粘性流体力学第六章(6-2)讲解
- 格式:ppt
- 大小:1.35 MB
- 文档页数:57
第六章流体节流与缝隙流动(了解各种节流及缝隙流动现象,理解影响流量的因素,理解偏心状缝。
掌握气蚀现象。
) §6.1 流体的节流节流:管道内流体流经断面突然缩小的截面后,又进入和以前一样断面的管道,致使压力下降的现象,称为节流。
一、气体节流气体节流后各参数的变化规律,表6-1进行简要分析二、液体节流缝隙中油液产生运动的原因:1)缝隙两端存在压力差;1)组成缝隙的壁面存在相对运动;3)缝隙大小的变化。
缝隙中油液的运动大都呈稳定层流:1)缝隙高度与其长度宽度相比很小,液体在缝隙中流动时受固体壁面的影响;2)油液具有一定的粘度,Re一般很小。
§6.2 液体在小孔中的流动通道截面为圆孔型(分为薄壁小孔型和细长小孔型)。
l d≤。
薄壁小孔:当横隔板壁厚L与孔口直径d之比小于0.5,即/0.5l d>。
液压和润滑系统中的导油管。
细长小孔:小孔的长径比/4§6.3 液体流经平面缝隙平面缝隙:由两平行平面夹成的缝隙。
齿轮泵齿顶与泵壳之间的油液运动,柴油机中滑块与导板之间的油液流动。
结论:1)缝隙中液体流速按抛物线规律分布的;2)流经平面缝隙的流量与缝隙厚度δ的三次方成正比,和动力粘度μ成反比。
§6.4 液体流经同心环状缝隙同心环状缝隙:由内外两个同心圆柱面所围成的缝隙。
结论:流经平面缝隙的流量与缝隙厚度δ的三次方成正比。
§6.5 液体流经偏心环状缝隙偏心环状缝隙:在船舶机械中的环状缝隙,当运动部件装配不当或工作受力不均时,同心环状缝隙就变成偏心环状缝隙。
结论:流经偏心环状缝隙的流量与偏心距成正比,偏心距最大时,泄漏量为同心环状缝隙的2.5倍。
§6.6 液体流经具有相对运动的平行面缝隙喷油泵中的柱塞泵。
类型:(1、2、3)1)平行剪切流动∆=p,由于液体粘滞性,通过平行板的运动液体运动。
2)压差流动液体的运动,在缝隙两端的压差作用下实现。
3)压差与剪切流动的合成液体的运动,在缝隙两端的压差和平行剪切力的作用下共同实现。
流体⼒学讲义第六章流动阻⼒及能量损失2第六章流动阻⼒及能量损失本章主要研究恒定流动时,流动阻⼒和⽔头损失的规律。
对于粘性流体的两种流态——层流与紊流,通常可⽤下临界雷诺数来判别,它在管道与渠道内流动的阻⼒规律和⽔头损失的计算⽅法是不同的。
对于流速,圆管层流为旋转抛物⾯分布,⽽圆管紊流的粘性底层为线性分布,紊流核⼼区为对数规律分布或指数规律分布。
对于⽔头损失的计算,层流不⽤分区,⽽紊流通常需分为⽔⼒光滑管区、⽔⼒粗糙管区及过渡区来考虑。
本章最后还阐述了有关的边界层、绕流阻⼒及紊流扩散等概念。
第⼀节流态判别⼀、两种流态的运动特征1883年英国物理学家雷诺(Reynolds O.)通过试验观察到液体中存在层流和紊流两种流态。
1.层流层流(laminar flow),亦称⽚流:是指流体质点不相互混杂,流体作有序的成层流动。
特点:(1)有序性。
⽔流呈层状流动,各层的质点互不混掺,质点作有序的直线运动。
(2)粘性占主要作⽤,遵循⽜顿内摩擦定律。
(3)能量损失与流速的⼀次⽅成正⽐。
(4)在流速较⼩且雷诺数Re较⼩时发⽣。
2.紊流紊流(turbulent flow),亦称湍流:是指局部速度、压⼒等⼒学量在时间和空间中发⽣不规则脉动的流体运动。
特点:(1)⽆序性、随机性、有旋性、混掺性。
流体质点不再成层流动,⽽是呈现不规则紊动,流层间质点相互混掺,为⽆序的随机运动。
(2)紊流受粘性和紊动的共同作⽤。
(3)⽔头损失与流速的1.75~2次⽅成正⽐。
(4)在流速较⼤且雷诺数较⼤时发⽣。
⼆、雷诺实验如图6-1所⽰,实验曲线分为三部分:(1)ab段:当υ<υc时,流动为稳定的层流。
(2)ef段:当υ>υ''时,流动只能是紊流。
(3)be段:当υc<υ<υ''时,流动可能是层流(bc段),也可能是紊流(bde段),取决于⽔流的原来状态。
图6-1图6-2实验结果(图6-2)的数学表达式层流:m1=1.0, h f=k1v , 即沿程⽔头损失与流线的⼀次⽅成正⽐。
第六章 粘性流体动力学基础实际流体都是有粘性的,只有当粘性力与惯性力相比很小时,才能忽略粘性力而采用“理想流体”这个简单的理想模型。
支配粘性流体运动的方程比理想流体的基本方程复杂得多,因此粘性流体动力学问题的求解比理想流体动力学问题更加复杂、困难。
本章的目的在于介绍粘性流体动力学的一些基本知识。
§1 雷诺数(Re )——粘性对于流动的影响的大小的度量粘性流体运动方程为:⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂+=z y x Dt D z y x p p p f V ρ1 在x 方向的投影为:⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂+=∂∂+∂∂+∂∂+∂∂z p y p x p f z u w y u v x u u t u zx yx xx x ρ1 这里以xu u ∂∂作为惯性力的代表; y p yx ∂∂ρ1作为粘性力项的代表,其大小为⎪⎪⎭⎫ ⎝⎛∂∂∂∂y u y μρ1。
下面以圆球的粘性流体绕流为例,来估算作用在单位质量流体上的惯性力和粘性力的量阶:(插圆球绕流图)L 为所研究问题的特征长度;∞V 为特征速度;∞ρ为特征密度;∞μ为特征粘性系数。
u 的量阶为∞V ;x u ∂∂的量阶为L V ∞; 22yu ∂∂的量阶为L V 2∞, 则: 作用在单位质量流体上的惯性力的量阶为:LV 2∞ 作用在单位质量流体上的粘性力的量阶为:2L V ∞∞∞ρμ 粘性力惯性力~22L V L V ∞∞∞∞ρμ=∞∞v L V =∞Re Re 称为雷诺数(Reynolds 数),它的物理意义是作用在流体上的惯性力与粘性力的比值的度量。
Re 数是粘性流体动力学中最重要的无量纲参数,它在粘性流体动力学中所占地位与无粘气体动力学的M 数相当。
在不同Re 数范围内的粘性流体运动可以有完全不同的性质,下面以圆柱绕流为例看不同Re 数范围内的圆柱绕流运动。
(插圆柱绕流图)总之:Re 增加,粘性影响变弱,当Re 》1时,对于某些问题,如无分离绕流物体的升力问题,可忽略粘性影响,采用“理想流体”模型。
第六章 液体力学6-1 有一个长方体形的水库,长200 m ,宽150 m ,水深10 m ,求水对水库底面和侧面的压力。
解:水对水库底面的压力为:()()391 1.0109.810150200 2.910F ghS N ρ==⨯⨯⨯⨯⨯=⨯侧面的压力应如下求得:在侧面上建立如图所示的坐标系,在y 处取侧面窄条dy ,此侧面窄条所受的压力为:dF glydy ρ=整个侧面所受的压力可以表示为:2012hF glydy glh ρρ==⎰对于10h m =、200l m =的侧面:()2721'9.8102F glh N ρ==⨯ 对于10h m =、150l m =的侧面:()2721''7.4102F glh N ρ==⨯侧面的总压力为:()82222'2'' 3.410F F F N =+=⨯6-2 有三个底面积相同但形状各异的容器,分别盛上高度相同的水,如题图所示,根据静止流体压强的概念,三个容器底面的压强是相同的,所以每个容器底面所受的水的压力也是相同的,水对底面压力是由水的重量引起的,但是三个容器中所盛的水的重量显然不等,请对这个似乎矛盾的结果作出解释。
答:三个容器底面的压强是相同的,但流体对容器内壁的压强并不是容器对其支撑面的压强,容器对其支撑面的压力等于水与容器本身重量之和。
因此,容器对其支撑面的压强是不同的。
如蓝球内壁的压强要比蓝球对支撑面的压强要大得多。
6-3 在35.010s ⨯的时间内通过管子截面的二氧化碳气体(看作为理想流体)的质量为0.51 kg 。
已知该气体的密度为37.5kg m -⋅ ,管子的直径为2.0 cm ,求二氧化碳气体在管子里的平均流速。
解: 单位时间内流过管子截面的二氧化碳气体的体积,即流量为:53130.511.36107.5 5.010V m Q m s t ρ--===⨯⋅⨯⨯平均流速为:()521221.3610 4.3103.14 1.010V Q v m s S ----⨯===⨯⋅⨯⨯ 6-4 当水从水笼头缓慢流出而自由下落时,水流随位置的下降而变细,何故?如果水笼头管口的内直径为d ,水流出的速率为0v ,求在水笼头出口以下h 处水流的直径。