第三章 PWM脉宽调制式逆变器
- 格式:ppt
- 大小:17.14 MB
- 文档页数:72
第3章 多电平变换器PWM 调制策略对多电平变换器调制策略进行研究是多电平变换器研究的重点内容之一。
调制策略的优劣直接影响着多电平变换器的性能。
在过去的20多年里,研究者们对各种拓扑结构的多电平变换器调制策略进行了大量的研究工作,提出了一系列行之有效的调制方法。
这些调制方法基本上都是传统的两电平变换器脉宽调制技术的扩展和引申,但由于多电平变换器本身所具有的特殊性,其所采用的调制策略也各有特点。
3.1多电平变换器PWM 调制策略的分类多电平变换器的PWM 技术种类繁多,若按采用开关频率的不同,多电平变换器调制策略可以分为基波开关频率调制(即在输出基波周期内,开关器件通断一次)和高开关频率调制(即在输出基波周期内,开关器件通断多次)。
其中,基波开关频率调制又可分为空间矢量控制(SVC )和有选择的谐波消除技术(SHEPWM );而高开关频率调制则可分为空间矢量PWM (SVPWM )和多载波SPWM 。
多载波SPWM 一般采用两种技术,即①基于载波垂直分布技术(包括PD 、APOD 、POD );②基于载波水平移相技术。
多电平变换器PWM 调制策略分类示意图如图3-1所示。
也有研究者对多电平变换器控制策略的分类是从多电平变换器的控制自由度考虑,通过不同的组合,得到各种不同的调制策略。
例如:就载波而言,多电平变换器的载波通常不止一个,其形状可以是常用的三角波,也可是锯齿波等,对每种载波至少有频率、相位、幅值、垂直方向的偏移量和水平方向的偏移量等多个可调节控制的参数,将这些参数称之为自由度;而多电平变换器的调制波,可以是正弦波或梯形波,同样对于每种调制波形,也有频率、相位、幅值、叠加零序分量等多个参数,即自由度。
若将不同控制自由度进行互相组合,必将产生一些新型多电平变换器PWM 调制策略,再将上述控制自由度之间的组合,并进一步多电平变换器PWM 调制策略分类按基波开关频率调制分按高开关频率调制分空间矢量控制 (SVC )有选择的谐波消除技术(SHEPWM )多载波正弦PWM (SPWM )空间矢量PWM (SVPWM )基于载波垂直 移相SPWM 基于载波水平 移相SPWMPD APOD POD图3-1 多电平变换器PWM 调制策略分类示意图与各种多电平变换器的基本拓扑相结合,将产生数量庞大的多电平变换器PWM调制策略[84]。
电力电子技术知到章节测试答案智慧树2023年最新潍坊科技学院第一章测试1.电力变换通常可分为()。
参考答案:交流变直流;直流变交流;直流变直流;交流变交流2.电力电子系统的组成()。
参考答案:控制电路;主电路;驱动电路;检测电路3.电力电子技术的基础是()。
参考答案:电力电子器件的制造技术4.电力电子技术所变换的电力,功率可以大到数百兆瓦甚至吉瓦。
()参考答案:对5.信息电子技术主要用于信息处理,电力电子技术则主要用于电力变换。
()参考答案:对6.电子技术包括信息电子技术和电力电子技术。
()参考答案:对7.电力电子学和电力学的主要关系是电力电子技术广泛应用于电气工程中。
()参考答案:对8.电力电子装置被广泛应用于()。
参考答案:静止无功补偿;电力机车牵引;交直流电力传动;高压直流输电9.电力电子技术是弱电控制强电的技术。
()参考答案:对10.用于电力变换的电子技术在晶闸管出现以后才实现。
()参考答案:错第二章测试1.晶闸管电流的波形系数定义为()。
参考答案:2.晶闸管的伏安特性是指()。
参考答案:阳极电压与阳极电流的关系3.为限制功率晶体管的饱和深度,减少存储时间,桓流驱动电路经常采用()。
参考答案:抗饱和电路4.过快的晶闸管阳极du/dt会使误导通。
()对5.选用晶闸管的额定电流时,根据实际最大电流计算后至少还要乘以1.5-2。
()参考答案:对6.取断态重复峰值电压和反向重复峰值电压中较小的一个,并规化为标准电压等级后,定为该晶闸管的()。
参考答案:额定电压7.按照驱动电路加在电力电子器件控制端和公共端之间的性质,可将电力电子器件分为电压驱动型和电流驱动型两类。
()参考答案:对8.晶闸管是硅晶体闸流管的简称,常用的封装结构有()。
参考答案:平板形;螺栓形9.在螺栓式晶闸管上有螺栓的一端是阳极。
()对10.晶闸管的断态不重复峰值电压UDSM与转折电压UBO在数值大小上应为UDSM大于UBO。
()参考答案:错第三章测试1.单相全控桥大电感负载电路中,晶闸管可能承受的最大正向电压为()。
一、PWM技术原理由于全控型电力半导体器件的出现,不仅使得逆变电路的结构大为简化,而且在控制策略上与晶闸管类的半控型器件相比,也有着根本的不同,由原来的相位控制技术改变为脉冲宽度控制技术,简称PwM技术。
PwM技术可以极其有效地进行谐波抑制,在频率、效率各方面有着明显的优点使逆变电路的技术性能与可靠性得到了明显的提高。
采用PwM方式构成的逆变器,其输人为固定不变的直流电压,可以通过PwM技术在同一逆变器中既实现调压又实现调频。
由于这种逆变器只有一个可控的功率级,简化了主回路和控制回路的结构,因而体积小、质量轻、可靠性高。
又因为集凋压、调频于一身,所以调节速度快、系统的动态响应好。
此外,采用PwM技术不仅能提供较好的逆变器输出电压和电流波形,而且提高了逆变器对交流电网的功率因数。
把每半个周期内,输出电压的波形分割成若干个脉冲,每个脉冲的宽度为每两个脉冲间的间隔宽度为t2,则脉冲的占空比γ为此时,电压的平均值和占空比成正比,所以在调节频率时,不改变直流电压的幅值,而是改变输出电压脉冲的占空比,也同样可以实现变频也变压的效果。
二、正弦波脉宽调制(sPwM)1.sPwM的概念工程实际中应用最多的是正弦PwM法(简称sPwM),它是在每半个周期内输出若干个宽窄不同的矩形脉冲波,每一矩形波的面积近似对应正弦波各相应每一等份的正弦波形下的面积可用一个与该面积相等的矩形来代替,于是正弦波形所包围的面积可用这N个等幅(Vd)不等宽的矩形脉冲面积之和来等效。
各矩形脉冲的宽度自可由理论计算得出,但在实际应用中常由正弦调制波和三角形载波相比较的方式来确定脉宽:因为等腰三角形波的宽度自上向下是线性变化的,所以当它与某一光滑曲线相交时,可得到一组幅值不变而宽。
度正比于该曲线函数值的矩形脉冲。
若使脉冲宽度与正弦函数值成比例,则也可生成sPwM波形。
在工程应用中感兴趣的是基波,假定矩形脉冲的幅值Vd恒定,半周期内的脉冲数N也不变,通过理论分析可知,其基波的幅值V1m脉宽δi有线性关系在进行脉宽调制时,使脉冲系列的占空比按正弦规律来安排。
三相PWM逆变器输出LC滤波器设计方法一、本文概述随着可再生能源和电力电子技术的快速发展,三相PWM(脉宽调制)逆变器在电力系统中得到了广泛应用。
为了改善逆变器的输出波形质量,降低谐波对电网的污染,LC滤波器被广泛应用于逆变器的输出端。
本文旨在探讨三相PWM逆变器输出LC滤波器的设计方法,分析滤波器的主要参数对滤波效果的影响,为工程师提供一套实用的滤波器设计流程和指导原则。
本文将首先介绍三相PWM逆变器的基本工作原理和LC滤波器的功能特点,然后详细阐述LC滤波器的设计步骤,包括电感、电容参数的选取,滤波器截止频率的计算等。
接着,本文将通过仿真和实验验证所设计的LC滤波器的性能,分析滤波效果与滤波器参数之间的关系。
本文将总结滤波器设计的关键因素,并给出一些实用建议,以帮助工程师在实际应用中更好地设计和优化LC滤波器。
通过本文的阅读,读者可以全面了解三相PWM逆变器输出LC滤波器的设计原理和方法,掌握滤波器参数的选择和优化技巧,为提升逆变器输出波形质量和电网稳定性提供有力支持。
二、三相PWM逆变器基础知识三相PWM(脉冲宽度调制)逆变器是一种电力电子设备,用于将直流(DC)电源转换为三相交流(AC)电源。
它是许多现代电力系统中不可或缺的一部分,特别是在可再生能源领域,如太阳能和风能系统中。
了解三相PWM逆变器的基础知识是设计其输出LC滤波器的前提。
三相PWM逆变器的基本结构包括三个独立的半桥逆变器,每个半桥逆变器都连接到一个交流相线上。
每个半桥由两个开关设备(通常是绝缘栅双极晶体管IGBT或功率MOSFET)组成,它们以互补的方式工作,以产生所需的输出电压波形。
PWM控制是逆变器的核心。
它涉及快速切换开关设备,以便在平均意义上产生所需的输出电压。
通过调整每个开关设备的占空比(即它在任何给定时间内处于“开”状态的时间比例),可以精确地控制输出电压的大小和形状。
三相PWM逆变器的一个关键特性是它能够产生近似正弦波的输出电压。
一、填空题3-1、按逆变后能量馈送去向不同,电力电子元件构成的逆变器可分为逆变器与逆变器两大类。
3-1有源、无源。
3-2、有源逆变指的是把能量转变成能量后送给装置。
3-2直流,交流,电网的,3-3、逆变器按直流侧提供的电源性质来分,可分为型逆变器和型逆变器,电压型逆变器直流侧是电压源,通常由可控整流输出,在最靠近逆变桥侧用器进行滤波,电压型三相桥式逆变电路的换流是在桥路的元件之间换流,每只晶闸管导电的角度是度;而电流型逆变器直流侧是电流源,通常由可控整流输出在最靠近逆变桥侧用滤波,电流型三相桥式逆变电路换流是在元件之间换流,每只晶闸管导电的角度是度。
3-3、电压型;电流型;电容;同相同桥臂元件之间;180º;电感;同组不同桥臂元件之间;120º;3-4、SPWM脉宽调制型变频电路的基本原理是:对逆变电路中开关器件的通断进行有规律的调制,使输出端得到脉冲列来等效正弦波。
3-4、一系列幅度相等,脉宽与正弦波幅值成正比的;3-5、PWM逆变电路的调制方式有、、。
3-5 同步调制;异步调制;分段同步调制;四、问答题3-1、无源逆变电路和有源逆变电路有何不同?答:两种电路的不同主要是:有源逆变电路的交流侧接电网,即交流侧接有电源。
而无源逆变电路的交流侧直接和负载联接。
3-2、换流方式各有那几种?各有什么特点?答:换流方式有4种:器件换流:利用全控器件的自关断能力进行换流。
全控型器件采用此换流方式。
电网换流:由电网提供换流电压,只要把负的电网电压加在欲换流的器件上即可。
负载换流:由负载提供换流电压,当负载为容性负载即负载电流超前于负载电压时,就可实现负载换流。
强迫换流:设置附加换流电路,给欲关断的晶闸管强迫施加反向电压的换流称为强迫换流。
通常是利用附加电容上的能量实现,也称电容换流。
晶闸管不能采用器件换流,根据电路形式的不同采用电网换流、负载换流和强迫换流3种方式。
3-3、什么是有源逆变?有源逆变的条件是什么?有源逆变有何作用?答:如果将逆变电路交流侧接到交流电网上,把直流电逆变成同频率的交流电,返送到电网上去称为有源逆变。
三相PWM逆变器输出LC滤波器设计方法何亮;王劲松【摘要】为了使脉冲宽度调制(PWM)逆变器具有较好的输出交流波形,针对PWM 逆变器输出交流波形中谐波次数较高的特点,采用二阶LC低通滤波器.从逆变器无功容量较小、传输效率较高、系统稳定性较好等角度,介绍了一种三相PWM逆变器输出交流LC滤波参数的设计方法.实际工程应用较好验证了该设计方法的可行性.【期刊名称】《电气传动》【年(卷),期】2013(043)012【总页数】4页(P33-36)【关键词】LC滤波器;设计方法;逆变器;脉冲宽度调制【作者】何亮;王劲松【作者单位】中国核动力研究设计院核反应堆系统设计技术重点实验室,四川成都610041;中国核动力研究设计院核反应堆系统设计技术重点实验室,四川成都610041【正文语种】中文【中图分类】TM461 引言基于脉冲宽度调制(PWM)技术的逆变器广泛应用于各型变频及电能变换装置中。
由于PWM调制技术自身的技术特性,决定了逆变器输出交流电力中含有较多的高次谐波分量,该类谐波分量的存在将直接影响交流电力品质,因而,必须在逆变器输出侧设置交流低通LC滤波器,以优化交流电力品质,在充分研究LC滤波器对逆变器传输效率及系统稳定性影响的基础上,提出了一种三相逆变器输出LC型滤波器设计方法。
2 逆变器输出交流谐波分析PWM逆变器输出交流谐波呈如下特点:1)谐波分量以角频率(nωC±kω1)分组分布在输出交流频谱中,其中ωC为载波角频率,ω1为信号波角频率,n,k为谐波系数;2)每组谐波以载波角频率nωC为中心,边频为kω1分布其两侧,其幅度两侧对称衰减;3)随着载波角频率ωC的不断增加,谐波频谱将整体向较高频带上移动[1-2]。
通过上述交流谐波分析,根据交流用电设备对电力品质的相关要求,结合LC滤波器的结构简洁、高频谐波抑制效果较好等技术特点,采用低通LC型滤波器实现逆变器输出交流电力品质优化为最佳方式。