到最优状态。
功能代码参数名称所选参数功能说明P0.06=1端子运行命令通道端子控制变频器启停由数字量端子控制P0.07=8主频率源A选择PID控制设定设置此参数PID功能有效P0.17=35下限频率下限频率=35HZ 恒压供水中下限频率不宜过低(可根据实际调整)P2.01电机额定功率根据电机铭牌P2.02电机额定频率设定范围0.01HZ-P0.15(最大频率)P2.03电机额定转速根据电机铭牌P2.04电机额定电压根据电机铭牌P2.05电机额定电流根据电机铭牌P7.00=1输入端子X1功能正转运行通断决定变频器启停P7.04=7输入端子X5功能外部复位信号复位变频器故障P8.00=0PID运行投入方式自动投入无特殊要求,该参数设置为0,PID自动投入;若选择1,可定义多功能端子手动投入P8.01=0PID给定通道选择数字给定目标压力通过变频器面板给定 P8.02给定数字量设定0.0-100.0%P8.01=0时,设定目标压力P8.03=0PID反馈通道选择AI1实际压力信号通过AI1反馈P8.04=0PID极性选择正恒压供水一般采用正极性(可根据实际调整)P8.05比例增益Kp默认1.00Kp越大系统的调节速度越快,过大会出现振荡,应与P8.06配合从小→大调节(无特殊要求建议默认值)P8.06积分时间Ti 默认0.1s 决定PID调节器对偏差进行积分调节的快慢,过大会出现超调,应与P8.05配合从大→小调节(无特殊要求建议默认值)P8.10闭环预置频率默认0.00Hz PID投入前变频器运行频率(根据客户要求而定)P8.11预置频率保持时间默认0.00s PID投入前变频器运行时间(根据客户要求而定)P8.12睡眠模式默认1需要睡眠模式选择1,不需要选择0P8.13睡眠停机方式默认00:减速停机 1:自由停机P8.15睡眠阀值0.00-200.0%该阀值是给定压力的百分比,睡眠模式1有效P8.16苏醒阀值0.00-200.0%该阀值是给定压力的百分比P8.17睡眠延迟时间0.0-3600.0 s 达到睡眠阀值延迟睡眠时间(根据客户要求而定)P8.18苏醒延迟时间0.0-3600.0 s 达到苏醒阀值延迟苏醒时间(根据客户要求而定)SY9000变频器 PID控制说明一、参数设置P0组-基本运行参数P2组-电机参数P7组-数字量输入与输出参数P8组-PID控制参数二、PID睡眠与苏醒功能示意图三、样例例1 设置目标压力假设远程压力表量程为1Mpa,设定目标压力为0.6Mpa,该如何设置?答:0.6Mpa除以1Mpa,乘以100%,等于60%;设置P8.02=60%(P8.01=0情况下)即可。