微电子封装技术论文范文(2)
- 格式:docx
- 大小:22.66 KB
- 文档页数:7
论文标题作者:李泽鹏通信与信息工程学院电子信息工程 B15011515摘要: 著名的摩尔定律提出至今,芯片功能发展强劲,凸现出无源元件的集成化发展缓慢,IC的各种封装布线设计及制作技术亟待发展。
为此,很多封装承包商积极推出新一代封装技术及其产品,期望以此弥补SOC芯片的某些缺陷,推进在一个封装内的无源元件集成化,促进新世纪进入一个各类元器件的大集成时代。
本文主要介绍近日热门的几种封装技术,并对我国电子封装技术的发展提出一些思索和看法。
关键词:电子封装;芯片;集成电路1.引言近几年来由于智慧型手机与平板电脑等行动终端市场迅速扩展,封装的小型化和组装的高密度化以及各种新型封装技术的不断涌现,对电子封装质量的要求也越来越高。
电子封装技术的发展有利于为芯片提供保护,保障信号和功率的输入与输出,确保器件能在所要求的外界环境及工作条件下稳定可靠地运行。
电子技术已成为人类的名贵资源。
同样,在军事范畴好像伊拉克战争所充足亮相的那样,电子产品已成为计谋资源,是决议计划之源,直接影响决议火力和机动力的先进和好坏。
2.电子封装技术与方法本段介绍电子封装的技术与方法。
2.1常用技术2.2阵列封装(BGA)是一种常用的技术。
性能方面,BGA用焊球代替引线,引出路径短,减少了引脚延迟、电阻、电容和电感;此外,对封装空间的利用上,BGA技术使封装密度更高,对于同样面积,引脚数更高,适应于现代电子设备种类繁多的功能,与现有的表面安装工艺和设备完全相容,安装更可靠;第三,由于焊料熔化时的表面张力具有"自对准"效应,避免了传统封装引线变形的损失,大大提高了组装成品率;同时,焊球引出形式还适用于多芯片组件和系统封装。
因此,BGA得到爆炸性的发展。
因此,在引线数大于200条以上和封装体尺寸超过28mm见方的应用中,BGA封装取代诸多传统工艺,占据市场的能力是必然的。
图1 BGA封装芯片图 2 iPhone7所搭载的SIP芯片还有一种技术便是最近盛传被iPhone 7所采用的新型SIP封装方法。
浅谈未来微电子封装技术发展趋势论文浅谈未来微电子封装技术发展趋势论文1概述如今,全球正迎来电子信息时代,这一时代的重要特征是以电脑为核心,以各类集成电路,特别是大规模、超大规模集成电路的飞速发展为物质基础,并由此推动、变革着整个人类社会,极大地改变着人们的生活和工作方式,成为体现一个国家国力强弱的重要标志之一。
因为无论是电子计算机、现代信息产业、汽车电子及消费类电子产业,还是要求更高的航空、航天及军工产业等领域,都越来越要求电子产品具有高性能、多功能、高可靠、小型化、薄型化、轻型化、便携化以及将大众化普及所要求的低成本等特点。
满足这些要求的正式各类集成电路,特别是大规模、超大规模集成电路芯片。
要将这些不同引脚数的集成电路芯片,特别是引脚数高达数百乃至数千个I/O的集成电路芯片封装成各种用途的电子产品,并使其发挥应有的功能,就要采用各种不同的封装形式,如DIP、SOP、QFP、BGA、CSP、MCM 等。
可以看出,微电子封装技术一直在不断地发展着。
现在,集成电路产业中的微电子封装测试已与集成电路设计和集成电路制造一起成为密不可分又相对独立的三大产业。
而往往设计制造出的同一块集成电路芯片却采用各种不同的封装形式和结构。
今后的微电子封装又将如何发展呢?根据集成电路的发展及电子整机和系统所要求的高性能、多功能、高频、高速化、小型化、薄型化、轻型化、便携化及低成本等,必然要求微电子封装提出如下要求:(1)具有的I/O数更多;(2)具有更好的电性能和热性能;(3)更小、更轻、更薄,封装密度更高;(4)更便于安装、使用、返修;(5)可靠性更高;(6)性能价格比更高;2未来微电子技术发展趋势具体来说,在已有先进封装如QFP、BGA、CSP和MCM等基础上,微电子封装将会出现如下几种趋势:DCA(芯片直接安装技术)将成为未来微电子封装的主流形式DCA是基板上芯片直接安装技术,其互联方法有WB、TAB和FCB技术三种,DCA与互联方法结合,就构成板上芯片技术(COB)。
微电子封装工艺的发展微电子封装工艺是指将微型电子元器件及芯片通过一系列工艺步骤封装成具有特定功能的电气产品的过程。
随着微电子技术的发展和应用的广泛性,封装工艺也在不断地演变和更新。
本文将从材料、技术和应用三个方面探讨微电子封装工艺的发展。
首先,材料方面的发展是微电子封装工艺进步的重要因素之一、随着技术的发展,封装材料的性能要求也越来越高,例如高温耐受性、低温反应性、电磁兼容性等。
目前,常用的封装材料包括有机封装材料、无机封装材料和高分子封装材料。
有机封装材料具有重量轻、可塑性好等特点,适用于小尺寸的电子产品封装,但其耐受高温和电流能力较差。
无机封装材料具有良好的导热性和电绝缘性能,适用于高功率电子元器件封装,但制作工艺较为复杂。
高分子封装材料具有耐温性能、机械强度和电气性能较好,适用于高密度封装。
其次,随着技术的进步和创新,微电子封装工艺也在不断发展。
首先是封装技术的减小化趋势。
封装技术不断追求更小的封装尺寸,以适应微电子器件的微型化趋势。
如今,最小的可制造微电子封装尺寸已经达到亚微米级别。
其次是微电子封装技术的多样化。
随着应用领域的扩展,封装技术也在不断更新,包括微型封装、表面贴装封装、无铅封装等。
此外,新型封装技术如3D封装技术和SiP封装技术的出现,进一步推进了封装工艺的发展。
最后,微电子封装工艺的发展也与应用领域的扩展密切相关。
随着智能手机、平板电脑、物联网等新兴应用的兴起,对封装工艺的要求也越来越高,如更小尺寸、更高性能、更低功耗等。
同时,新兴应用也带来了新的封装技术需求,如柔性封装技术、生物医学封装技术等。
微电子封装工艺的不断发展与应用需求的紧密结合,推动了封装工艺的创新和进步。
综上所述,微电子封装工艺的发展是一个不断演进和更新的过程。
材料的发展、技术的进步以及应用领域的扩展是推动封装工艺不断发展的关键因素。
未来,随着新兴技术的不断涌现和应用需求的增加,微电子封装工艺将会继续发展,并在电子产品的微型化、多功能化和高性能化方面发挥重要作用。
微电子器件的封装与热管理研究在当今科技飞速发展的时代,微电子器件已经成为了我们生活中不可或缺的一部分。
从智能手机、电脑到各种智能家电,微电子器件的身影无处不在。
然而,随着微电子器件的性能不断提升,其封装与热管理问题也日益凸显,成为了制约其进一步发展的关键因素。
微电子器件的封装,简单来说,就是将芯片等核心部件包裹起来,以提供机械支撑、电气连接和环境保护等功能。
良好的封装不仅能够保证器件的正常工作,还能够提高其可靠性和稳定性。
在封装技术的发展历程中,经历了从传统的双列直插式封装(DIP)、扁平封装(QFP)到球栅阵列封装(BGA)、芯片尺寸封装(CSP)等先进封装技术的演变。
这些先进封装技术在减小封装尺寸、提高集成度、改善电气性能等方面具有显著优势。
以球栅阵列封装(BGA)为例,它通过在芯片底部布置球形引脚,实现了更高的引脚密度和更短的信号传输路径,从而提高了器件的性能。
而芯片尺寸封装(CSP)则将芯片的尺寸与封装的尺寸做到了几乎相等,极大地减小了封装的体积,满足了电子产品轻薄化的需求。
然而,随着微电子器件的集成度越来越高,封装过程中面临的挑战也越来越多。
例如,如何在有限的空间内实现更多的引脚连接,如何保证封装材料与芯片之间的热膨胀系数匹配,以避免在温度变化时产生应力导致器件失效等。
与此同时,热管理问题也成为了微电子器件发展中的一个重要瓶颈。
由于微电子器件在工作过程中会产生大量的热量,如果这些热量不能及时有效地散发出去,就会导致器件温度升高,从而影响其性能和可靠性。
高温会导致电子迁移加剧、器件寿命缩短,甚至可能造成器件的永久性损坏。
因此,有效的热管理对于微电子器件的正常运行至关重要。
目前,微电子器件的热管理技术主要包括散热片、风扇、热管、均热板等。
散热片是一种常见的被动散热方式,它通过增大与空气的接触面积来提高散热效率。
风扇则是一种主动散热方式,通过强制对流来加速热量的散发。
热管和均热板则利用了工质的相变传热原理,具有更高的传热效率。
微电子封装技术范文
一、简介
微电子封装技术是指用于将微电子元件和集成电路封装在一起,作为
一个完整的系统的技术。
它主要用于控制电子元件、模块的显示、操作、
维护、安装等。
该技术的实现,一般是通过把封装后的微电子元件或集成
电路组装成一个模块,并安装到一个安装面板上,使其与外部连接成为一
个完整的系统。
二、特点
1、电子性能好:微电子封装技术一般采用材料的灵活性,能够有效
地改善电子产品的性能,从而满足用户对性能要求。
2、可靠性高:由于微电子封装技术能够改善电子器件的可靠性,因
此可以使得产品的可靠性得到很大的提高。
3、易于操作:由于封装技术能够把电子元件或集成电路组装成完整
的模块,并且这些模块能够很容易地安装在一个安装面板上,使得电子设
备的操作变得非常简单方便,而且能够减少维护和检修的工作量。
4、减少占地面积:由于所有的电子元件可以放在一个封装模块上,
因此减少了电子设备的占地面积,从而能够减少电子设备的安装空间。
三、流程
1、封装结构设计:在这一步中,先根据电路的功能需求,确定封装
的结构形状,包括封装件的结构、位置和定位方式等。
2、封装制造:根据设计的封装结构,使用压力铸造机、电子焊接机、注塑机等机械。
0引言随着计算机技术的普及,到1975年世界上第一只晶体管的诞生,特别是近年来封装技术的发展,微电子封装技术在国民经济中的作用越来越突出,甚至,微电子封装技术越来越成为衡量国民经济发展的一项重要指标,在这样的时代背景之下,对于微电子封装技术的研究变得尤为重要。
1微电子封装技术的世纪回顾微电子封装技术有着悠久的历史渊源,其起源、发展、革新都是伴随着IC产业的发展而不断变化的。
可以说,有一种IC的出现,就会伴随着一代微电子封装技术的发展。
最早的微电子封装技术出现在60年代、70年代,这一时期是比较小规模的微电子封装技术。
随后,在80时年代,出现了SMT,这一技术的发展极大的推动了计算机封装技术的发展。
基于微电子封装技术的不断革新,经过微电子技术行业专业人员历时多年的研究,开发出了QFP、PQFP等,不但解决了较高I/O LSI的技术封装问题,而且与其他的技术合作,使得QFP、PQFP成为微电子封装的主导型技术。
近年来,微电子封装技术又有了新的发展,新的微电子封装技术,不仅仅具有传统裸芯片的全部优良性能,而且这种新型的微电子封装技术,突破了传统的微电子封装技术的阻碍,使得IC达到了“最终封装”的境界,是微电子封装领域的一大发展。
随着科学技术的不断发展,微电子封装行业也在进行着前所未有的变革,为了增加微电子产品的功能,达到提高电子产品的性能和可靠性以及降低成本的需求,现正在各类先进封装技术的基础上,进一步向3D封装技术发展,特别是近年来,微电子封装领域的专家学者们,正在研究由原来的三层封装模式向一层封装的简洁模式过渡。
在不久的将来,随着科学技术的进一步发展,微电子封装技术还将继续在新的领域并借助高科技的助力向更加多元与开阔的方向发展。
2IC的进展及对微电子封装技术提出的新要求随着时代的进步和科学技术的发展,各行各业对于电子产品的技术要求更高,在目前的领域之中,无论是信息技术产业,还是汽车行业及交通运输行业,以及关系到国家安全的军事、航空航天行业,都对微电子封装技术提出了更高水平的要求。
微电子封装技术综述论文摘要:我国正处在微电子工业蓬勃发展的时代,对微电子系统封装材料及封装技术的研究也方兴未艾。
本文主要介绍了微电子封装技术的发展过程和趋势,同时介绍了不同种类的封装技术,也做了对微电子封装技术发展前景的展望和构想。
关键字:微电子封装封装技术发展趋势展望一封装技术的发展过程近四十年中,封装技术日新月异,先后经历了3次重大技术发展。
IC封装的引线和安装类型有很多种,按封装安装到电路板上的方式可分为通孔插入式TH 和表面安装式SM,或按引线在封装上的具体排列分为成列四边引出或面阵排列。
微电子封装的发展历程可分为3个阶段:第1阶段,上世纪70年代以插装型封装为主。
70年代末期发展起来的双列直插封装技术DIP,可应用于模塑料,模压陶瓷和层压陶瓷封装技术中,可以用于IO数从8~64的器件。
这类封装所使用的印刷线路板PWB成本很高,与DIP相比,面阵列封装,如针栅阵列PGA,可以增加TH类封装的引线数,同时显著减小PWB的面积。
PGA系列可以应用于层压的塑料和陶瓷两类技术,其引线可超过1000。
值得注意的是DIP和PGA等TH封装由于引线节距的限制无法实现高密度封装。
第2阶段,上世纪80年代早期引入了表面安装焊接技术,SM封装,比较成熟的类型有模塑封装的小外形,SO和PLCC型封装,模压陶瓷中的CERQUAD层压陶瓷中的无引线式载体LLCC和有引线片式载体LDCC,PLCC,CERQUAD,LLCC和LDCC都是四周排列类封装。
其引线排列在封装的所有四边,由于保持所有引线共面性难度的限制PLCC的最大等效引脚数为124。
为满足更多引出端数和更高密度的需求,出现了一种新的封装系列,即封装四边都带翼型引线的四边引线扁平封装QFP 与DIP,相比QFP的封装尺寸大大减小且QFP具有操作方便,可靠性高,适合用SMT表面安装技术在PCB上安装布线,封装外形尺寸小,寄生参数减小适合高频应用。
Intel公司的CPU,如Intel80386就采用的PQFP。
微电子封装的关键技术及应用前景论文近年来,各种各样的电子产品已经在工业、农业、国防和日常生活中得到了广泛的應用。
伴随着电子科学技术的蓬勃发展,使得微电子工业发展迅猛,这很大程度上是得益于微电子封装技术的高速发展。
这样必然要求微电子封装要更好、更轻、更薄、封装密度更高,更好的电性能和热性能,更高的可靠性,更高的性能价格比,因此采用什么样的封装关键技术就显得尤为重要。
1.微电子封装的概述1.1微电子封装的概念微电子封装是指利用膜技术及微细加工技术,将芯片及其他要素在框架或基板上布置、粘贴固定及连接,引出连线端子并通过可塑性绝缘介质灌封固定,构成整体立体结构的工艺。
在更广的意义上讲,是指将封装体与基板连接固定,装配成完整的系统或电子设备,并确定整个系统综合性能的工程【1】。
1.2微电子封装的目的微电子封装的目的在于保护芯片不受或少受外界环境的影响,并为之提供一个良好的工作条件,以使电路具有稳定、正常的功能。
1.3微电子封装的技术领域微电子封装技术涵盖的技术面积广,属于复杂的系统工程。
它涉及物理、化学、化工、材料、机械、电气与自动化等各门学科,也使用金属、陶瓷、玻璃、高分子等各种各样的材料,因此微电子封装是一门跨学科知识整合的科学,整合了产品的电气特性、热传导特性、可靠性、材料与工艺技术的应用以及成本价格等因素。
2微电子封装领域中的关键技术目前,在微电子封装领域中,所能够采用的工艺技术有多种。
主要包括了栅阵列封装(BGA)、倒装芯片技术(FC)、芯片规模封装(CSP)、系统级封装(SIP)、三维(3D)封装等(以下用简称代替)【2】。
下面对这些微电子封装关键技术进行一一介绍,具体如下:2.1栅阵列封装BGA是目前微电子封装的主流技术,应用范围大多以主板芯片组和CPU等大规模集成电路封装为主。
BGA的特点在于引线长度比较短,但是引线与引线之间的间距比较大,可有效避免精细间距器件中经常会遇到的翘曲和共面度问题。
微电子封装资料范文
一、微电子封装技术介绍
微电子封装是一种将微电子器件封装在外壳中,以便将它们固定在芯片上并形成一个完整系统的技术。
它的优势在于能将不同的电子器件,如电阻、电容器、变压器、集成电路、芯片、计算机接口、LED等集中在一起,并对其进行统一的封装,使整个系统更加紧凑、集成、模块化。
此外,微电子封装也可以使用特殊的冷焊技术、激光焊技术、熔喷技术等,来满足不同的应用需求。
另外,还可以使用传统的焊点技术,将器件固定在基板上,以确保其牢固可靠的结构。
二、微电子封装的优缺点
①优点:
1、微电子封装能够将不同的电子器件集成成一个模块,使其紧凑、集成,便于系统安装和使用;
2、使用特殊的焊技术以及冷焊技术等,可以确保器件牢固可靠的结构,以及质量的稳定性和可靠性;
3、微电子封装可以防止器件热老化,减少器件老化的可能性,从而提高器件的使用寿命;
4、微电子封装技术可以提高产品的尺寸,这样可以节省空间,提高形式效率,并降低成本。
②缺点:。
微电子毕业论文在当今科技飞速发展的时代,微电子技术无疑是推动社会进步的关键力量之一。
从智能手机到超级计算机,从医疗设备到航天航空,微电子技术的应用无处不在,深刻地改变了我们的生活和工作方式。
微电子技术的核心在于集成电路的设计与制造。
集成电路,也就是我们常说的芯片,是将大量的电子元件,如晶体管、电阻、电容等,集成在一块微小的半导体晶片上。
随着半导体工艺的不断进步,芯片上集成的元件数量越来越多,性能也越来越强大。
然而,这也给微电子技术的发展带来了诸多挑战。
在集成电路的制造过程中,光刻技术是至关重要的一环。
光刻技术的精度直接决定了芯片上元件的尺寸和间距。
目前,极紫外光刻(EUV)技术已经成为先进制程芯片制造的关键技术。
然而,EUV 技术的成本高昂,设备复杂,对制造环境的要求也极为苛刻。
为了降低成本,提高光刻精度,研究人员一直在不断探索新的光刻技术和材料。
另外,随着芯片集成度的提高,散热问题也日益突出。
芯片在工作时会产生大量的热量,如果不能及时有效地散热,将会影响芯片的性能和可靠性。
因此,热管理技术成为了微电子领域的一个重要研究方向。
目前,常见的散热技术包括风冷、液冷和相变冷却等。
同时,研究人员也在开发新型的散热材料,如高导热的石墨烯和金刚石等。
在集成电路的设计方面,低功耗设计成为了当前的研究热点。
随着移动设备的普及,对于芯片的功耗要求越来越严格。
为了降低功耗,设计人员需要从电路结构、工作电压、时钟频率等多个方面进行优化。
同时,新兴的技术如近似计算和异步电路设计也为低功耗设计提供了新的思路。
除了硬件方面,微电子技术在软件领域也有着广泛的应用。
例如,电子设计自动化(EDA)软件是集成电路设计必不可少的工具。
EDA软件可以帮助设计人员完成电路设计、仿真、验证等工作,大大提高了设计效率和质量。
然而,目前的 EDA 软件还存在一些不足之处,如对复杂系统的支持不够完善,仿真精度有待提高等。
因此,开发更加先进的 EDA 软件也是微电子领域的一个重要任务。
微电⼦技术论⽂范⽂3篇微电⼦技术发展历史论⽂摘要本⽂展望了21世纪微电⼦技术的发展趋势。
认为:21世纪初的微电⼦技术仍将以硅基CMOS电路为主流⼯艺,但将突破⽬前所谓的物理“限制”,继续快速发展;集成电路将逐步发展成为集成系统;微电⼦技术将与其它技术结合形成⼀系列新的增长点,例如微机电系统(MEMS)、DNA芯⽚等。
具体地讲,SOC设计技术、超微细光刻技术、虚拟⼯⼚技术、铜互连及低K互连绝缘介质、⾼K栅绝缘介质和栅⼯程技术、SOI技术等将在近⼏年内得到快速发展。
21世纪将是我国微电⼦产业的黄⾦时代。
关键词微电⼦技术集成系统微机电系统DNA芯⽚1引⾔综观⼈类社会发展的⽂明史,⼀切⽣产⽅式和⽣活⽅式的重⼤变⾰都是由于新的科学发现和新技术的产⽣⽽引发的,科学技术作为⾰命的⼒量,推动着⼈类社会向前发展。
从50多年前晶体管的发明到⽬前微电⼦技术成为整个信息社会的基础和核⼼的发展历史充分证明了“科学技术是第⼀⽣产⼒”。
信息是客观事物状态和运动特征的⼀种普遍形式,与材料和能源⼀起是⼈类社会的重要资源,但对它的利⽤却仅仅是开始。
当前⾯临的信息⾰命以数字化和⽹络化作为特征。
数字化⼤⼤改善了⼈们对信息的利⽤,更好地满⾜了⼈们对信息的需求;⽽⽹络化则使⼈们更为⽅便地交换信息,使整个地球成为⼀个“地球村”。
以数字化和⽹络化为特征的信息技术同⼀般技术不同,它具有极强的渗透性和基础性,它可以渗透和改造各种产业和⾏业,改变着⼈类的⽣产和⽣活⽅式,改变着经济形态和社会、政治、⽂化等各个领域。
⽽它的基础之⼀就是微电⼦技术。
可以毫不夸张地说,没有微电⼦技术的进步,就不可能有今天信息技术的蓬勃发展,微电⼦已经成为整个信息社会发展的基⽯。
50多年来微电⼦技术的发展历史,实际上就是不断创新的过程,这⾥指的创新包括原始创新、技术创新和应⽤创新等。
晶体管的发明并不是⼀个孤⽴的精⼼设计的实验,⽽是⼀系列固体物理、半导体物理、材料科学等取得重⼤突破后的必然结果。
探讨新型微电子封装技术随着科技的进步,微电子封装技术也在不断发展。
传统的封装技术已经无法满足微电子器件的需求,因此,新型的微电子封装技术逐渐被广泛探讨和应用。
一种新型微电子封装技术是三维封装技术。
传统的微电子封装技术通常是二维的,元器件的封装和排列都是在同一平面上进行的。
而三维封装技术将元器件封装和排列拓展到了垂直维度,使得设备能够在更小的体积内集成更多的元器件。
三维封装技术可以通过垂直堆叠芯片、采用堆叠封装等方式实现,大大提高了设备的集成度和性能。
另一种新型微电子封装技术是系统级封装技术(SiP)。
传统的封装技术通常是将单一芯片封装成为一个独立的器件,而系统级封装技术则是将多个芯片和其他元器件集成在一个封装中。
系统级封装技术可以通过在封装内部增加硅互连、电能供应网络和信号传输通道等方式,实现不同芯片之间的通信和互联,并大大缩小系统的体积和尺寸。
此外,新型微电子封装技术还包括无线封装技术、高速封装技术等。
无线封装技术通过无线通信技术实现元器件之间的通信和互联,避免了传统封装中复杂的布线工作。
高速封装技术则是通过优化封装的接口设计和信号传输路径,提高元器件之间的信号传输速率和带宽。
新型微电子封装技术的出现,不仅方便了微电子器件的设计和制造,还能够提供更高的性能和功能。
例如,三维封装技术能够大大提高集成度,使得设备在更小的体积内实现更多的功能。
系统级封装技术能够集成多个芯片和其他元器件,使得系统的体积和尺寸大幅减小。
无线封装技术和高速封装技术能够提高设备的通信速率和带宽,满足高速传输的需求。
然而,新型微电子封装技术也面临一些挑战。
首先,新技术的研发和应用需要大量的研究和投入,成本较高。
其次,不同的封装技术对材料和工艺的要求不同,需要进行针对性的研究和开发。
最后,新技术的推广和应用还需要与传统的制造流程和工艺进行衔接和兼容。
综上所述,新型微电子封装技术的探讨和应用为微电子器件的设计和制造带来了许多机会和挑战。
微电子封装技术综述论文摘要:我国正处在微电子工业蓬勃发展的时代,对微电子系统封装材料及封装技术的研究也方兴未艾。
本文主要介绍了微电子封装技术的发展过程和趋势,同时介绍了不同种类的封装技术,也做了对微电子封装技术发展前景的展望和构想。
关键字:微电子封装封装技术发展趋势展望一封装技术的发展过程近四十年中,封装技术日新月异,先后经历了3次重大技术发展。
IC封装的引线和安装类型有很多种,按封装安装到电路板上的方式可分为通孔插入式TH 和表面安装式SM,或按引线在封装上的具体排列分为成列四边引出或面阵排列。
微电子封装的发展历程可分为3个阶段:第1阶段,上世纪70年代以插装型封装为主。
70年代末期发展起来的双列直插封装技术DIP,可应用于模塑料,模压陶瓷和层压陶瓷封装技术中,可以用于IO数从8~64的器件。
这类封装所使用的印刷线路板PWB成本很高,与DIP相比,面阵列封装,如针栅阵列PGA,可以增加TH类封装的引线数,同时显著减小PWB的面积。
PGA系列可以应用于层压的塑料和陶瓷两类技术,其引线可超过1000。
值得注意的是DIP和PGA等TH封装由于引线节距的限制无法实现高密度封装。
第2阶段,上世纪80年代早期引入了表面安装焊接技术,SM封装,比较成熟的类型有模塑封装的小外形,SO和PLCC型封装,模压陶瓷中的CERQUAD层压陶瓷中的无引线式载体LLCC和有引线片式载体LDCC,PLCC,CERQUAD,LLCC和LDCC都是四周排列类封装。
其引线排列在封装的所有四边,由于保持所有引线共面性难度的限制PLCC的最大等效引脚数为124。
为满足更多引出端数和更高密度的需求,出现了一种新的封装系列,即封装四边都带翼型引线的四边引线扁平封装QFP 与DIP,相比QFP的封装尺寸大大减小且QFP具有操作方便,可靠性高,适合用SMT表面安装技术在PCB上安装布线,封装外形尺寸小,寄生参数减小适合高频应用。
Intel公司的CPU,如Intel80386就采用的PQFP。
长风破浪会有时积极发展国内微电子封装业论文长风破浪会有时积极发展国内微电子封装业论文微电子器泮是由芯片和封装通过封装工艺组合而成,因此,封装是微电子器件的两1-基本组成部分之一,封装为芯片提供信号和电源的互连,提供散热通路和机械、环境猓护。
随着微电子技术的发展,微电子器件的高频性能、热性能、可靠性和成本等越来越受封装性能的制约。
因此,封装对于器件相当于人的皮肤、手脚对于本,是人体的基本组成部分,而不是过去人们所说的衣服对于人的作用,因为衣服对于人来说主要是环境保护(冷热风雨)和装饰。
这点更可从MPU(微处理器)和ASIC(专用集成电路)的发展中看出,对于MPU几乎是一代新产品需要一种新封装。
早期的MPU如8086,引出端数为40,可以用DIP(双列直插式封装到386时,引线数为80,就需要用PGA(针栅阵列)。
当发展到586时,引线数为377,又要闬于便携式计算机,则只能用BGA(焊球阵列)了。
由此可知,封装业必须和管芯制造业(圆片制造业)同步发展。
我国应积极地发展微电子封装业圆片加工是成批进行,而封装则需对管芯逐个地加工。
如一个6英寸、月投10000片,成品率为94%的圆片加工厂,若其管芯面积平均为3mm-’,则将年产管芯6亿个左右。
这样,一^圆片加工厂就需年产2亿彳、管芯的封装厂3仑,或年封1C3亿个的封装厂2个予以支撑。
因此,若国内要建10条左右<则需要新增像目前三菱一四通那样的封装厂12万片的圆片厂,封装产量将增加一倍以上。
另外,一个圆片制造厂(cp8英寸,特怔尺寸矣0.25(0^1)的投资需10多亿美元,它所需要的支撑技术和设备要求高。
而一个封装厂的投资一般为5000万到1亿美元,投资额比圆片制造厂小得多,建设快,投资回收快。
而封装中的多数工序如粘片、引线键合等都是逐个进行的,所需劳动力和场地多。
无论NEC、三菱或摩托罗拉在中国投资的集成电路厂都是从封装厂开始的。
台湾和东南亚地区发展微电子产业也都是以封装厂开始积累资金的。
微电子封装工艺的发展摘要:本文介绍微电子封装技术的发展过程和趋势,同时介绍了各个时期不同种类的封装技术,也做了对现在国内对于微电子封装技术不足的分析和对发展前景的展望和构想。
关键字:为电子封装发展趋势优点一、封装技术的发展从80年代中后期,开始电子产品正朝着便携式、小型化、网络化和多媒体化方向发展,这种市场需求对电路组装技术提出了相应的要求,单位体积信息的提高(高密度)和单位时间处理速度的提高(高速化)成为促进微电子封装技术发展的重要因素。
1.1 片式元件:小型化、高性能片式元件是应用最早、产量最大的表面组装元件。
它主要有以厚薄膜工艺制造的片式电阻器和以多层厚膜共烧工艺制造的片式独石电容器,这是开发和应用最早和最广泛的片式元件。
随着工业和消费类电子产品市场对电子设备小型化、高性能、高可靠性、安全性和电磁兼容性的需求,对电子电路性能不断地提出新的要求,片式元件进一步向小型化、多层化、大容量化、耐高压、集成化和高性能化方向发展。
在铝电解电容和钽电解电容片式化后,现在高Q值、耐高温、低失真的高性能MLCC已投放市场;介质厚度为10um的电容器已商品化,层数高达100层之多;出现了片式多层压敏和热敏电阻,片式多层电感器,片式多层扼流线圈,片式多层变压器和各种片式多层复合元件;在小型化方面,规格尺寸从3216→2125→1608→1005发展,目前最新出现的是0603(长0.6mm,宽0.3mm),体积缩小为原来的0.88%。
集成化是片式元件未来的另一个发展趋势,它能减少组装焊点数目和提高组装密度,集成化的元件可使Si效率(芯片面积/基板面积)达到80%以上,并能有效地提高电路性能。
由于不在电路板上安装大量的分立元件,从而可极大地解决焊点失效引起的问题。
1.2 芯片封装技术:追随IC的发展而发展数十年来,芯片封装技术一直追随着IC的发展而发展,一代IC就有相应一代的封装技术相配合,而SMT的发展,更加促进芯片封装技术不断达到新的水平。
微电子封装技术论文范文微电子封装技术是90年代以来在半导体集成电路技术、混合集成电路技术和表面组装技术(SMT)的基础上发展起来的新一代电子组装技术。
下面是由 ___的微电子封装技术,谢谢你的阅读。
微电子封装技术的发展趋势【摘要】本文论述了微电子封装技术的发展历程,发展现状和发展趋势,主要介绍了几种重要的微电子封装技术,包括:BGA 封装技术、CSP封装技术、SIP封装技术、3D封装技术、MCM封装技术等。
【关键词】微电子技术;封装1.微电子封装的发展历程IC 封装的引线和安装类型有很多种,按封装安装到电路板上的方式可分为通孔插入式(TH)和表面安装式(SM),或按引线在封装上的具体排列分为成列、四边引出或面阵排列。
微电子封装的发展历程可分为三个阶段:第一阶段:上世纪70 年代以插装型封装为主,70 年代末期发展起来的双列直插封装技术(DIP)。
第二阶段:上世纪80 年代早期引入了表面安装(SM)封装。
比较成熟的类型有模塑封装的小外形(SO)和PLCC 型封装、模压陶瓷中的CERQUAD、层压陶瓷中的无引线式载体(LLCC)和有引线片式载体(LDCC)。
PLCC,CERQUAD,LLCC和LDCC都是四周排列类封装,其引线排列在封装的所有四边。
第三阶段:上世纪90 年代,随着集成技术的进步、设备的改进和深亚微米技术的使用,LSI,VLSI,ULSI相继出现,对集成电路封装要求更加严格,I/O引脚数急剧增加,功耗也随之增大,因此,集成电路封装从四边引线型向平面阵列型发展,出现了球栅阵列封装(BGA),并很快成为主流产品。
2.新型微电子封装技术2.1焊球阵列封装(BGA)阵列封装(BGA)是世界上九十年代初发展起来的一种新型封装。
BGA封装的I/O端子以圆形或柱状焊点按阵列形式分布在封装下面,BGA技术的优点是:I/O引脚数虽然增加了,但引脚间距并没有减小反而增加了,从而提高了组装成品率;虽然它的功耗增加,但BGA能用可控塌陷芯片法焊接,从而可以改善它的电热性能;厚度和重量都较以前的封装技术有所减少;寄生参数减小,信号传输延迟小,使用频率大大提高;组装可用共面焊接,可靠性高。
微电子封装技术的最新进展及纳米材料在其中的应用摘要:微电子封装技术中介绍了中丝焊、倒装焊和无铅焊料技术的最新进展;分析了用于先进和复杂应用场合的堆叠芯片丝焊、低k超细间距器件丝焊以及铜丝焊技术。
随着科技发展,纳米材料在微电子、光电子及计算机领域的应用,使其在推动微电子封装发展中具有重要意义。
关键词:封装技术,焊接,丝焊,倒装焊,无铅焊料,纳米材料,微电子1、纳米材料在微电子、光电子及计算机领域的应用未来所有的纳米电子器件都将具有更小(集成度更高)、更快(响应速度更快)、更冷(单个器件的功耗更小、温升低)的特点。
如果记录媒体采用纳米层和纳米点的形式,1,000张CD盘中的信息就可能存储到一个手表大小的存储器中。
除了存储量千百倍甚至百万倍地增加外,计算机的速度也将大幅度提高。
传送电磁信号(包括无线电信号和激光信号)的器件将变得更加小巧而功能却更加强大。
任何人、任何物体都将可能在任何时间、任何地点与未来的互联网相连。
而将来的互联网更像是一个无处不在的信息环境,而不仅仅是一个计算机网络。
美国半导体工业协会(SIA)制定一个关于信息处理器件在小型化、速度和功耗方面不断改善的技术发展线路。
这些信息处理器件包括用于信号获取的纳米传感器,用于信号处理的逻辑器件,用于数据记忆的存储器,用于可视化的显示器和用于通讯的传输器件。
根据SIA的预测,大概到2010年,半导体芯片可以达到100 nm的精度,与纳米结构器件相距不远。
实际上,1999年,美国加州大学与惠普公司合作已经研制成功1OOnm的芯片。
1998年,美国明尼苏达大学和普林斯顿大学制出了量子磁盘,密度高达1011bit/in2,美国商家认为2005年的市场可达400亿美元。
目前,利用纳米技术己经研制成功多种纳米器件。
单电子晶体管,红、绿、蓝三基色可调谐的纳米发光二极管以及利用纳米丝、纳米棒制成的微型探测器己经问世。
日本日立公司成功研制出单个电子晶体管,它通过控制单个电子运动状态来完成特定功能,即一个电子就是一个具有多功能的器件。
微纳电子器件封装技术研究微纳电子器件封装技术是微纳电子领域中非常重要的一个研究方向。
其主要目的是为了保护电子器件,使其可以在恶劣的环境下运行。
随着科技的不断进步和人们对高性能、小型化电子设备的需求的不断增强,微纳电子器件封装技术研究也越来越受到人们的关注。
一、微纳电子器件封装技术的研究背景微纳电子器件封装技术是电子工业史上的一次革命。
在微处理器问世之前,封装技术并不是面向普通用户的。
然而,当智能手机开始吞噬市场的时候,微纳电子器件封装技术的重要性被逐渐察觉。
为了使微纳电子器件在长期使用过程中不会受到恶劣的环境条件的影响,我们需要在制造过程中考虑到器件封装的问题。
然而,这个问题并不容易解决。
因为微纳尺度器件的封装不仅需要技术上的突破,还需要解决材料、成本等方面的问题。
二、现阶段微纳电子器件封装技术的挑战现阶段微纳电子器件封装技术存在着很多挑战,主要有以下几个方面:1.高可靠性的封装材料高可靠性的封装材料是微纳电子器件封装技术的重中之重。
封装材料应该具有优异的物理特性和机械性能,同时还应该有足够的化学和热稳定性以确保长期使用的稳定性。
目前存在的问题是,最优质的封装材料并不一定能够适应更高的温度和工作要求,而且高性能封装材料的研发成本极高。
封装材料的稳定性——不仅受到化学和物理特性的影响,还受到应力与附着力、温度、湿度、微粒影响极大。
2.高密度的封装结构高密度的封装结构是实现微纳电子器件小型化、高性能化的关键。
然而,电路板的线路距离越小,面积越大,同样面积上可以连接的元器件数量越多,对于技术人员来说,制造工艺的控制和线路层次分明的电路板设计技术成为了难点。
3.封装技术面临的成本问题封装技术所面临的成本问题主要有两个方面。
一方面,封装材料的成本非常高。
另一方面,制造这些材料所需要的工艺条件也在不断进步,导致封装成本趋于不稳定。
较高的封装成本不仅会直接影响到微纳电子器件的制造成本,还会使制造商面临更严峻的市场竞争。
微电子封装技术论文范文(2)微电子封装技术论文范文篇二埋置型叠层微系统封装技术摘要:包含微机电系统(MEMs)混合元器件的埋置型叠层封装,此封装工艺为目前用于微电子封装的挠曲基板上芯片(c0F)工艺的衍生物。
cOF是一种高性能、多芯片封装工艺技术,在此封装中把芯片包入模塑塑料基板中,通过在元器件上形成的薄膜结构构成互连。
研究的激光融除工艺能够使所选择的cOF叠层区域有效融除,而对封装的MBMs器件影响最小。
对用于标准的c0F工艺的融除程序进行分析和特征描述,以便设计一种新的对裸露的MEMs器件热损坏的潜在性最小的程序。
cOF/MEMs封装技术非常适合于诸如微光学及无线射频器件等很多微系统封装的应用。
关键词:挠曲基板上芯片;微电子机械系统:微系统封装1、引言微电子机械系统(MEMS)从航空体系到家用电器提供了非常有潜在性的广阔的应用范围,与功能等效的宏观级系统相比,在微米级构建电子机械系统的能力形成了在尺寸、重量和功耗方面极度地缩小。
保持MEMS微型化的潜在性的关键之一就是高级封装技术。
如果微系统封装不好或不能有效地与微电子集成化,那么MEMS的很多优点就会丧失。
采用功能上和物理上集成MEMS与微电子学的方法有效地封装微系统是一种具有挑战性的任务。
由于MEMS和传统的微电子工艺处理存在差异,在相同的工艺中装配MEMS和微电子是复杂的。
例如,大多数MEMS器件需要移除淀积层以便释放或形成机械结构,通常用于移除淀积材料的这些工艺对互补金属氧化物半导体(CMOS)或别的微电子工艺来说是具有破坏性的。
很多MEMS工艺也采用高温退火以便降低结构层中的残余材料应力。
典型状况下退火温度大约为1000℃,这在CMOS器件中导致不受欢迎的残余物扩散,并可熔化低温导体诸如通常用于微电子处理中的铝。
缓和这些MEMS微电子集成及封装问题的一种选择方案就是使用封装叠层理念。
叠层或埋置芯片工艺已成功地应用于微电子封装。
在基板中埋置芯片考虑当高性能的内芯片互连提供等同于单片集成的电连接时,保护微电子芯片免受MEMS环境影响。
埋置型芯片封装尤其适合于微系统封装诸如元器件必须裸露于外部环境中的微光学器件或天线等。
已证明的几种MEMS封装方法,考虑到埋置型MEMS封装,这些方法在实际封装安装或创造适合于MEMS环境的模块装配期间,采用微电机技术。
本文中描述的埋置型叠层封装方法不同于扩展现存的多芯片及微电子封装工艺。
当允许与微电子高性能集成时,创造适合于MEMS的模块。
MEMS埋置型叠层工艺是为微电子封装研发的挠曲基板上芯片封装的衍生物。
使用COF初始的可行性已证明,那些结果突出了更进一步研究使MEMS器件损坏最小化的工艺的需要。
2、COF/MEMS封装工艺在基本的COF工艺中,当芯片被埋置于如图1所示的塑料基板中时,通过布图的叠层完成电互连。
COF互连叠层在芯片粘附之前预装配,叠层的底层通常为聚酰亚胺薄膜,叠层的顶层也可为聚酰亚胺薄膜。
铜用于使预装配叠层金属化,采用聚酰亚胺或热塑胶粘剂在COF 叠层上面朝下粘附芯片,把芯片压焊到叠层上之后,使用塑料模塑成形工艺诸如传递、压缩或注射模塑在元器件周围形成基板,在基板模塑期间模块温度不超过210℃。
下一步工艺就是芯片与叠层进行电连接,穿过叠层到元器件焊盘,通过激光钻通通路完成电连接。
接着为了形成电互连,把Ti/Cu金属化进行溅射并布图,依据目标应用采用不同类型的顶层金属化。
对MEMS封装而言,通过增加额外的激光融除步骤允许物理通路到MEMS器件(如图1)来增加COF工艺。
也要进行附加的等离子蚀刻使在裸露窗口中积累的聚酰亚胺残余物最小化。
接着在COF叠层移去之后把裸露的MEMS器件释放。
3、改进coF/MEMS激光融除工艺在初始封装分析阶段发现的最严重的问题就是由于激光融除过度的加热造成的MEMS器件翘曲或失效。
最易受过热影响的器件是到基板通路的热损耗弱的长、薄结构的器件,诸如热驱动器。
另外,MEMS芯片的材料特性也可促成热损坏问题。
在350nm状况用连续的氩离子激光完成COF激光融除。
由于与融除有关的热问题较少,短脉冲、高瞬时功率激光是较好的。
然而,在标准的COF工艺中采用的氩离子激光的使用授权对成本和设备进行限制。
在350nm状况下氩离子激光特别会损坏多晶硅试验器件,因为它们实际上吸收那个波长的所有的入射的激光能量。
再者,MEMS芯片上未覆盖的顶部多晶硅层特别对热损坏易受影响,因为在融除期间它是直接裸露于激光束的。
3.1、叠层融除概述如前所述,采用350nm状况下连续不断的氩激光运作完成COF 工艺中的激光融除。
激光的半功率射束宽度(HPWB)标称为9μm。
如图2示出了在融除期间使用的激光扫描图案。
对每个通路而言,在6~12 mm对幅中穿过模块表面进行激光扫描,当认为激光束影响模块表面时,使用快门控制。
在交叉通路的末端,使激光正交步进并颠倒过程使另一通路穿过模块。
正交步进的数量决定通路之间的重叠数。
使用重叠来改进融除的均匀性。
由于功率仅为中心激光束的一半,因此在激光束边缘融除较少的聚酰亚胺薄膜单个通路之后,聚酰亚胺薄膜融除的深度是不一致的。
选择不是太大或不是太小的重叠是关键的,是在先前通路上得不到足够功率的融除区域的又一机会。
大的重叠可产生大量的融除而不足够的重叠将产生不能融除的材料保留于模块上。
图3示出了一排留在大块微机电MEMS芯片上的叠层材料。
通路问的重叠太小不能认为融除是良好的一致性。
扫描率在决定融除工艺特征方面是又一关键性因素,慢扫描率考虑更多的目标时间,将融除更多材料,采用较快的扫描率清除残留的聚酰亚胺薄膜或使过热的目标区域的危险性最小化。
3.2、叠层融除特性为了测量并分析激光融除工艺,对几个COF封装样品进行测试,由于在实验室激光是设定的,只有限定数目的扫描率是可用的,因此选择150Hz(1350μm/s)作为融除大量材料的扫描率,选择600Hz(5400μm/s)用于抛光融除,清除大量融除后残余材料,只有两个变量参数为通路问的叠层和功率等级。
通路问的叠层是调研的第一量,采用改变的叠层融除试验样品来决定哪个叠层将提供最大的一致性。
对试验样品的分析表明相邻通路中心之间的间距为3μm,提供最均匀的融除覆盖,在随后的试验中使用此间距来确定融除深度对激光功率变换的敏感性。
下一步就是测量与功率级有函数关系的融除深度,对此试验采用有60μm厚的叠层COF封装样品。
当大量融除的激光功率从1~4W 变换,融除抛光的功率从1~5W变换时,在试验样品的叠层中融除窗口。
伴随特定功率级每个通路,用表面光度仪测量叠层融除的深度。
图4示出了这些试验的结果。
3.3、改进的叠层融除工序的研究描述了激光融除工艺特征之后,对改进的融除进行调研。
首先对显示MEMS器件损坏的COF/MEMS模块采用1.6W功率进行融除,然而直到激光进入埋置芯片几个微米之内时,功率才下降,因此对采用较低激光功率的新的融除程序和移去叠层的替代法进行研究和开发。
较低功率融除的第一次尝试没有成功,把激光功率设定到1W,希望只是降低功率会降低MEMS器件损坏的潜在性。
然而,在1W(150Hz)状况下融除是缓慢的,并且在几个通路之后出现了过度的残余物,产生了不受欢迎的副作用。
再者,残余物开始变硬,对融除造成了困难,不能用O 2或CF 4/O 2等离子蚀刻移除。
下一个程序就是结合高功率融除移去大部分的叠层,接着当融除继续到更接近芯片时降低功率采用2W(150Hz)的功率融除COF/MEMS模块,直到剩下的材料不到10μm。
采用3W(600Hz)的融除抛光来移除剩余材料。
此程序比移去大部分叠层的先前的尝试效果更好,并且残余物不变硬,但融除抛光不能彻底移去大量融除后剩下的接近10μm的残余物。
虽然采用(CF 4/O 2)的4小时的等离子灰来除去残余叠层物,但是当除去残余物时,等离子灰循环太长引起了在整个模块上方叠层的分层现象,也开始蚀刻MEMS芯片上裸露的多晶硅。
把实际降低融除诱发损坏方案与前面两次尝试相结合,第一次尝试失败,原因在于1W的功率不能足够融除电介质残余物变硬前的材料。
第二程序失败,是由于融除抛光和等离子灰移除之后剩下大量的材料。
第三程序的成功是由于采用了三步融除并伴随短的等离子灰移除,高压水擦洗有助于使每个步骤后剩下的残余物最小化,从而使硬化的可能性最小化,此程序的步骤如表1所示。
第一次融除步骤的目的是移除足够的叠层考虑使用设定的低功率,在2W(150Hz)状况下用3个通路完成这一步骤,该步骤移除了第一层聚酰亚胺薄膜和内层胶粘剂(约30μm)。
第二融除步骤在1W状况下包括5~7通路,此步骤融除底部聚酰亚胺薄膜(约25μm),并留下仅仅较低的胶粘剂层通过融除抛光移除。
融除抛光(6个通路,3W,600Hz)清除大部分残余物电介质和胶粘剂。
融除之后,使用等离子灰和高压水擦洗,在低功率融除状况下从第二次尝试得到的积极的教训之一就是短的(小于90分钟)等离子灰(CF 4/O 2)在除去融除抛光后留下的残余物方面是非常有效的。
采用低压(约1乇)使封装芯片上氮化物或氧化物蚀刻最小化,最后步骤就是高压水擦洗,为的是除去任何不能保留于MEMS芯片表面上的硅石残余物,在每个融除步骤后也要使用高压擦洗。
3.4、二氧化硅层的热保护在COF封装之前,把MEMS芯片用保护性二氧化硅涂层覆盖,通过激光融除使其上方区域裸露,初始采用300nm到1μm厚的保护性氧化物使裸露表面诸如反射微镜盘上的残余物最小化。
保护性氧化物涂层意外的益处之一就是降低了MEMS器件对激光融除的易损性,即使在1.6W状况下进行融除,氧化物涂层区域中的MEMS器件显示出较少的激光加热损坏的证据。
降低损坏最可能的原因是通过氧化物层提供了热隔离。
COF/MEMS工艺中融除首要的是光热现象。
采用高于1ms脉宽的聚酰亚胺的紫外激光融除已表明是首要的光热反应现象。
在COF/MEMS工艺中采用的激光脉宽可确定为激光束的HPBW覆盖表面上点的时间量。
通过此定义,大量融除和融除抛光步骤的脉宽依次为6.67ms和1.67ms,这显示出光热融除是可预料的。
在350nm聚酰亚胺薄膜的光热融除的温度阈值的最小值为850℃,理论化的聚酰亚胺薄膜的最佳的光热融除发生的温度为1100~1500℃。
结果,接近聚酰亚胺薄膜融除的任何材料,诸如埋置型MEMS芯片,使经受至少850℃的热源,可能高达1500℃,这一数值的温度最易导致多晶硅结构中的失效发生。
二氧化硅的热传导率为1.0~1.4WK -lm -1,大大低于硅的热传导率160WK -lm -1或多晶硅的热传导率30WK -lm -1。
溅射或旋涂玻璃(SOG)氧化物保护层的存在对保护采用顶部多晶硅层的MEMS结构是特别重要的,因为这些器件裸露在表面,否则对融除的热效果没有绝缘作用。