高效率高功率全固态紫外激光器
- 格式:pdf
- 大小:459.33 KB
- 文档页数:7
全固态激光器的光束质量及其紫外激光的实验研究的开题报告标题:全固态激光器的光束质量及其紫外激光的实验研究一、研究背景及意义全固态激光器由于具有结构简单、寿命长、易于集成化等优点,被广泛应用于医疗、制造、通信等领域。
其中,紫外激光在微细加工、光刻、生物荧光分析等领域具有重要应用价值。
对于光束质量的研究是提高激光器工作效率、减少环境污染、提高加工精度等方面的重要问题。
二、研究目的本课题旨在通过实验研究,探究全固态激光器在紫外激光工艺中的光束质量,并通过对比分析不同激光波长下的光束质量变化规律,为全固态激光器在紫外激光领域的应用提供科学依据。
三、主要研究内容和预期成果1. 建立全固态激光器实验台,选择合适的激光介质、激光波长和工作模式,调节激光器参数,获取光束质量数据。
2. 对不同波长下激光器的光束参数进行实验研究,建立光束质量评估模型。
3. 通过比较不同波长下激光器的光束参数变化规律,分析不同波长激光器在紫外激光领域的应用优劣差异。
预期成果:1. 建立全固态激光器的实验平台,能够准确测量全固态激光器的光束质量。
2. 分析不同波长下激光器的光束参数变化规律,获得紫外激光领域全固态激光器应用的科学依据。
3. 具体分析全固态紫外激光器及其应用的发展趋势。
四、研究方法和技术路线本研究采用以下具体方法和技术路线开展:1. 设计并搭建全固态激光器的实验平台。
2. 选择不同激光介质、不同波长的激光器进行实验研究。
3. 使用光学仪器对激光器光束参数进行测量和分析。
4. 基于理论模型,分析不同波长激光器在紫外激光领域的应用优劣差异。
五、研究进度安排本研究的进度安排如下:第一年:搭建实验平台,收集文献,编写研究方案。
第二年:对光束参数、波长等进行测量和分析,建立光束质量评估模型。
第三年:分析研究结果,并撰写研究报告。
六、研究的重要性和意义本研究旨在探究全固态激光器在紫外激光领域的光束质量及应用,对于推动激光加工技术创新和发展,促进全固态激光器的应用和发展具有重要意义。
千赫兹全固态紫外激光器实验研究的开题报告
1.研究背景
激光技术在工业和科研领域具有广泛的应用,其中紫外激光器由于其较短的波长和高能量密度,被广泛用于微电子制造、光刻、医学诊断等领域。
目前,全固态紫外激光器比气体激光器更具优势,因为它们具有更高的能量效率、更小的尺寸、更好的稳定性和可靠性。
2.研究目的
本研究旨在设计和实验一个千赫兹全固态紫外激光器,研究其激光输出特性和稳定性,并探究其在微电子制造、光刻和医学诊断等领域中的应用前景。
3.研究内容
(1)激光加工和诊断领域对紫外激光器的需求
通过收集整理激光加工和诊断领域对紫外激光器的需求,了解这些领域对激光器输出功率、波长、重复频率等参数的要求,为后续实验提供指导。
(2)千赫兹全固态紫外激光器的设计和制备
结合上述需求,设计和制备千赫兹全固态紫外激光器,选择适合的激光介质、激发源和输出窗口等关键组件,提高激光器的效率和稳定性。
(3)千赫兹全固态紫外激光器的特性研究
对制备好的紫外激光器进行实验研究,探究其激光输出功率、波长、重复频率、波束质量和稳定性等特性,并进一步优化激光器的设计以满足应用需求。
4.研究意义
本研究可以为紫外激光器的发展提供实验数据和实际应用案例,推动全固态紫外激光器技术的发展,丰富工业和科研领域的激光应用。
文章编号 2097-1842(2023)06-1318-065.2 W 高重频257 nm 深紫外皮秒激光器范灏然1,陈 曦1 *,郑 磊1,谢文侠1,季 鑫1,郑 权1,2(1. 长春新产业光电技术有限公司, 吉林 长春 130012;2. 中国科学院长春光学精密机械与物理研究所, 吉林 长春 130033)摘要:为了提高半导体检测用深紫外激光器的检测效率,需要搭建高功率、高重频257 nm 深紫外皮秒激光器实验平台。
本文以光子晶体光纤放大器和腔外四倍频结构为基础,进行了257 nm 深紫外激光器的实验研究。
种子源采用中心波长为1 030 nm 、脉冲宽度为50 ps 的光纤激光器,输出功率为20 mW ,重复频率为19.8 MHz 。
通过两级掺镱双包层(65 μm/275 μm )光子晶体光纤棒放大结构,获得了1 030 nm 高功率基频光。
利用二倍频晶体LBO 、四倍频晶体BBO ,采用腔外倍频方式获得了257 nm 深紫外激光。
种子源通过两级光子晶体光纤放大器输出的1 030 nm 基频光,输出功率为86 W ,经过激光聚焦系统后,倍频得到二次谐波515 nm 激光输出功率为47.5 W ,四次谐波257 nm 深紫外激光输出功率为5.2 W ,四次谐波转换效率为6.05%。
实验结果表明,该结构可获得高功率257 nm 深紫外激光输出,为提高半导体检测用激光器的检测效率提供了新思路。
关 键 词:深紫外皮秒激光器;高重频;光子晶体光纤放大器;四次谐波产生中图分类号:TP394.1;TH691.9 文献标志码:A doi :10.37188/CO.2023-0026High repetition frequency 257 nm deep ultraviolet picosecondlaser with 5.2 W output powerFAN Hao-ran 1,CHEN Xi 1 *,ZHENG Lei 1,XIE Wen-xia 1,JI Xin 1,ZHENG Quan 1,2(1. Changchun New Industries Optoelectronics Technology Co., Ltd , Changchun 130012, China ;2. Changchun Institute of Optics , Fine Mechanics and Physics ,Chinese Academy of Sciences , Changchun 130033, China )* Corresponding author ,E-mail : *******************Abstract : To improve the detection efficiency of deep ultraviolet laser for semiconductor detection, it is necessary to develop 257 nm deep ultraviolet picosecond laser with high power and high repetition frequency. In this study, a 257 nm deep ultraviolet laser was experimentally investigated based on photonic fiber amplifier and extra-cavity frequency quadrupling. The seed source uses a fiber laser with a central wavelength of 1 030 nm and a pulse width of 50 ps, delivering a power output of 20 mW and a repetition frequency of 19.8 MHz. High power 1 030 nm fundamental frequency light was obtained through a two-stage ytterbium-doped double cladding (65 μm/275 μm) photonic crystal fiber rod amplification structure, and收稿日期:2023-02-11;修订日期:2023-03-13基金项目:长春市科技发展计划重点研发专项(No. 21ZGG15)Supported by the Key R & D Projects of Changchun Science and Technology Development Plan (No.21ZGG15)第 16 卷 第 6 期中国光学(中英文)Vol. 16 No. 62023年11月Chinese OpticsNov. 2023257 nm deep ultraviolet laser was generated using double frequency crystal LBO and quadruple frequency crystal BBO. The seed source uses a two-stage photonic crystal fiber amplifier to get a 1 030 nm laser with output power of 86 W. After the laser focusing system and frequency doubling, a second harmonic output power of 47.5 W at 515 nm and a fourth harmonic output power of 5.2 W at 257 nm were obtained.The fourth harmonic conversion efficiency was 6.05%. The experimental results show that this structure can ob-tain high power 257 nm deep ultraviolet laser output, providing a novel approach to improve the detection ef-ficiency of the lasers for semiconductor detection.Key words: deep ultraviolet picosecond laser;high repetition frequency;photonic crystal fiber amplifier;fourth harmonic generation1 引 言高重频深紫外皮秒激光器,因具有分辨率高、加工速率快、热损伤低等特性,被广泛应用于半导体检测、光刻以及精密材料加工等工业领域[1-6]。
全固态激光器原理嘿,朋友,你有没有想过,有一种神奇的光,它不是像手电筒那样简单地发光,而是有着强大的能量和独特的产生方式呢?这就是全固态激光器发出的光。
今天呀,我就来给你讲讲全固态激光器的原理,这可真是个超级有趣的事儿呢!咱先得知道啥是全固态激光器。
简单来说,它就是一种产生激光的设备,和那些老早的、体积庞大又复杂的激光器不太一样。
全固态激光器最大的特点就是它里面的主要部件都是固态的,就像我们生活里常见的固体东西一样实实在在。
这可比那些有气体或者液体参与的激光器要稳定得多呢!你想啊,气体和液体总是跑来跑去、晃来晃去的,固态的东西就安安稳稳地待在那儿,多靠谱呀。
那全固态激光器到底是怎么把光变成那种超级厉害的激光的呢?这就得从它的几个关键部分说起啦。
首先就是增益介质。
这就像是一场光的“强化训练营”。
增益介质是一种特殊的固体材料,常见的有晶体材料,比如说钇铝石榴石(YAG)。
你可以把增益介质想象成一群听话又有潜力的小士兵,光在经过这个增益介质的时候,就像是小士兵们在接受严格的训练。
在这个过程中,光会得到能量的补充,变得越来越强。
怎么补充能量的呢?这就涉及到粒子数反转啦。
正常情况下,原子里的电子就像住在不同楼层的居民,低楼层的居民多,高楼层的居民少。
但是在增益介质里,通过一些特殊的方法,就像给这些居民发了个通知,让高楼层的居民一下子多了起来,这种情况就叫粒子数反转。
这时候,光经过,就像是得到了高楼层居民扔下来的能量包,变得越来越强壮。
然后呢,就轮到泵浦源上场啦。
泵浦源就像是一个超级能量提供者,是个大力士呢。
它的任务就是给增益介质提供能量,让增益介质能够实现粒子数反转。
你可以把泵浦源想象成一个不断往“强化训练营”里送食物的大厨,只有食物充足,小士兵们才能变得强大呀。
泵浦源提供能量的方式有很多种,比如说用闪光灯或者激光二极管来提供能量。
要是没有泵浦源,增益介质就没办法让光得到强化,那全固态激光器也就没法产生激光啦,这就像没有大厨,小士兵们就得饿肚子,还怎么训练呢?有了增益介质和泵浦源还不够呢,还得有光学谐振腔。
固体紫外激光器原理固体紫外激光器是一种利用固体物质产生紫外激光的装置。
它具有很高的能量密度、较窄的波长范围和较高的空间相干性,在生物医学、科学研究和工业领域有着广泛的应用。
固体紫外激光器的工作原理基于光的增强效应和能级跃迁原理。
首先,我们需要一个能够发射激光的激光介质。
常见的材料包括Nd:YAG(钇铝石榴石)、Nd:YVO4(钇钒矿石)、Nd:YLF(钇锂钼石)、Ti:Sapphire(蓝宝石)等。
这些固体材料加工成激光棒或薄片状,然后通过外部的光源(如闪光灯或半导体激光器)进行泵浦。
泵浦光通过能级跃迁,将固体材料中的电子激发至高能级。
然后,在光学腔中,高能级的激发态电子会发生自发辐射,从而产生光子,光子穿过输出窗口逃逸出来。
这就是激光的产生过程。
光学腔由两个反射镜构成,一个是高反射镜(HR镜),另一个是输出镜(OC镜)。
HR镜起到反射光子的作用,而OC镜则允许部分光子通过,形成激光输出。
光学腔的设计与用于特定波长范围的激光器密切相关。
要实现紫外激光输出,我们通常使用二次谐波产生方法。
这种方法利用非线性光学效应,在高能量激光束通过非线性晶体时产生频率加倍,从而将激光转换为更短的紫外波长。
常见的非线性晶体材料包括KDP(磷酸二氢钾)和BBO(磷酸钡钙晶体)。
通过调整晶体的温度和角度,可以实现不同波长范围的紫外激光输出。
固体紫外激光器具有广泛的应用前景。
在科学研究领域,它可以用于超快激光光谱学、表面等离子体共振、薄膜沉积等实验。
在生物医学领域,固体紫外激光器被广泛应用于激光手术、皮肤美容和白内障治疗等。
在工业领域,它可以用于精细加工、标记、材料检测等。
此外,固体紫外激光器还能被应用于大气科学、光通信和防务等领域。
不过,固体紫外激光器在使用时需要特别注意安全。
紫外光具有较强的能量和较高的光子能量,如果不正确使用或直接暴露于人体,可能会对眼睛和皮肤造成伤害。
因此,使用固体紫外激光器时需要佩戴适当的防护眼镜和防护服,同时要遵循相关的操作规程。
大功率固体激光器的原理及应用大功率固体激光器的原理基于激光的原理。
激光的产生需要两个条件:能级反转和受激辐射。
固体激光器中的固体材料通常是一些晶体或陶瓷形式,其中掺杂了一定的活性离子(如Nd3+、Yb3+等)。
这些活性离子通过光泵浦过程被激发到较高的能级,而后通过过程传递能量至基态能级,最终通过受激辐射产生激光。
具体而言,大功率固体激光器的主要原理如下:1.光泵浦:通过外部光源(如二极管激光器、闪光灯等)对固体材料进行光学激发,将活性离子从低能级激发到高能级,形成能级反转。
2.刺激辐射:由于能级反转,活性离子从高能级经过自发辐射或受到外界的辐射而返回到低能级。
在特定的波长和能级结构条件下,活性离子的辐射将受到受激辐射的促进,使得更多的光子被放大,并由此产生激光。
1.材料加工:由于其高能量、高亮度和可调谐的特点,大功率固体激光器广泛用于材料加工领域。
特别是在切割、焊接、打孔等高精度、高速度和高稳定性的加工过程中,固体激光器通常能够提供卓越的性能。
2.激光器打标:大功率固体激光器被广泛应用于激光打标领域。
通过调整激光的功率、频率和模式,可以实现对各类物品进行标记、雕刻和刻印。
这种非接触式的打标方式可以适用于各种材料,包括金属、塑料、陶瓷等。
3.军事应用:大功率固体激光器在军事领域也有重要应用。
例如,将固体激光器用于激光导引器、激光制导器、激光通信等系统。
其高功率和高能量密度可以实现远程目标识别、精确制导和激光防御等任务。
4.医疗领域:大功率固体激光器在医疗领域有广泛的应用。
例如,用于激光手术、激光激发和激光诊断等领域。
固体激光器可以提供高能量、高强度的激光束,以进行手术切割、封闭血管、清除肿瘤等。
综上所述,大功率固体激光器作为一种重要的光学器件,在多个领域都有广泛的应用。
通过光泵浦和受激辐射的原理,固体激光器能够产生高能量、高亮度和可调谐的激光。
未来随着科技的发展,固体激光器将继续发挥重要作用,并在更多领域创造更多的应用价值。
大功率全固态355nm紫外激光器研究一、本文概述随着科学技术的飞速发展,紫外激光器在科研、工业、医疗等领域的应用日益广泛,其中355nm波长的紫外激光器因其独特的物理特性在诸多领域表现出显著的优势。
特别是在高精度材料加工、生物医学研究、光电子器件制造等领域,大功率全固态355nm紫外激光器的需求日益迫切。
因此,开展大功率全固态355nm紫外激光器的研究,不仅具有重要的理论意义,也具有巨大的实际应用价值。
本文旨在深入研究大功率全固态355nm紫外激光器的设计、制造、性能测试等关键技术,并探讨其在实际应用中的可能性和挑战。
我们将首先回顾紫外激光器的发展历程,分析当前国内外在该领域的研究现状,并指出存在的问题和面临的挑战。
然后,我们将详细介绍大功率全固态355nm紫外激光器的设计原理和制造工艺,包括激光介质的选择、谐振腔的设计、泵浦方式的选择、热管理策略等关键技术。
在此基础上,我们将通过实验验证和优化激光器的性能,包括输出功率、光束质量、稳定性等关键指标。
我们将探讨大功率全固态355nm紫外激光器在各个领域的应用前景,以及未来研究方向和可能的技术突破。
本文的研究结果将为大功率全固态355nm紫外激光器的设计、制造和应用提供重要的理论支撑和实践指导,有望推动紫外激光器技术的发展和应用领域的拓展。
二、全固态355nm紫外激光器的基本原理与结构全固态355nm紫外激光器是一种基于固体增益介质和非线性光学晶体的高功率激光源。
其基本原理和结构涉及多个关键组成部分,包括泵浦源、增益介质、非线性光学晶体和谐振腔等。
泵浦源是全固态紫外激光器的能量来源,通常采用高功率的半导体激光器或光纤激光器。
泵浦光通过特定的光学系统被引入增益介质,以激发介质中的粒子跃迁至高能级,为后续的激光产生提供能量。
增益介质是激光器的核心部分,通常采用掺有稀土离子的晶体或玻璃材料。
在泵浦光的激发下,增益介质中的稀土离子发生受激辐射,产生与泵浦光波长不同的激光。