MATLAB 第三章习题
- 格式:docx
- 大小:78.47 KB
- 文档页数:6
第三章习题答案1.代码:a=[1 -1 -1]; roots(a)结果:ans =-0.61801.61802.代码:x=0:10;y=sin(x);xi=0:0.15:10; %选取了67个插值点,要增加n,只需减小步长即可y0=sin(xi); %算精确值y1=interp1(x,y,xi); %分段线性插值y2=interp1(x,y,xi,'spline'); %三次样条插值plot(xi,y0,'o',xi,y1,xi,y2,'-.')legend('精确值','分段线性插值','三次样条插值')结果:3.理论公式为:p=1.0332*exp(-(x+500)/7756),所以拟合模型可写为:p=a*exp(-k*x+b) 式中,a, k, b为常数,两边同时取自然对数,得:log(p)=-k*x+b+log(a)问题转化为线性模型。
注意:自然对数是log(x), 以10为底的对数是log10(x)代码:clear;x=[0 300 600 1000 1500 2000];p=[0.9689 0.9322 0.8969 0.8519 0.7989 0.7491];lnp=log(p); %转化为 p 的自然对数值,模型转化为线性模型pk=polyfit(x,lnp,1); % 线性拟合,得到模型的斜率pk(1)和常数pk(2) 模型为: p=exp(pk(1)*x)*exp(pk(2))xi=0:50:2000;p0=1.0332*exp(-(xi+500)/7756); %理论值p1=exp(pk(1)*xi+pk(2)); %拟合模型值p2=interp1(x,p,xi,'spline'); %三次样条插值plot(x,p,'p',xi,p0,xi,p1,'--',xi,p2,'-.');legend('测量值','理论值','拟合值','三次样条值');format long % 数据显示格式为15位有效数字x2=0:200:2000 % 取10个点,比较差异pp1=1.0332*exp(-(x2+500)/7756) %理论值pp2=exp(pk(1)*x2+pk(2)) % 拟合值pp3=interp1(x,p,x2,'spline') % 样条插值err1=sum(abs(pp2-pp1).^2) % 拟合值的误差绝对值总和err2=sum(abs(pp3-pp1).^2) % 样条值的误差绝对值总和结果:0200400600800100012001400160018002000从图像上,都符合得很好,但很难看出差异。
matlab第三章答案第1题:从键盘输入一个3位数,将它反向输出。
如输入639输出936、n1=fix(n/100);n2=rem(fix(n/10),10);n3=rem(n,10);m=n3*100+n2*10+n1;disp(m)请输入一个三位数:489984第2题:输入一个百分制成绩,要求输出成绩等级A、B、C、D、E。
其中90~100分为A,80~89分为B、70~79分为C、60~69分为D,60分以下为E。
要求:(1)分别用if语句与switch语句实现。
(2)输入百分制成绩后要判断成绩得合理性,对不合理得成绩应输出错信息。
If语句:>> s=input('请输入成绩分数:');if s>=90&s<=100disp('A');elseif s>=80&s<=89disp('B');elseif s>=70&s<=79disp('C');elseif s>=60&s<=69disp('D');elseif s>=0&s<60disp('E');elsedisp('false');end请输入成绩分数:89BSwitch语句:>> s=input('请输入成绩分数:');switch fix(s/10)case {9,10}disp('A');case {8}disp('B');case {7}disp('C');case {6}disp('D');case {5,4,3,2,1,0}disp('E');otherwisedisp('false');end请输入成绩分数:88B第3题输入20个数,求其中最大数与最小数。
第3章数值数组及其运算习题3及解答1 要求在闭区间]2,0[ 上产生具有10个等距采样点的一维数组。
试用两种不同的指令实现。
〖目的〗●数值计算中产生自变量采样点的两个常用指令的异同。
〖解答〗%方法一t1=linspace(0,2*pi,10)%方法二t2=0:2*pi/9:2*pi %要注意采样间距的选择,如这里的2*pi/9.t1 =Columns 1 through 70 0.6981 1.3963 2.0944 2.7925 3.4907 4.1888 Columns 8 through 104.88695.58516.2832t2 =Columns 1 through 70 0.6981 1.3963 2.0944 2.7925 3.4907 4.1888 Columns 8 through 104.88695.58516.28322 由指令rng('default'),A=rand(3,5)生成二维数组A,试求该数组中所有大于0.5的元素的位置,分别求出它们的“全下标”和“单下标”。
〖目的〗●数组下标的不同描述:全下标和单下标。
●sub2ind, int2str, disp的使用。
●随机发生器的状态控制:保证随机数的可复现性。
〖解答〗rng('default')A=rand(3,5)[ri,cj]=find(A>0.5);id=sub2ind(size(A),ri,cj);ri=ri';cj=cj';disp(' ')disp('大于0.5的元素的全下标')disp(['行号 ',int2str(ri)])disp(['列号 ',int2str(cj)])disp(' ')disp('大于0.5的元素的单下标')disp(id')A =0.8147 0.9134 0.2785 0.9649 0.95720.9058 0.6324 0.5469 0.1576 0.48540.1270 0.0975 0.9575 0.9706 0.8003大于0.5的元素的全下标行号 1 2 1 2 2 3 1 3 1 3列号 1 1 2 2 3 3 4 4 5 5大于0.5的元素的单下标1 2 4 5 8 9 10 12 13 153 采用默认全局随机流,写出产生长度为1000的“等概率双位(即取-1,+1)取值的随机码”程序指令,并给出 -1码的数目。
1. p138 第6题在同一坐标轴中绘制下列两条曲线并标注两曲线交叉点。
>> t=0:0.01:pi;>> x1=t;>> y1=2*x1-0.5;>> x2=sin(3*t).*cos(t);>> y2=sin(3*t).*sin(t);>> plot(x1,y1,'r-',x2,y2,'g-')>> axis([-1,2,-1.5,1])>> hold on>> s=solve('y=2*x-0.5','x=sin(3*t)*cos(t)','y=sin(3*t)*sin(t)'); >> plot(double(s.x),double(s.y),'*');截图:p366 第4题绘制极坐标曲线,并分析对曲线形状的影响。
function [ output_args ] = Untitled2( input_args )%UNTITLED2 Summary of this function goes here% Detailed explanation goes heretheta=0:0.01:2*pi;a=input('请输入a的值:');b=input('请输入b的值:');n=input('请输入n的值:');rho=a*sin(b+n*theta);polar(theta,rho,'k');end下面以a=1,b=1,n=1的极坐标图形为基础来分析a、b、n的影响。
对a的值进行改变:对比发现a只影响半径值的整倍变化对b的值进行改变:对比发现b的值使这个圆转换了一定的角度对n的值进行改变:对比发现当n>=2时有如下规律1、当n为整数时,图形变为2n个花瓣状的图形2、当n为奇数时,图形变为n个花瓣状的图形分别让n为2、3、4、5同时改变b和n的值,对比发现图形变为2n个花瓣状,并且还旋转了一定角度1 绘制sin(x)曲线,通过句柄修改曲线的颜色,要求:a)生成曲线的同时,获取句柄,再修改颜色;>> x=0:pi/50:2*pi;>> y=sin(x);>> h=plot(x,y)h =174.0101>> set(h,'color','r');截图如下:b)先生成曲线,然后再获取句柄,再完成颜色修改。
% ch3example1A.mclear;f_p=2400; f_s=5000; R_p=3; R_s=25; % 设计要求指标[n, fn]=buttord(f_p,f_s,R_p,R_s, 's'); % 计算阶数和截止频率Wn=2*pi*fn; % 转换为角频率[b,a]=butter(n, Wn, 's'); % 计算H(s)f=0:100:10000; % 计算频率点和频率范围s=j*2*pi*f; % s=jw=j*2*pi*fH_s=polyval(b,s)./polyval(a,s); % 计算相应频率点处H(s)的值figure(1);subplot(2,1,1); plot(f, 20*log10(abs(H_s))); % 幅频特性axis([0 10000 -40 1]);xlabel('频率Hz');ylabel('幅度dB');subplot(2,1,2); plot(f, angle(H_s)); % 相频特性xlabel('频率Hz');ylabel('相角rad');figure(2); freqs(b,a); % 也可用指令freqs直接画出H(s)的频率响应曲线。
% ch3example1B.mclear;f_p=2400; f_s=5000; R_p=3; R_s=25; % 设计要求指标[n, fn]=ellipord(f_p,f_s,R_p,R_s,'s'); % 计算阶数和截止频率Wn=2*pi*fn; % 转换为角频率[b,a]=ellip(n,R_p,R_s,Wn,'s'); % 计算H(s)f=0:100:10000; % 计算频率点和频率范围s=j*2*pi*f; % s=jw=j*2*pi*fH_s=polyval(b,s)./polyval(a,s); % 计算相应频率点处H(s)的值figure(1);subplot(2,1,1); plot(f, 20*log10(abs(H_s))); % 幅频特性axis([0 10000 -40 1]);xlabel('频率Hz');ylabel('幅度dB');subplot(2,1,2); plot(f, angle(H_s)); % 相频特性xlabel('频率Hz');ylabel('相角rad');figure(2); freqs(b,a); % 也可用指令freqs直接画出H(s)的频率响应曲线。
第三章微积分问题的计算机求解一、实验内容:题目1.试求出如下极限。
①limx→∞(3x +9x )1/ x,②lim x→∞[(x+2)x+2(x+3)x+3 ]/(x+5)2x+5【分析】:该题为单变量函数的极限。
极限问题可以用limit()函数直接求出。
要注意该函数的调用格式为:L=limit(fun,x,x0)(求极限),L=limit(fun,x,x0,’left’或’right’)(求极限)。
还需注意一开始要对函数的字符进行申明。
【解答】:(1)输入如下语句:>> syms x;f=(3^x+9^x)^(1/x);L=limit(f,x,inf)语句运行后显示如下:L =9(2)输入如下语句:>>syms x;f=(x+2)^(x+2)*(x+3)^(x+3)/(x+5)^(2*x+5);>> L=limit(f,x,inf)语句运行后显示如下:L =exp(-5)题目2.试求下面的双重极限。
①lim x→−1y→2 (x2y+xy3)/(x+y) 3,②limx→0 y→0 xy /√(xy+1)−1,③limx→0y→0 [1−cos(x2+y2)]/(x2+y2)e x2+y2。
【分析】:该题为多变量函数的极限问题。
他可以用嵌套使用limit()函数来解决。
在MATLAB上可以用L=limit(limit(f,x,x0),y,y0)或者L=limit(f,y,y0),x,x0)来解决。
其思想是所有的先关于X求导,再所有的关于y求导。
【解答】:(1)输入如下语句:>> syms x y>> f=(x^2*y+x*y^3)/(x+y)^3;>> L=limit(limit(f,x,-1),y,2)语句运行后显示如下:L =-6(2)输入如下语句:>> syms x yf=(x*y)/(sqrt(x*y+1)-1);L=limit(limit(f,x,0),y,0)按ENTER键,语句运行后显示如下:L =2(3)输入如下语句:>> syms x yf=(1-cos(x^2+y^2))/(sqrt(x^2+y^2)*exp(x^2+y^2));L=limit(limit(f,x,0),y,0)按ENTER键,语句运行后显示如下:L =题目3.求出下面函数的导数。
3.5 MATLAB 绘图实训3.5.1 实训目的1.学会MATLAB 绘图的基本知识;2.掌握MATLAB 子图绘制、图形注释、图形编辑等基本方法;3.学会通过MATLAB 绘图解决一些实际问题;4.练习二维、三维绘图的多种绘图方式,了解图形的修饰方法;5.学会制作简单的MATLAB 动画。
图3-46 炮弹发射示意图3.5.2 实训内容1. 炮弹发射问题〔1炮弹发射的基础知识炮弹以角度α射出的行程是时间的函数,可以分解为水平距离)(t x 和垂直距离)(t y 。
)cos()(0αtv t x = %水平方向的行程; 205.0)sin()(gt tv t y -=α %垂直方向的行程;其中,0v 是初速度;g 是重力加速度,为9.82m/s ;t 是时间。
〔2炮弹发射程序举例:分析以下程序以及图3-47各个图形的实际意义。
a=pi/4; v0=300; g=9.8;t=0:0.01:50; x=t*v0*cos<a>;y=t*v0*sin<a>-0.5*g*t.^2;subplot<221>;plot<t,x>;grid;title<‘时间-水平位移曲线'>; subplot<222>;plot<t,y>;grid;title<‘时间-垂直位移曲线'>; subplot<223>;plot<x,y>;grid;title<‘水平位移-垂直位移曲线'>; subplot<224>;plot<y,x>;grid;title<‘垂直位移-水平位移曲线'>; 图3-4745角发射曲线 〔3编程解决炮弹发射问题①假设在水平地面上以垂直于水平面的角度向上发射炮弹,即发射角90=α,假设初速度分别为[310,290,270]m/s,试绘制时间-垂直位移曲线,编程求取最高射程;绘图要求:◆ 标题设为"炮弹垂直发射问题";◆ 在图上通过添加文本的方式表明初速度; ◆ 在x 轴标注"时间";◆ 在y 轴上标注"垂直距离"; ◆ 添加网格线;◆ 将310m/s 的曲线改为线粗为2的红色实线; ◆ 将290m/s 的曲线改为线粗为3的绿色点划线;◆ 将270m/s 的曲线改为线粗为2的蓝色长点划线;a=pi/2; v1=310; g=9.8;t=0:0.01:50; x1=t*v1*cos<a>;y1=t*v1*sin<a>-0.5*g*t.^2;plot<t,y1>;grid; title<'炮弹垂直发射问题'>; xlabel<'时间'>; ylabel<'垂直距离'>; hold on; v2=290;x2=t*v2*cos<a>;y2=t*v2*sin<a>-0.5*g*t.^2; plot<t,y2>; v3=270;x3=t*v3*cos<a>;y3=t*v3*sin<a>-0.5*g*t.^2; plot<t,y3>;zgsc=[max<y1>; max<y2>; max<y3>] %三次发射的最高射程 运行结果如下: zgsc =1.0e+003 * 4.9031 4.29083.7194最高射程分别为:4903.1米,4290.8米,3719.4米。
第三章
2,0[ 上产生具有10个等距采样点的一维数组。
试用两种不同的指令实1.要求在闭区间]
现。
方法一
t1=linspace(0,2*pi,10)
t1 = 0 0.6981 1.3963 2.0944 2.7925 3.4907 4.1888 4.8869 5.5851 6.2832
方法二
t2=0:2*pi/9:2*pi
结果与t1相同
2.由指令rand('state',0),A=rand(3,5)生成二维数组A,试求该数组中所有大于0.5的元素的位置,分别求出它们的“全下标”和“单下标”。
rand('state',0),A=rand(3,5)
[ri,cj]=find(A>0.5);
id=sub2ind(size(A),ri,cj);
ri=ri';
cj=cj';
disp(' ')
disp('大于0.5的元素的全下标')
disp(['行号 ',int2str(ri)])
disp(['列号 ',int2str(cj)])
disp(' ')
disp('大于0.5的元素的单下标')
disp(id')
A =
0.9501 0.4860 0.4565 0.4447 0.9218
0.2311 0.8913 0.0185 0.6154 0.7382
0.6068 0.7621 0.8214 0.7919 0.1763
大于0.5的元素的全下标
行号 1 3 2 3 3 2 3 1 2
列号 1 1 2 2 3 4 4 5 5
大于0.5的元素的单下标
1 3 5 6 9 11 1
2 1
3 14
3. 已知矩阵⎥⎦
⎤
⎢
⎣⎡=4321A ,运行指令B1=A.^(0.5), B2=A^(0.5), 可以观察到不同运算方法所得结果不同。
(1)请分别写出根据B1, B2恢复原矩阵A 的程序。
(2)用指令检验所得的两个恢复矩阵是否相等。
A=[1,2;3,4]; B1=A.^0.5 B2=A^0.5 A1=B1.*B1; A2=B2*B2;
norm(A1-A2,'fro') B1 =
1.0000 1.4142 1.7321
2.0000 B2 =
0.5537 + 0.4644i 0.8070 - 0.2124i 1.2104 - 0.3186i 1.7641 + 0.1458i
ans =
1.8505e-015
4. 在时间区间 [0,10]中,绘制t e y t 2cos 15.0--=曲线。
要求分别采取“标量循环运算法”
和“数组运算法”编写两段程序绘图。
%标量循环运算法 t=linspace(0,10,200); N=length(t); y1=zeros(size(t)); for k=1:N
y1(k)=1-exp(-0.5*t(k))*cos(2*t(k)); end
subplot(1,2,1), plot(t,y1), xlabel('t'), ylabel('y1'), grid on
%数组运算法
y2=1-exp(-0.5*t).*cos(2*t);
subplot(1,2,2),
plot(t,y2),
xlabel('t'),
ylabel('y2'),
grid on
5.先运行clear,format long,rand('state',1),A=rand(3,3),然后根据A写出两个矩阵:一个对角阵B,其相应元素由A的对角元素构成;另一个矩阵C,其对角元素全为0,而其余元素与对应的A阵元素相同。
clear,
format long
rand('state',1)
A=rand(3,3)
B=diag(diag(A))
C=A-B
A =
0.95278214965662 0.59815852417219 0.83681960067634
0.70406216677500 0.84074319811307 0.51870305972492
0.95387747359223 0.44281884223513 0.02220977857260
B =
0.95278214965662 0 0
0 0.84074319811307 0
0 0 0.02220977857260
C =
0 0.59815852417219 0.83681960067634
0.70406216677500 0 0.51870305972492
0.95387747359223 0.44281884223513 0
6.先运行指令x=-3*pi:pi/15:3*pi; y=x; [X,Y]=meshgrid(x,y); warning off;
Z=sin(X).*sin(Y)./X./Y; 产生矩阵Z。
(1)请问矩阵Z中有多少个“非数”数据?
(2)用指令surf(X,Y,Z); shading interp观察所绘的图形。
(3)请写出绘制相应的“无裂缝”图形的全部指令。
x=-3*pi:pi/15:3*pi;
y=x;
[X,Y]=meshgrid(x,y);
warning off
Z=sin(X).*sin(Y)./X./Y;
NumOfNaN=sum(sum(isnan(Z))) %计算“非数”数目
subplot(1,2,1),surf(X,Y,Z),shading interp,title('有缝图') %产生无缝图
XX=X+(X==0)*eps;
YY=Y+(Y==0)*eps;
ZZ=sin(XX).*sin(YY)./XX./YY;
subplot(1,2,2),surf(XX,YY,ZZ),shading interp,title('无缝图')
NumOfNaN =
181
7. 下面有一段程序,企图用来解决如下计算任务:有矩阵⎥
⎥⎥⎥
⎦⎤⎢⎢⎢
⎢⎣⎡++++=k k k
k k k k k 10229221911 A ,当k 依次取10, 9, 8, 7, 6, 5, 4, 3, 2, 1时,计算矩阵k A “各列元素的和”,并把此求和
结果存放为矩阵Sa 的第k 行。
例如3=k 时,A 阵为⎥⎥⎥⎦
⎤
⎢⎢⎢⎣⎡306329522841 ,此时它各列元素 的和是一个)101(⨯行数组[]87156 ,并把它保存为Sa 的第3行。
问题:该段程序的计算结果对吗?假如计算结果不正确,请指出错误发生的根源,并改正之。
(1)错误根源 for k=10:-1:1
A=reshape(1:10*k,k,10); Sa(k,:)=sum(A); end Sa
Sa =
55 55 55 55 55 55 55 55 55 55 3 7 11 15 19 23 27 31 35 39 6 15 24 33 42 51 60 69 78 87 10 26 42 58 74 90 106 122 138 154 15 40 65 90 115 140 165 190 215 240 21 57 93 129 165 201 237 273 309 345 28 77 126 175 224 273 322 371 420 469 36 100 164 228 292 356 420 484 548 612 45 126 207 288 369 450 531 612 693 774 55 155 255 355 455 555 655 755 855 955
(2)正确性分析
sum 对二维数组,求和按列施行;而对一维数组,不管行数组或列数组,总是求那数组所有元素的和。
for k=10:-1:1
A=reshape(1:10*k,k,10); Sa(k,:)=sum(A); if k==1 Sa(k,:)=A; end end
Sa
Sa =
1 2 3 4 5 6 7 8 9 10
3 7 11 15 19 23 27 31 35 39
6 15 24 33 42 51 60 69 78 87
10 26 42 58 74 90 106 122 138 154
15 40 65 90 115 140 165 190 215 240
21 57 93 129 165 201 237 273 309 345
28 77 126 175 224 273 322 371 420 469
36 100 164 228 292 356 420 484 548 612
45 126 207 288 369 450 531 612 693 774
55 155 255 355 455 555 655 755 855 955。