轨道球阀扭矩计算--公式编辑,下载就能使用
- 格式:xls
- 大小:195.00 KB
- 文档页数:4
固定球阀扭矩和比压计算阀前阀座密封的固定球阀的扭矩计算总扭矩M:M=M m+M t+M u+M c (N·mm)式中M m—球体与阀座密封圈间的摩擦扭矩(N·mm);M t—阀杆与填料间的摩擦扭矩(N·mm);M u—阀杆台肩与止推垫的摩擦扭矩(N·mm);M c—轴承的摩擦扭矩(N·mm);(1)M m的计算M m=QR(1+cosφ)μt/2cosφ;Q—固定球阀的密封力(N),Q=(Q MJ-Q J)+2Q1-Q2;Q MJ—流体静压力在阀座密封面上引起的作用力(N),Q MJ=πp(d12-D12)/4;d1—浮动支座外径(mm);D1—浮动支座内径,近似等于阀座密封圈内径(mm);P—流体压力(MPa);Q J—流体静压力在阀座密封面余隙中的作用力(N),Q J=πP J (D22-D12)/4;P J—余隙中的平均压力,当余隙中压力呈线性分布时,可近似地取P J=P/2 (N);D2—阀座密封圈外径(mm);Q1—预紧密封力(N),Q1=πq min (D22-D12)/4;q min—预紧所必需的最小比压,q min=0.1P (MPa),并应保证q min≥2MPa,弹性元件应根据Q1值的大小进行设计;Q2—阀座滑动的摩擦力(N);Q2=πd1(0.33+0.92μ0d0P)d0—阀座O型圈的横截面直径(mm);μ0—橡胶对金属的摩擦系数,μ0=0.3~0.4;有润滑时,μ0=0.15;R—球体半径(mm);φ—密封面对中心斜角(°);μt—球体与密封圈之间的摩擦系数,F-4:μt=0.05;填充F-4:μt=0.05~0.08;尼龙:μt=0.15;填充尼龙:μt=0.32~0.37;(2)M t的计算M t=M t1+ M t2M t1—V型填料及圆形片状填料的摩擦转矩M t1=0.6πμt Zhd T2P(N.mm)Z—填料个数;h—单个填料高度;d T—阀杆直径(mm);M t2—O型圈的摩擦转矩M t2=0.5πd T2(0.33+0.92μ0d0 P)(N.mm);d 0—阀杆O型圈的横截面直径(mm);(3) M u的计算M u={πμt(D T+ d T)3P}/64(N.mm)D T—止推垫外径(mm);(4) M C的计算M C={πμC d T d12P}/8(N.mm)μc—轴承与阀杆之间的摩擦系数,复合轴承:μt=0.05~0.1;阀前阀座密封的固定球阀的设计比压计算q—设计比压,必须保证q b<q<[q]q=4Q/π(D22-D12)(MPa)q b—必须比压;[q]—许用比压,F-4:[q]=15MPa;尼龙:[q]=30MPa;浮球阀扭矩和比压计算浮动球阀的扭矩计算总扭矩M(N·mm)为:M=M m+M t+M u式中M m—球体与阀座密封圈间的摩擦扭矩(N·mm);M t—阀杆与填料间的摩擦扭矩(N·mm);M u—阀杆台肩与止推垫的摩擦扭矩(N·mm);(1)M m的计算M m=QR(1+cosφ)μt/2cosφ;Q—浮动球阀的密封力(N);Q= Q MJ+Q1Q MJ—流体静压力在阀座密封面上引起的作用力(N);Q MJ=π(D1+D2)2P /16D1—阀座内径,近似等于阀座密封面内径(mm);D2—阀座外径,近似等于阀座密封面外径(mm);P—流体压力(MPa);Q1—预紧密封力(N);Q1=2δ1EF MJ/ (D1+D2) (tgφ-2μt) (N);φ—密封面对中心斜角(°);δ1—阀座预压紧的压缩量(mm);E—阀座材料的弹性模量(MPa),F-4:E=470~800 MPa;尼龙:E =1500 MPa;F MJ—阀座的横截面积(mm);μt—球体与密封圈之间的摩擦系数,F-4:μt=0.05;填充F-4:μt=0.05~0.08尼龙:μt=0.15;填充尼龙:μt=0.32~0.37;R—球体半径(mm);φ—密封面对中心斜角(°);(2)M t的计算M t=M t1+ M t2M t1—V型填料及圆形片状填料的摩擦转矩M t1=0.6πμt Zhd T2P/2 (N.mm)Z—填料个数;h—单个填料高度;d F—阀杆直径(mm);M t2—O型圈的摩擦转矩M t2=0.6πd T2(0.33+0.92μ0d 01 P)/2 (N.mm);d 01—阀杆O型圈的横截面直径(mm);(5) M u的计算M u=πμt(D T+ d F)3P/64 (N.mm)D T—止推垫外径(mm);浮动球阀的设计比压计算q—设计比压,必须保证q b<q<[q]q=4Q/π(D22-D12)(MPa)q b—必须比压;[q]—许用比压,F-4:[q]=15MPa;尼龙:[q]=30MPa;。
闸阀截止阀操作转矩计算法(热工所/罗托克经验公式)此计算方法,比“三化”使用的计算方法要简便得多,计算结果接近实际转矩,已由对电厂实测结果证实。
此计算方法主要由以下几个部分组成:1、计算介质压力对阀门闸板或阀芯施加的推力乘阀门系数,即:P1=F×P×K式中:F=阀门的通径面积(cm2);P =介质的工作压力(kg/cm2);K =阀门系数,视介质种类、温度及阀门行驶而定。
阀门通径面积表阀门系数表2、计算填料的摩擦推力和转矩,以及阀杆的活塞效应所产生的推力总和P2。
压紧填料压盖,会给明杆闸阀的阀杆增加摩擦力,给旋转杆阀门的阀杆增加转矩。
管道压力作用于阀杆(通过填料压盖处)的截面积上,为开启阀门的趋势。
当道压力在64kgf/cm2以上时介质对明杆闸阀阀杆的推力是很大的,即所谓活塞效应。
故当介质压力≥64kgf/cm2时,对于明杆闸阀应予考虑。
而对截止阀,其阀杆面积已包括在阀芯面积中,所以活塞效应可忽略。
对于暗杆阀,以上3项均应计算。
填料的摩擦推力和转矩以及阀杆的活塞效应表3、计算阀门阀杆的总推力(Kgf),即ΣP=P1+P2,再将此推力乘以下表中的阀杆系数,获得阀门操作转矩Kgf.M梯形螺纹的阀杆系数(kgf.m/kgf)表 (阀杆尺寸=直径×螺距,单位:mm)采用此方法计算,应知道以下参数,即:阀门前后的压差(最小用 2.5kgf/cm2,如果管道压力高,则采用管道压力),阀门形式、介质的种类、阀杆直径与螺距。
现以下列示例来说明计算的方法与步骤。
有一明杆楔式闸阀,公称直径为 100mm,管道压力为 40kgf/cm2,阀杆为 Tr28*5mm,介质为 520℃蒸汽,求阀门的操作转矩。
1.由表 1查得阀门通道面积:78.540cm2;2.取压差,阀门工作恶劣情况是在管道压力下开启,故,压差:40kgf/cm2;3.由表 2查得阀门系数:0.45;4.净推力为:P1=F×P×K=(1)×(2)(×3)=78.540×40×0.45=1413.72 kgf;5.由表 3查得摩擦推力 P2:680kgf;6.如管道压力为 64 kgf/cm2以上,应加入介质对阀杆的推力,即活塞效应,因此例管道压力为 40 kgf/cm2,故不加。
阀门扭矩计算具体是:二分之一阀门口径的平方×3.14得出是阀板的面积,再乘以所承压力(即阀门工作压力)得出轴所承受的静压力,乘以磨擦系数(去查表一般钢铁的磨擦系数取0.1,钢对橡胶的磨擦系数取0.15),乘以轴径除以1000即得阀门的扭矩数,单位为牛·米,电动装置和气动执行器参考安全值取阀门扭矩的1.5倍。
阀门在设计时,选用执行器是靠估算,基本分为三部分:
1、密封件见的摩擦力矩(球体与阀座)
2、填料对阀杆的摩擦力矩
3、轴承对阀杆的摩擦力矩
故计算压力一般取公称压力的0.6倍(约为工作压力),摩擦系数根据材料定。
计算的力矩乘1.3~1.5倍以选执行器。
阀门扭矩计算要兼顾阀板与阀座的摩擦,阀轴与填料的摩擦,介质不同压差下对阀板的推力。
因为阀板、阀座和填料的种类太多了,每一种都有着不同的摩擦力,还有接触面的大小,压紧的程度等等。
所以一般都是用仪表实测而不是计算。
阀门扭矩计算出的数值有很大的参考意义,但并不能完全照搬。
在很多因素的影响下,阀门扭矩计算并没有实验得出的结果更精确。
计算机编程固定球球阀转矩的计算:球阀的转矩计算是选择驱动装置的功率、结构及球阀主要零件强度计算的基础,在固定球球阀中,球体受到的密封作用力完全传递到轴承上。
作用力的大小取决于阀前和阀后阀座的密封结构,弹性元件的预紧力等。
转矩计算的相关公式如下:总的转矩:Mc Mu Mt Mm M +++=rr d D d aPUtR Mm 8)1)(27.023.01(222+--= P dT aUtZh Mt 2)(6.0=64)(3P dT DT aUt Mu += P aUcdFd Mc 812= 式中:Mm —球体与阀座密封圈间的摩擦转矩(N ·mm ); Mt ——阀杆与填料间的摩擦转矩(N ·mm );Mu ——阀杆台肩与止推垫的摩擦转矩(N ·mm ); Mc ——轴承的摩擦转矩(N ·mm )。
a=π=3.14; 填料圈数Z=4; 阀杆直径dT=70mm; 轴颈直径dF=90mm; 浮动支座外径d1=370mm; 阀座内径D1=324mm ; 浮动支座内径d2=300mm; 阀座外径D2=348mm ; 球体直径R=240mm; 台肩外径DT=90; 公称压力P1=6.3MPa; 填料与阀杆的摩擦系数Ut=0.05; 摩擦系数Uc=0.05;r=cosa=cos45°=0.707;单圈填料高度h=6;球阀转矩计算的C语言编程如下:#include"stdio.h"#include"math.h"main(){float Z,dT,dF,d1,D1,d2,D2,R,DT;float P,P1,Ut,Uc,r,a,h,M,Mm,Mt,Mc,Mu ;a=3.14 ;scanf("%f%f%f%f%f%f%f%f%f%f%f%f%f%f",&Z,&dT,&dF,&d1,&D1,&d2,&D2, &R,&DT,&P1,&Ut,&Uc,&r,&h);P=P1*1.05 ;Mm=(a*P*Ut*R*(d1*d1-0.3*D2*D2-0.7*d2*d2))*(1+r)/(8*r);Mc=a*Uc*dF*d1*d1*P/8;Mt=0.6*a*Ut*Z*h*dT*dT*P;Mu=a*Ut*(DT+dT)*(DT+dT)*(DT+dT)*P/64;M=Mm+Mt+Mc+Mu;printf("%f\n",Mm);printf("%f\n",Mt);printf("%f\n",Mc);printf("%f\n",Mu);printf("%f\n",M);}。
扭矩如何计算
的减速机,速比1: 30,算出来的扭力是多大?单位是什么?
能带动多重的东西?
(减速电机功率)x9550x减速机传动效率x30/输入转速=扭矩
如果电机为四级电机:1380转/分即:
1380=
若求扭矩,只需代入转动效率、输入转速的参数值。
扭矩的单位是牛顿•米(N - m或公斤•米(Kg - m。
减速机扭矩=9550*电机功率/减速机输出转数*减速机效率
这是扭矩的公式
电机功率二扭矩十9550X电机功率输入转数十速比十使用系数
你要理解kg*m的意思。
22.6kg*m是指在直径为2米的圆(半径1米)的边缘上可以承受22.6KG力如果你弄个200mm勺皮带轮(半径100mm,皮带就可以拉动226KG 如果把它装在吊车上,用钢丝绳吊东西,它的力量取决于轮子的直径。
通常,在我们需要大扭力的情况下,我们会通过减速器来实现,如果你将
15 00转的电机减
速到150转,扭力会增加10倍,再打9折(功率损耗)。
在半径100MM勺轮子上,再减速10倍。
你就可以吊起 2 吨重的物体了。
阀门扭矩计算公式
阀门扭矩是指在阀门关闭或打开时需要施加的旋转力矩。
正确计算阀门扭矩非常重要,因为过小的扭矩可能导致阀门未能完全关闭,而过大的扭矩则可能损坏阀门。
阀门扭矩的计算公式如下:
T = F × L
其中,T是阀门扭矩,单位为牛·米(N·m);F是阀门作用力,单位为牛(N);L是阀门操作杆长度,单位为米(m)。
阀门作用力可以通过测量阀门所受的最大压力来计算。
如果阀门工作在液体介质中,则阀门作用力等于液体压力乘以阀门作用面积。
如果阀门工作在气体介质中,则阀门作用力等于气体压力乘以阀门作用面积。
阀门操作杆长度是指从阀门轴心到操作手柄末端的距离。
这个距离必须在计算扭矩时考虑到。
在实际应用中,还需要考虑其他因素,例如阀门的摩擦力、阀门材质的强度等。
因此,在计算阀门扭矩时,应该根据具体情况进行调整。
- 1 -。
阀门扭矩计算方法
阀门扭矩是阀门一个重要参数,因此不少朋友都很关注阀门扭矩计算的问题。
如下为阀门扭矩计算方法
阀门扭矩计算具体是:二分之一阀门口径(D)的平方×3.14得出阀板的面积(A),再乘以所承压力(P)(即阀门工作压力)得出轴所承受的静压力,乘以磨擦系数(钢铁的磨擦系数取0.1,钢对橡胶的磨擦系数取0.15),乘以轴径(d)除以1000即为阀门的扭矩数,单位为牛·米(N.m),
注:电动装置和气动执行器参考安全值取阀门扭矩的1.5倍。
阀门在设计时,选用执行器是靠估算,基本分为三部分:
1、密封件的摩擦力矩(球体与阀座)
2、填料对阀杆的摩擦力矩
3、轴承对阀杆的摩擦力矩
故计算压力一般取公称压力的0.6倍(约为工作压力),摩擦系数根据材料定。
计算的力矩乘1.3~1.5倍以选执行器。
阀门扭矩计算要兼顾阀板与阀座的摩擦,阀轴与填料的摩擦,介质不同压差下对阀板的推力。
因为阀板、阀座和填料的种类很多,每一种都有不同的摩擦力,及接触面的大小,压紧的程度等等。
一般是用仪表实测而不是计算。
阀门扭矩计算出的数值有很大的参考意义,但并不能完全照搬。
在很多因素的影响下,阀门扭矩计算并没有实验得出的结果更精确。
什么是扭矩?
扭矩是使物体发生转动的力。
发动机的扭矩就是指发动机从曲轴端输出的力矩。
在功率固定的条件下它与发动机转速成反比关系,转速越快扭矩越小,反之越大,它反映了汽车在一定范围内的负载能力。
代号计算参数说明
参数类型L A 销轴到球心距离(mm)如图给定L B 球体中心至下支承距离(mm)如图给定Lr 阀杆轴心至销轴轴心距离(mm)如图给定d B 下支承半径(mm)如图给定f B 下支承摩擦系数设计给定L A '计算力臂(mm)计算输出L B '计算力臂(mm)
计算输出P 流体介质压力=公称压力(MPa)设计给定D N 阀座内径尺寸(mm)
设计给定b m 密封面在垂直于阀门通道轴线的平面上的投影宽度(mm)设计给定q mf 密封所需比压(MPa)计算输出Pd 低压密封试验压力(MPa)设计给定F P 流体介质压力(N)计算输出Fm 密封面上所需密封力(N)计算输出m p 比例系数
计算输出球形密封表面的外切面与阀门通道轴线夹角(°)设计给定角度换成弧度(⌒)计算输出SR 球形密封面表面半径(mm)
设计给定阀杆扁头斜面与阀杆轴线的夹角(°)设计给定角度换成弧度(⌒)计算输出fm 阀座密封材料摩擦系数设计给定Km 关闭时销轴的滚动摩擦系数计算输出K A 关闭时力臂系数
计算输出N AG 阀杆头部斜边作用于销轴上的作用力(N)计算输出N BG
球体下支承轴上的作用力(N)计算输出f L 关闭时阀杆摩擦系数点击给定ρL 关闭时螺纹摩擦角(°)计算输出ρL
关闭时螺纹摩擦角(︿)计算输出d 2
梯形螺纹中径(mm)点击给定αL 梯形螺纹升角(°)点击给定α
L
梯形螺纹升角(︿)计算输出R FM
关闭时螺纹摩擦半径(mm)
计算输出M FL
关闭时阀杆与阀杆螺母螺纹摩擦力矩(N.mm)计算输出M c
关闭时球体下支承产生的扭矩(N.m)
计算输出
ψα
fc球体下支承与阀体的摩擦系数点击给定M T阀杆与填料的摩擦转矩(N.mm)计算输出F T阀杆与填料的摩擦力(N)计算输出μt填料的摩擦系数:F4=0.05~0.15,N=0.1~0.15设计给定Z填料的圈数设计给定h单圈填料的高度(mm)设计给定d T阀杆直径(与填料接触处)(mm)设计给定M阀门总操作力矩(N.mm)计算输出
输入/输出
59
53
18
18
0.25 61.68468205
55.25
2.5
48
3
7.485541619
0.6 5104.4625 3598.027952 0.704878908
58
1.012290966
48
10
0.174532925
0.25
9.577954968 0.993224954 2016.407755 1616.21591
0.15
8.53
0.148876585
25.5
3.5
0.061086524 2.717074441 5478.729974 8727.565914
0.3 9771.60979 542.8672105
0.08
4
5
36 23977.90568。